BESIII Electromagnetic Calorimeter Fast Simulation

Tong Liu¹, Qiaojia Ge², Wenxing Fang¹, Weidong Li¹, Rui Zhang², Ke Li¹

¹ IHEP

² NJU

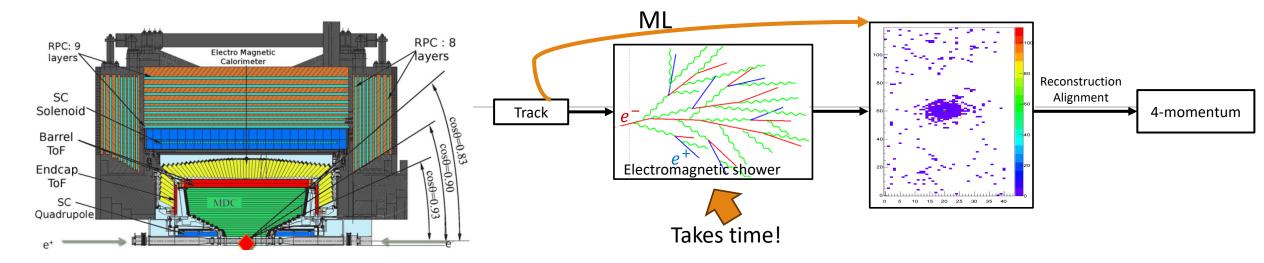
Outline

- Introduction & Training samples
- EMC simulation with GAN
- EMC simulation with diffusion
- Summary & Next

Introduction & Training samples

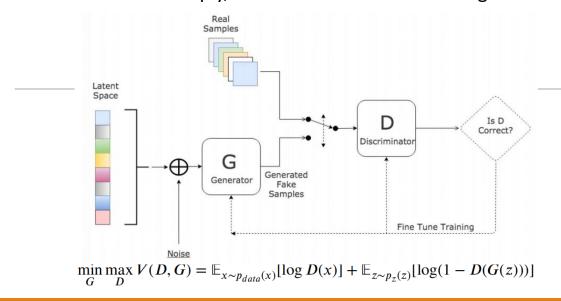
Introduction

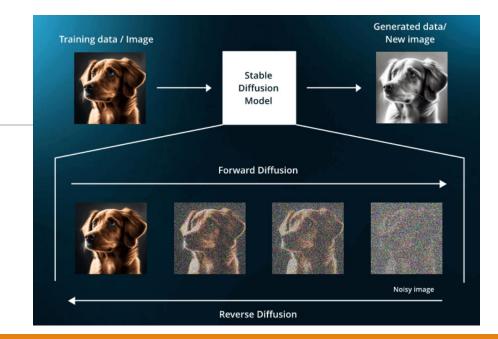
- With improved luminosity, MC with higher statistics is required
- MC simulation, especially for electromagnetic calorimeter (EMC), takes large CPU resources
 - Traditional: Geant4, gradually calculate the next state, complex due to secondary particles
 - ML: without Geant4, calculate hit map from input conditions
- EMC: 44 layer*120 crystals in barrel, we focus on barrel region firstly
 - To avoid energy leakage caused by the gap



Introduction

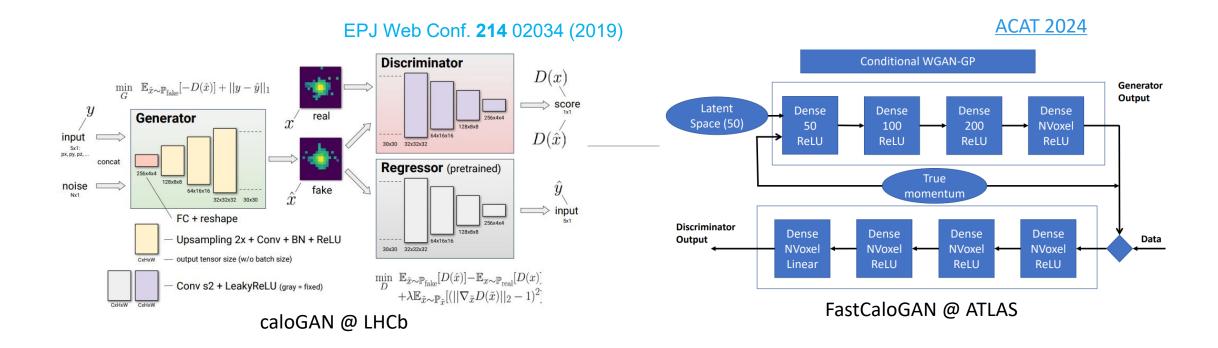
- GAN and diffusion models are tested in this work
- Generative Adversarial Networks (GAN) arXiv:1406.2661
 - A discriminator tries to discriminate the real and fake data; a generator to produce fake data, tries to confuse discriminator
 - Train D and G alternately to improve performance
- Diffusion arxiv: 2006.11239
 - Add noise steply, train a model to do denoising





