

STCF Hough Tracking and Fitting

Jin Zhang
On behalf of the STCF software group

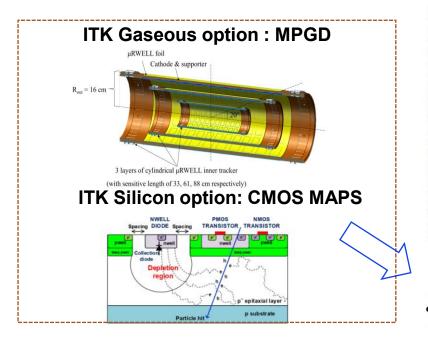
FTCF2025, 2 Huangshan, 2025 Nov.25

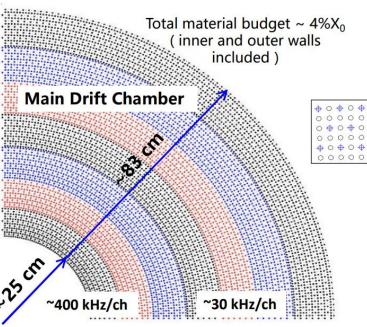
Outline

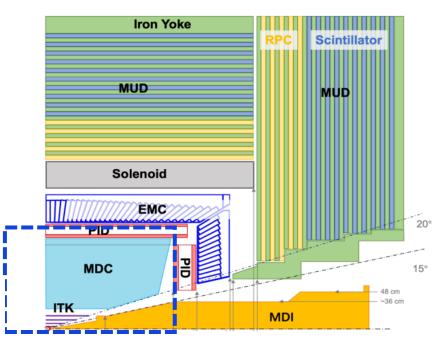
- Introduction to STCF and the tracking system
- The baseline tracking with Hough transform and GenFit2
- Displaced track optimization with Hough transform
- Tracking performance evaluation for tracker layout optimization
- Summary

Super Tau-Charm Facility

A factory produced massive tau lepton and hadrons, to unravel the mystery of how quarks form matter and the symmetries of fundamental interactions

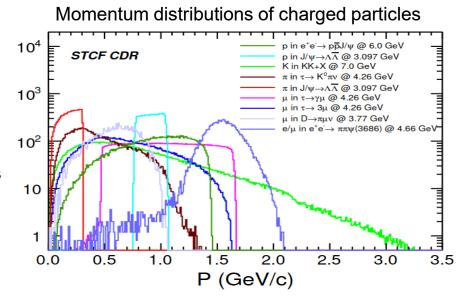

Tracking System: MDC + ITK

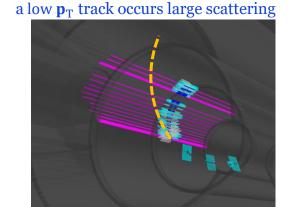


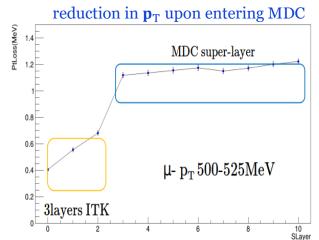

Works in a 1T magnetic field

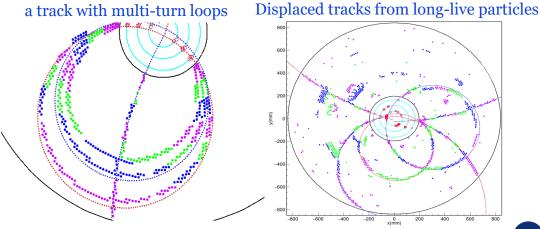
CDR:

- MDC: main drift tracker with large detection volume range
 - 48 layers, 4 stereo super layers, 4 axial super layers
- ITK: 3 layers of detectors with high counting rate capability
 - Placed in the area close to the beam pipe (3 20 cm)
 - Two options: MPGD / MAPS