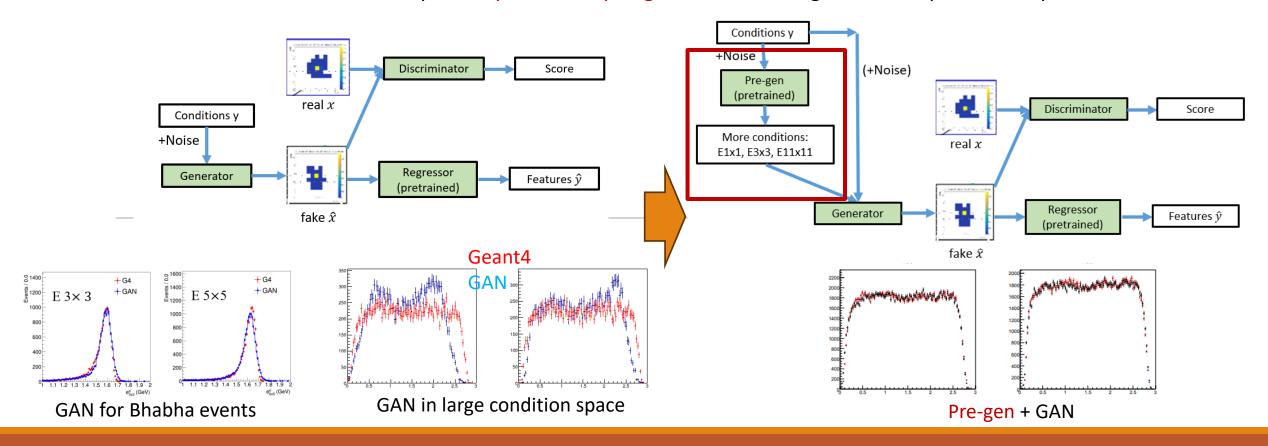
Introduction

- ML, especially GAN, is used for simulation at LHCb and ATLAS
 - A pretrained regressor, for further constrain G result
 - Train ~ 100 GANs for different ATLAS detector regions
- BESIII is an ideal place to perform ML-simulation: simpler detector, smaller condition space



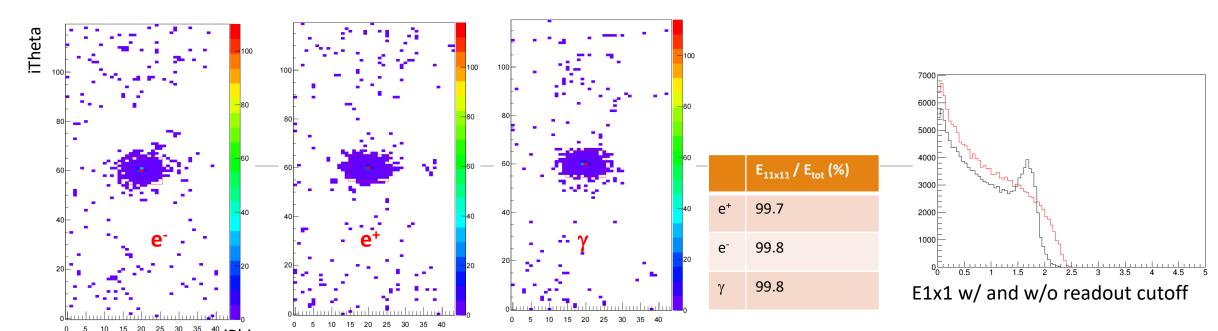
An Advanced Condition Generator

- BESIII tests the GAN simulation based on selected Bhabha ($e^+e^- \rightarrow e^+e^-$) events with caloGAN method
- However, the model does not work well in a larger condition space
- To cover the full condition space, a pretrained pre-gen model is integrated to improve GAN performance