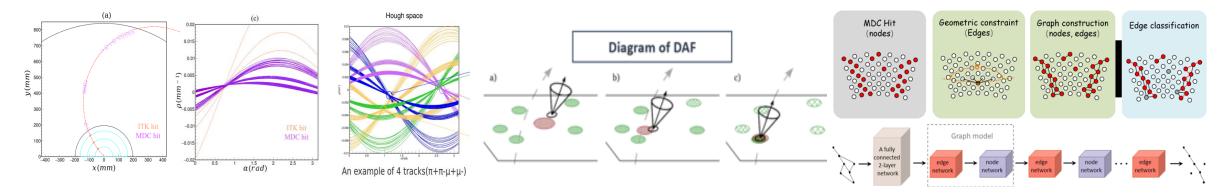

Superlayer	Radius (mm)	Num. of Layers	Stereo angle (mrad)	Num. of Cells	Cell size (mm)
A	200.0	6	0	128	9.8 to 12.5
U	271.6	6	39.3 to 47.6	160	10.7 to 12.9
V	342.2	6	-41.2 to -48.4	192	11.2 to 13.2
A	419.2	6	0	224	11.7 to 13.5
U	499.8	6	50.0 to 56.4	256	12.3 to 13.8
V	578.1	6	-51.3 to -57.2	288	12.6 to 14.0
A	662.0	6	0	320	13.0 to 14.3
A	744.0	6	0	352	13.3 to 14.5
otal	200 to 827.3	48		11520	


Task of Tracking and The Landscape in STCF

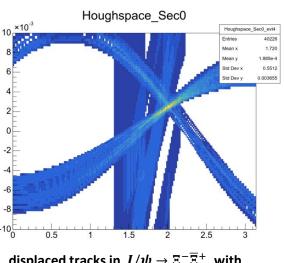



Crucial task for Tracking algorithm: reconstruct particles with high tracking efficiency and resolution, in a large momentum region(p: 50 MeV~3.5 GeV)

- High background : negatively impact on resolution and efficiency
- Most physics channel have number of particles with p < 0.4 GeV
 - Obvious Material effect from multiple scattering, ionization energy loss especially for inner wall, ITK, beam pipe
 - Looping < 125MeV, multi-turn tracks
- Long-live particles: displace tracks, sometimes with low pT

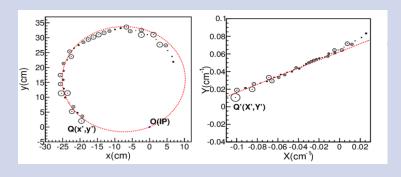


A stable track reconstruction algorithm is essential for studies of physics potential and detector optimization


Baseline Tracking Algorithm using Hough Trans and GenFit ラブごう

Hough + GENFIT2 + GNN(pre-noise filtering)

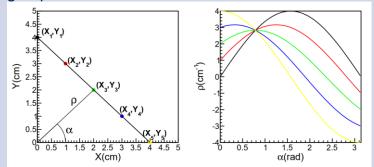
- Global track reconstruction based on Hough transform and DAF
 - Global method, robust to local inefficiencies
 - enhancing the ability to search for displaced tracks
 - Extended Kalman Filter(DAF) using GENFIT2
 - GNN is used as noise filtering, details in previous talk



displaced tracks in $J/\psi \to \Xi^{-}\overline{\Xi}^{+}$, with a Hybrid Hough transform

Hough Transform / Legendre Transform

Conformal Mapping: reliable for prompt tracks, but ineffective for displaced tracks

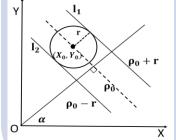

- (Trajectory) Circles passing the origin point -> conformal straight lines
- (Drift) Circles not passing the origin point -> conformal circles

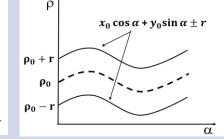
"conformal circles" are tangent to "conformal straight line"

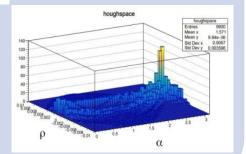
Negative impact for displaced tracks

Hough transform

- Transform a point in real space to a line or a curve in Hough Space
- Points rest on a line in real space ← → lines or curves focusing in Hough Space