Samples

- We simulate ~1M single-track events for $e^+/e^-/\gamma$ as training set
 - With 0 < P < 3 GeV/c, $0 < \theta < 2\pi$, $0 < \phi < 2\pi$
 - Single-momentum samples: P = 0.5, 0.8, 1.2, ... 2.5 GeV/c
 - Remove random trigger, randomness of IP, readout cutoff
- The 11x11 region contains nearly the entire detector response

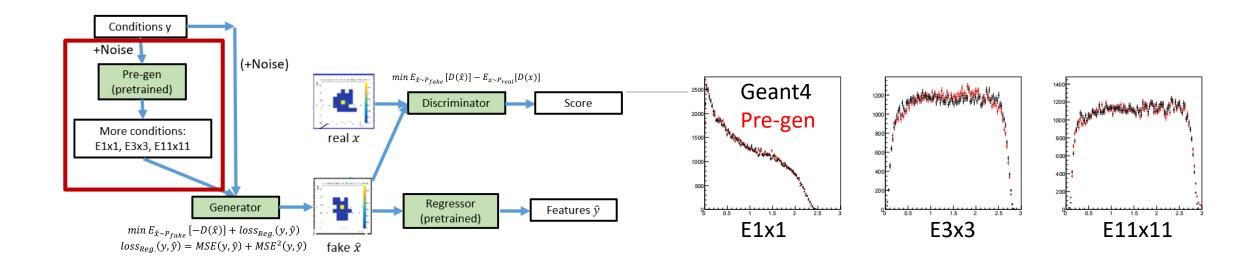


EMC hit map in barrel region from 100 events

EMC simulation with GAN

EMC simulation with ML - GAN

- Similar strategy as LHCb case: G + D + regressor (pretrained)
- Add a pre-gen model: an advanced condition generator
 - The full-space sample: the basic training
 - Single-momentum samples: compare the resolution after each 5 steps and apply an additional optimization step