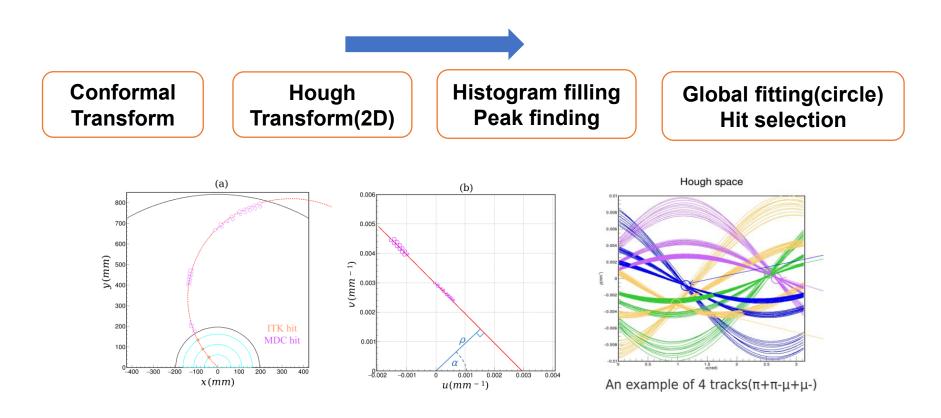



For Drift Chamber: Legendre transform

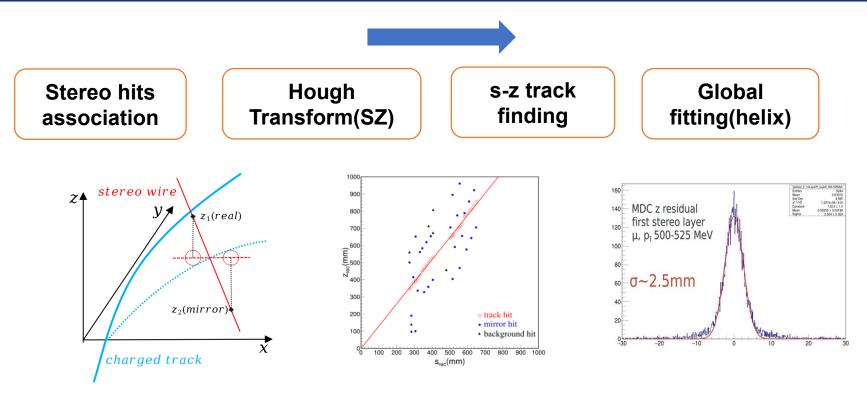

One drift circle->two curve lines on Hough space

$$\rho = X \cos \alpha + Y \sin \alpha + r, (upper \ half \ circle)$$

$$\rho = X \cos \alpha + Y \sin \alpha - r, (lower \ half \ circle)$$

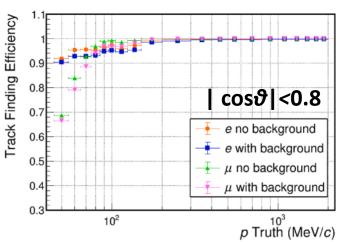


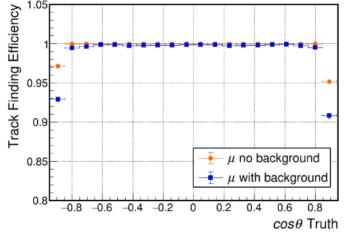
Implementation of Hough Transform (2D)



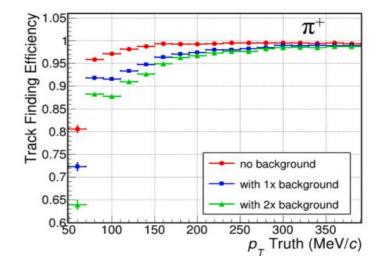
- I. Conformal transform: circular trajectories -> conformal straight lines
- II. Handling ITK and MDC measurements simultaneously, populating the Hough Space (2D histogram)
- III. Peak finding approach to identify candidate tracks(circles) in Hough Space
- IV. Global chi-square fit for circle tracks