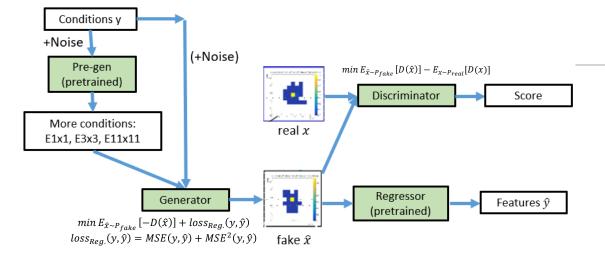
EMC simulation with ML - GAN

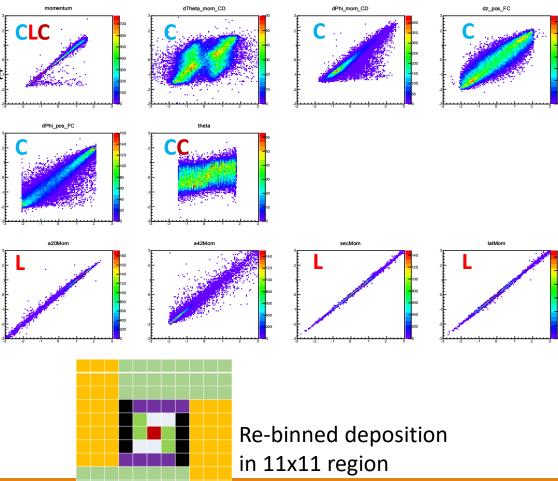
C: condition

L: for loss

C: condition for γ

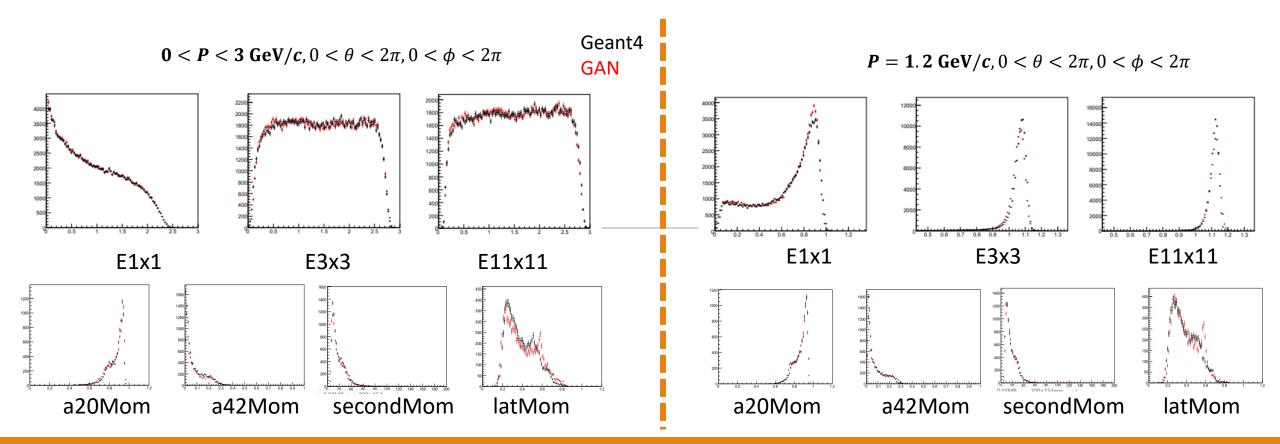
- Similar strategy as LHCb case: G + D + regressor (pretrained)
- Use observables to constrain
 - Use regressor to reconstruct complex observables:
 - A20 moment, A42 moment, Second moment, lateral moment
 - Calculate deposition in regions for loss_{reg}:
 - E1x1,...E11x11
 - Re-binned deposition
- ~46k trainable parameters in generator





EMC simulation with ML – GAN for e⁺

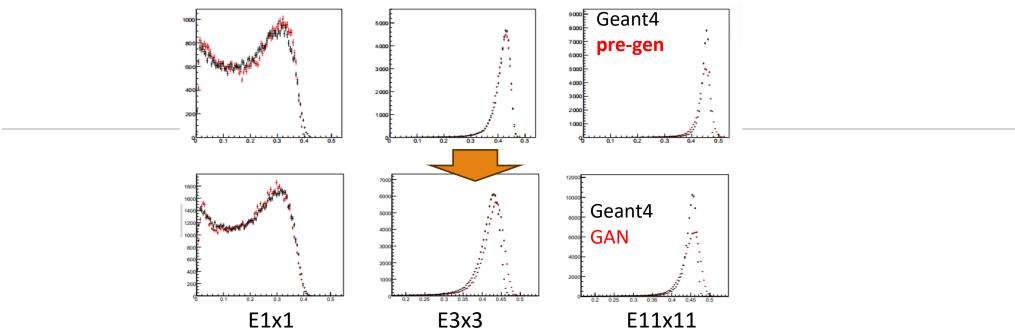
- ML reachs comparable accuracy to Geant4
 - In the full condition space, and for the single-momentum sample
- 50k tracks ~ 2s



EMC simulation with ML – GAN for e⁺

- ML reach comparable accuracy to Geant4
- ~ 2s for 50k tracks
- However, the resolution for the lower momentum tracks is larger than Geant4
 - Seems correlated to the pre-gen quality: more refined training for the pre-gen model
 - Or increase the size of sample in lower momentum region

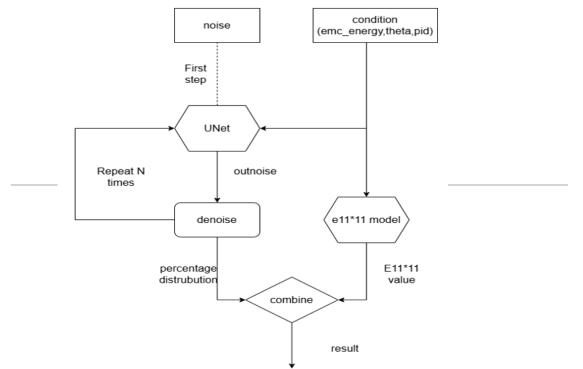
$$P=0.5~{\rm GeV}/c$$
, $0<\theta<2\pi$, $0<\phi<2\pi$