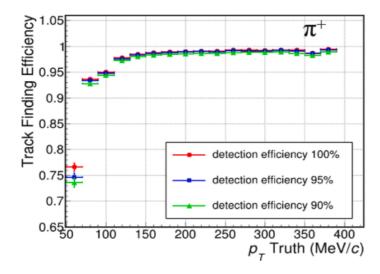
Implementation of Hough Transform (3D)




- I. Match MDC stereo wire hits, and calculate z position, flight path(s) values
- II. The trajectory is a straight in the s-z space → similar to the 2-D track finding: Hough transform on SZ plane Left/right ambiguity is considered in Hough(SZ) Space
- III. A global chi-square fitting is performed to retrieve the parameters of helix track
- IV. Track merging and fake-track rejection are performed on the constructed helix candidate tracks

Tracking Performance of Hough Transform




 \triangleright The track finding efficiency for single e and μ is studied in full simulation

 \blacktriangleright ψ(3686) \rightarrow π+π- J/ψ, J/ψ \rightarrow μ+μ- is studied in **full simulation**

Track finding efficiency: N1 / N2 N1: Number of reconstructed tracks matching with the truth tracks N2: Number of truth tracks with simulated hits >= 5, within 20°<θ<160°

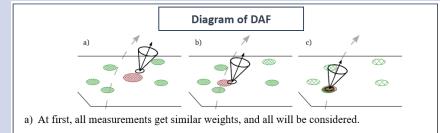
- Reliable and stable performance for single particle and physics channel
- High track finding efficiency is maintained with reduced detector efficiency
- Track finding efficiency of pion is above 95%/90% without/with 1X background at 100MeV

Track Fitting based on GENFIT2

GENFIT2 – A Generic Track Fitting toolkit

- Experiment-independent, modular track-fitting framework
- Open-source C++ code, larger user community (e.g., Belle2, PANDA, SHiP, AFIS ...)
- Providing typical track fitting tools, e.g., Kalman Filter (KF), Deterministic Annealing Filter (DAF), Reference KF, Reference DAF

GENFIT2 is implemented in OSCAR


- Candidate tracks from Hough track-finding algorithm are fed into GENFIT2
- Process with multiple particle hypotheses
- Deterministic Annealing Filter (DAF) is used as the default fitting algorithm
- For curling tracks, hits from first half are provided to fitting algorithm

Kalman filter: Iterative bi-directional Kalman filter is applied in GENFIT2

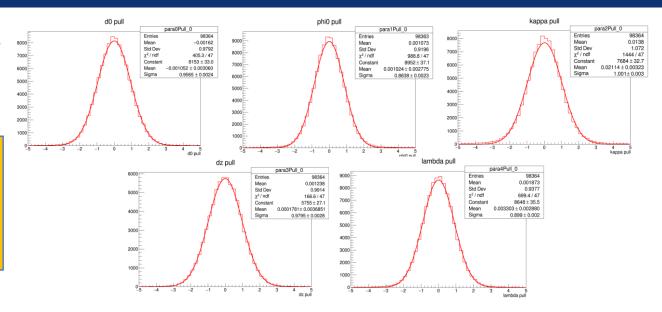
- · Forward / backward fitting
- The iterative process continues over measurements until convergence is achieved

DAF(Deterministic annealing filter): Iterative Kalman filter with weighting and annealing process

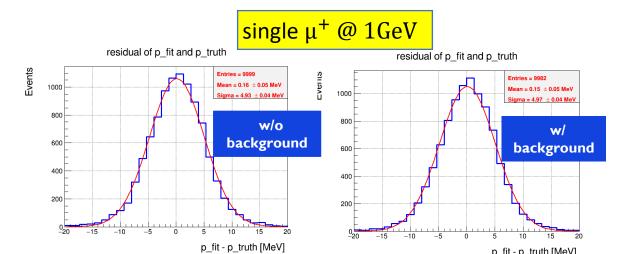
- assignment probabilities for measurement as used as weight
- capable of rejecting noise/outliers and to resolve left/right ambiguities

- b) After update, measurement with large errors are assigned smaller weight.
- c) As the temperature decreases, measurements with large errors are given even less weight.
 - · the weight drops below the threshold, reject

Track Fitting Performances

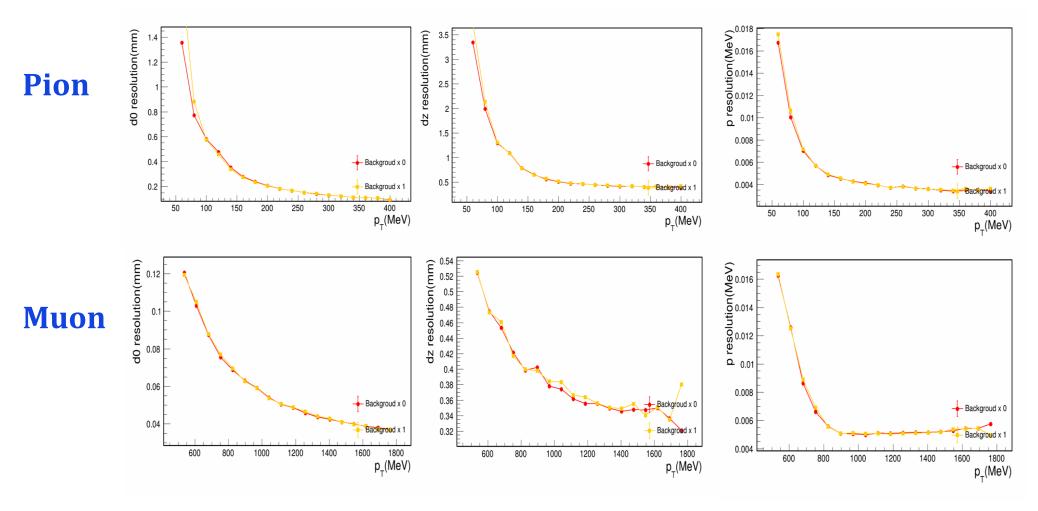

 The pull distributions are approximately consistent with standard normal distributions

$$Pull = \frac{v_{fit} - v_{truth}}{\sigma_{v}}$$


v_{fit}: the estimated value

v_{truth}: the true simulated value

 σ_{v} : the estimated uncertainty parameter $% \left(1\right) =\left(1\right) \left(1\right)$


- The Fitting convergence efficiency is greater than 99%
- achieves good momentum resolution (<0.5% @ 1GeV, w/ w/o background)

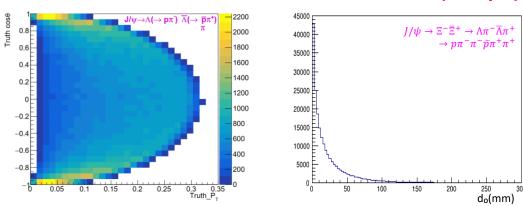
Resolution of Tracking Parameters

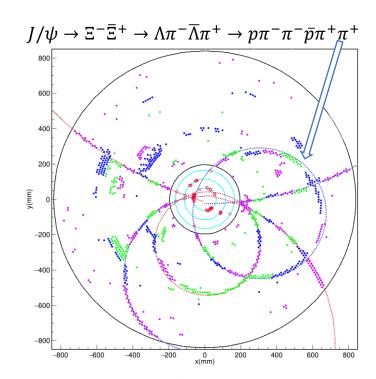
Impact parameter and momentum resolution form $\psi(3686) \to \pi^+\pi^- J/\psi$, $J/\psi \to \mu^+\mu^-$

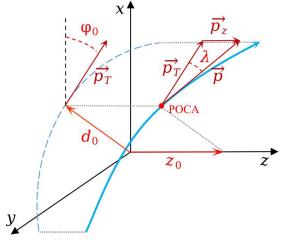
The impact parameter and momentum resolution show stable performance w and w/o noise

Tracking for displaced tracks with Hough Transform

The final-state particles from the decay of long-lived particles may be **produced far from the origin**:

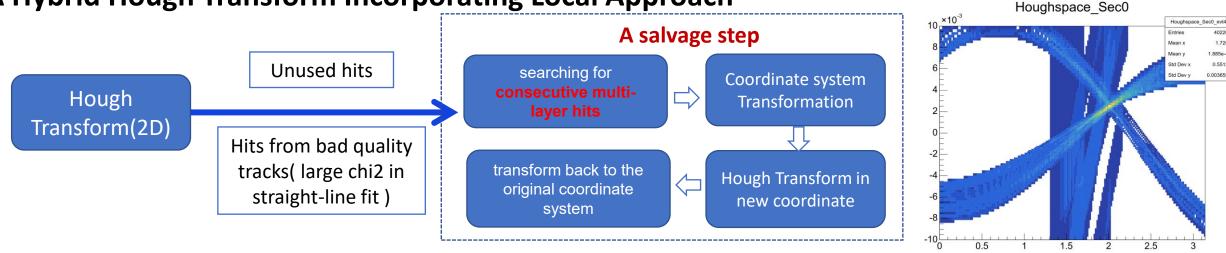

$$J/\psi \to \Lambda \overline{\Lambda} \to p \pi^- \overline{p} \pi^+$$
 (low momentum pion)
$$J/\psi \to \Xi^- \overline{\Xi}^+ \to \Lambda \pi^- \overline{\Lambda} \pi^+ \to p \pi^- \pi^- \overline{p} \pi^+ \pi^+$$
 (low momentum pion, multiplicities)


For Traditional Hough: To reduce complexity, conformal mapping is applied, as input


(Trajectory) Circles passing the origin point -> conformal straight lines (Drift) Circles not passing the origin point -> conformal circles

The real factors affecting the traditional conformal-mapping-Hough-transform are:

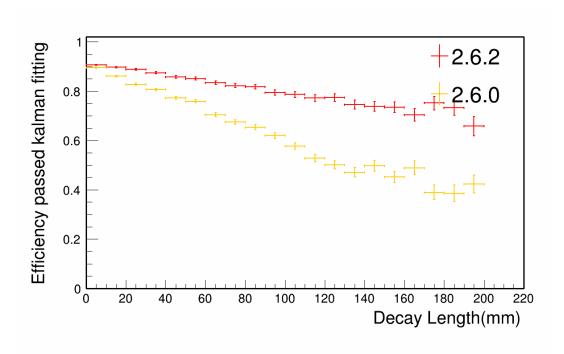
- whether the 2D circle from the track projection is geometrically close to the origin (i.e., whether the d_0 is small enough).
- the size of the 2D circular radius relative to the scale (i.e., pT)


Tracking for Displaced Tracks with Hough Transform

Tracks with a large d_0 and relatively low transverse momentum deviate from a straight line after conformal mapping, resulting in lower tracking efficiency.

Lost tracks and bad quality tracks in Conformal space are our TARGET

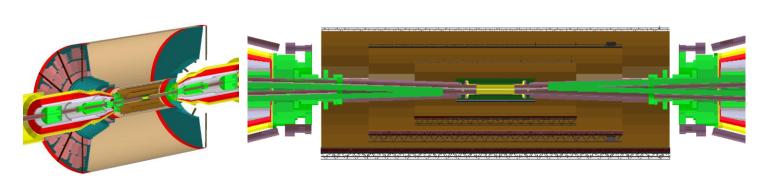
A Hybrid Hough Transform Incorporating Local Approach



- Salvage step is performed after the initial 2D track finding: hits on candidate tracks with large fit x² will be reused.
- A new Hough Map is built with seeds information.
- Many optimizations for very close track candidates and subsequent clone tracks.