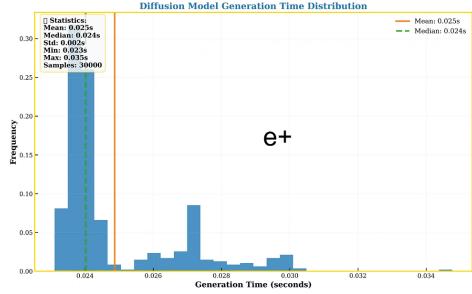
EMC simulation with diffusion

EMC simulation with ML – diffusion for e⁺

- Turn to diffusion as a possible alternative approach
 - ~0.025 s per track

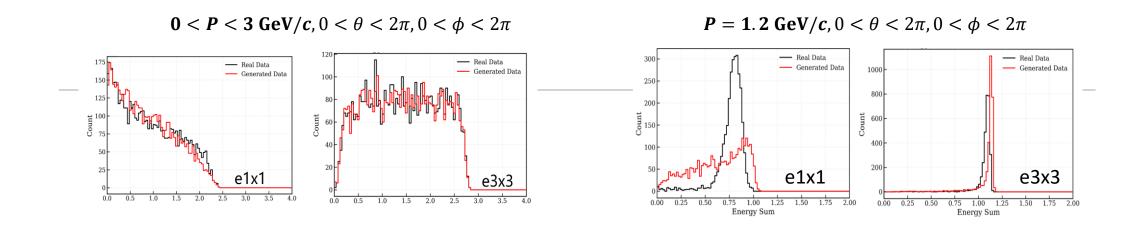


☐ DIFFUSION GENERATION TIME ANALYSIS ☐



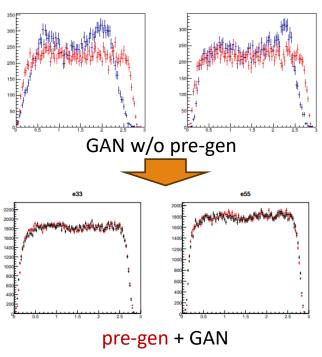
EMC simulation with ML – diffusion for e⁺

- Turn to diffusion as a possible alternative approach
 - Comparable accuracy to Geant4
 - The resolution needs to be improved