Performances of Displaced Tracks

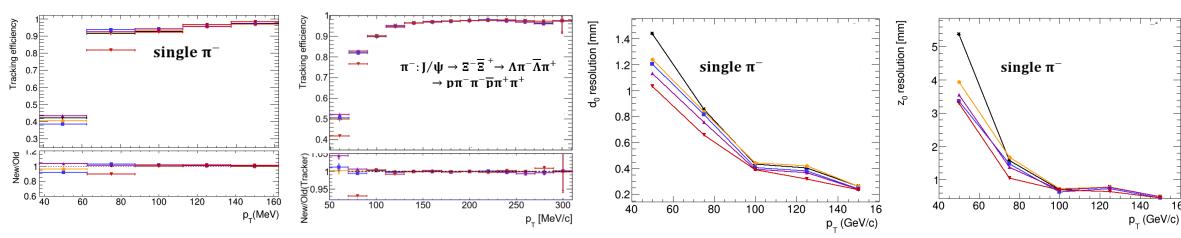
tracking efficiency of π in $J/\psi \to \Xi^- \overline{\Xi}{}^+ \to \Lambda \pi^- \overline{\Lambda} \pi^+ \to p \pi^- \pi^- \overline{p} \pi^+ \pi^+$


Significantly improvement with Hybrid-Hough-Trans(v2.6.2) comparing to basic Hough-Trans(v.2.6.0)

Performance Evaluations for Tracker Layout optimization

Two major considerations are the tracking performance for low-pT tracks and the ability to cope with high counting rates.

Layout Options	Beam Pipe	ITK	MDC	
CDR	high material	3 layers, 36~168 mm	48-layers, 20~80 cm	
1	budget	3 layers, 36~168 mm	inner chamber with super small cells + 42 regular layers, 20~83 cm	
2		3 layers, 36~168mm	inner chamber with super small cells + 42 regular layers, 20~83 cm	
3	low material budget	4 layers, 36~168 mm	inner chamber with super small cells + 42 regular layers, 20~83 cm	
4		4 layers, 36~210 mm	42 regular layers without inner chamber, starting with stereo layers, 25~83 cm	


- ✓ All above detector geometries were implemented in OSCAR
- ✓ Hough + GenFit was performed for benchmark physics processes to assess tracking performance

Performance Evaluations for Tracker Layout optimization

 Same tracking efficiency for different layouts when pt >100 MeV/c

- For the last option: 4 ITKM layers with no MDC inner tube
 - Vertex resolution is slightly better
 - Important to have axial layers in the MDC inner part to maintain tracking efficiency for pt < 100 MeV/c
 - Current tracking algorithm has been extensively optimized for axial wires: for prompt/displaced tracks
 - One more ITKM layer provides better flexibility for further optimizations
 - The optimized tracker layout: 4 ITK layers + 42 MDC layers started with 10 axial layers

Summary

- The baseline track reconstruction algorithm based on Hough transform and GenFit show reliable and stable performance
 - With Hough tracking algorithm, high tracking efficiency can be achieved to meet the requirements of STCF
 - The DAF algorithm in GENFIT2 shows the stability and robustness

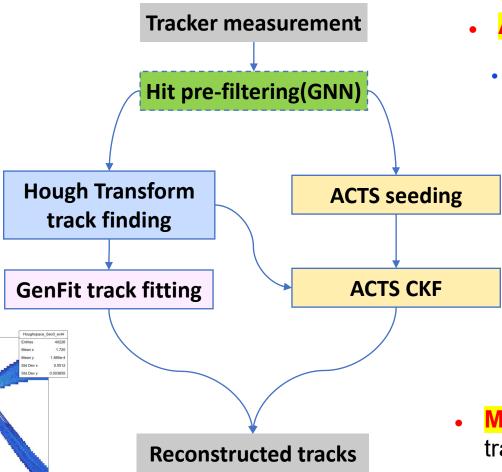
- Over the past year, we carried out extensive algorithm optimizations guided by physics benchmark, including tracking for both displaced and prompt tracks
- Performance evaluation of the tracker layouts is currently in progress, and optimization
 of baseline algorithm is underway

Backup

Task of Tracking and The Landscape in STCF

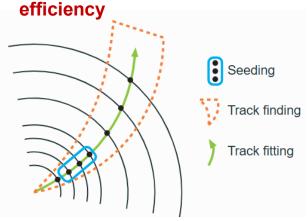
OSCAR: The offline software of STCF

Houghspace_Sec0

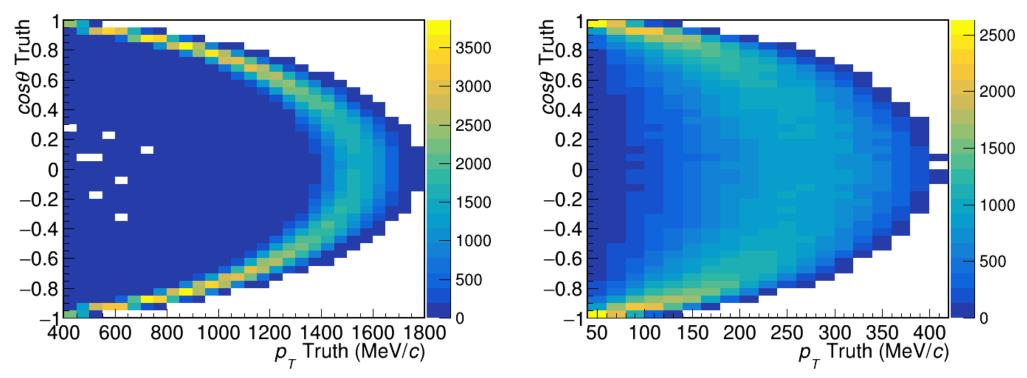

displaced tracks in $J/\psi \to \Xi^- \overline{\Xi}^+$, with a

Hybrid Hough transform

- Baseline : Hough + GENFIT2
 - Global track reconstruction based on Hough transform and DAF
 - process all hits simultaneously
 - enhancing the ability to search for displaced tracks
 - Extended Kalman Filter(DAF) using GENFIT2


Hough space

An example of 4 tracks($\pi+\pi-\mu+\mu$ -)


Another tracking option : ACTS

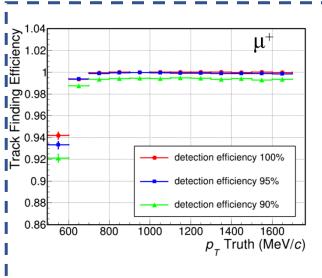
- Local approach
 - Seeding + Combinatorial Kalman Filter
 - Material effect in track finding
 - Strongly influenced by the **seeding**

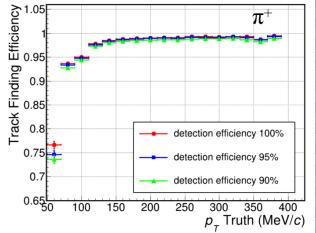
 Machine learning techniques: tracking with GNN

- GNN for background filter
- clustering(track finding) using DBSCAN、RANSAC

The distributions of p_T versus $\cos\theta$ for μ (left) and π (right) in $\psi(3686) \to \pi + \pi$ - J/ψ , $J/\psi \to \mu + \mu$ - events

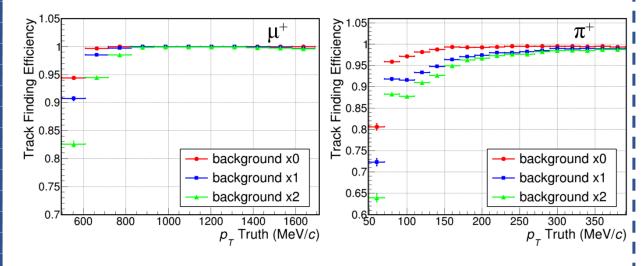
Performances of Hough-based Track Finding




• $\psi(3686) \rightarrow \pi + \pi - J/\psi$, $J/\psi \rightarrow \mu + \mu - is$ studied in **full simulation**

Track finding efficiency: N1 / N2

N1: Number of reconstructed tracks matching with the truth tracks


N2: Number of truth tracks with simulated hits \geq 5, within 20°< θ <160°

- Varying detection efficiencies of both ITK and MDC
- High track finding efficiency is maintained with reduced detector efficiency: the global algorithm is robust against local inefficiencies

- The study is performed with detection efficiency at 100%
- Track finding efficiency of pion is above 95%/90% without/with 1X background at 100MeV
- The track finding efficiency is more affected by background for tracks with low pT and large dip angle