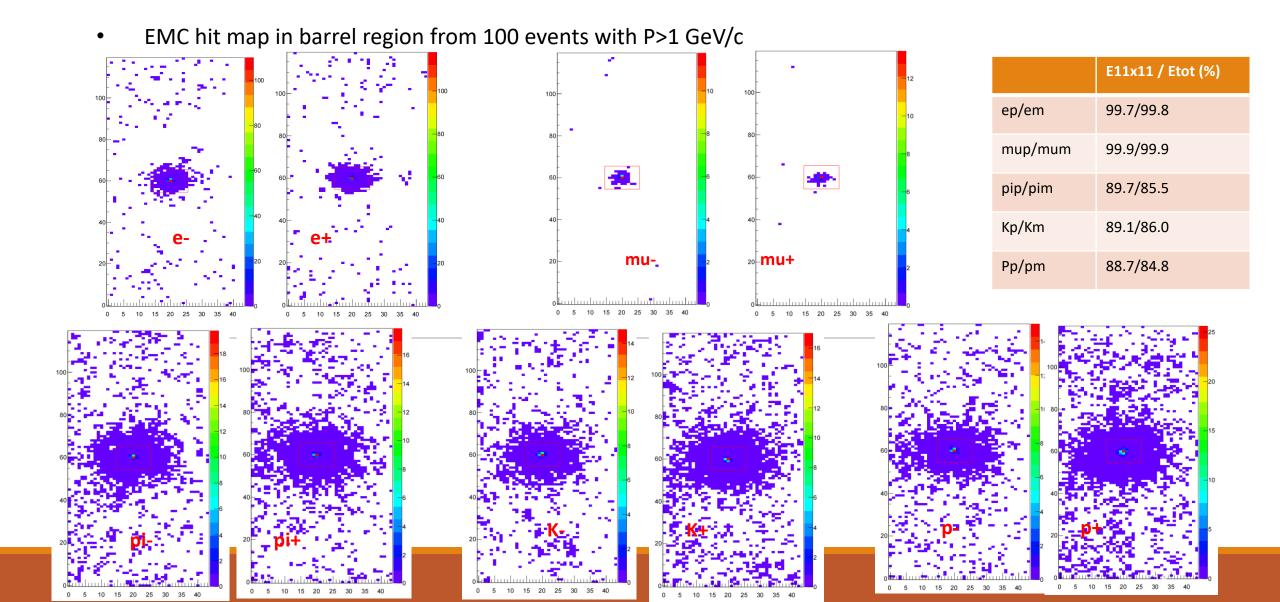


Summary & Next

- We use ML to speed up the simulation for electromagnetic calorimeter
- GAN: ~ 2s for 50k tracks
 - A pretrained pre-gen model improves GAN performance in the full condition space
- Diffusion: ~ 0.025s per track
 - Although slower than GAN, it is still faster than Geant4
- The preliminary model reach comparable accuracy to Geant4
- Next:
 - Conduct more refined training to optimize the accuracy
 - Increase sample in lower momentum region
 - Models for other tracks, specially, a pion shower results in a full-detector readout
 - Other similar experiments, like STCF

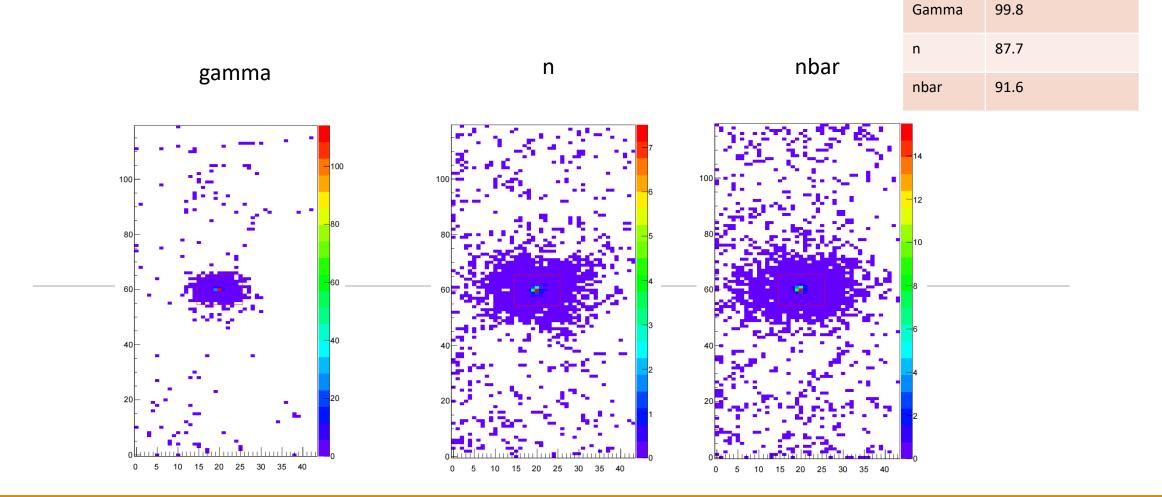


Readout region



Readout region

• EMC hit map in barrel region from 100 events with P>1 GeV/c

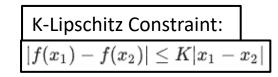


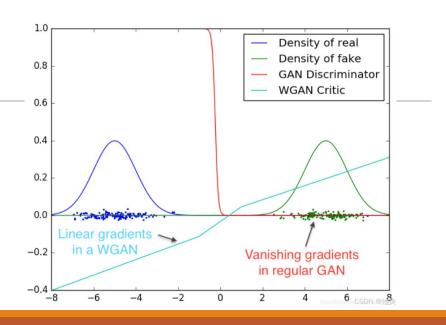
E11x11 / Etot (%)

Introduction-wGAN

arXiv:1701.07875

- Wasserstein GAN, an improved GAN
 - To solve instability and gradient vanishing
 - Especially if two distributions are non-overlapping.
 - Replace Discriminator with a Critic
 - Replace JS divergence with the Wasserstein distance, print scores instead of probabilities
 - Lipschitz Constraint: via weight clipping or gradient penalty (wGAN-GP)
 - Loss for D(C) and G:
 - $ullet L_{
 m critic} = \mathbb{E}_{x \sim P_r}[f_w(x)] \mathbb{E}_{z \sim P_z}[f_w(G(z))]$
 - $^ullet \ L_G = -\mathbb{E}_{z\sim P_z}[f_w(G(z))]$





EMC simulation with ML - GAN

