Imaginary yet observable \(\tau \) EDM

Probing CP violation in τ sector

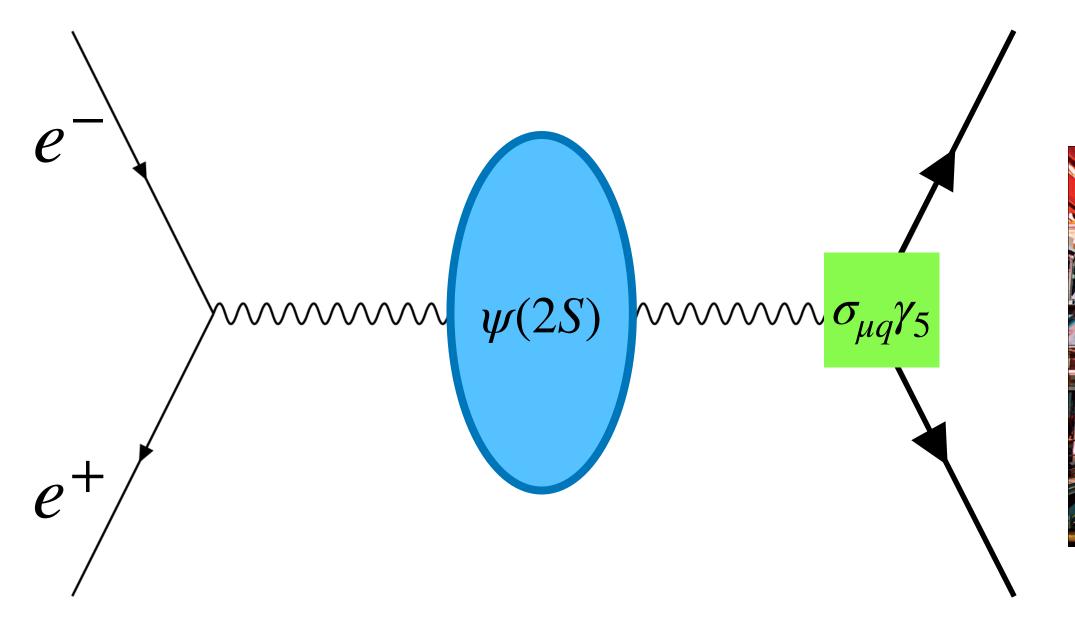
Chia-Wei Liu
HIAS, UCAS

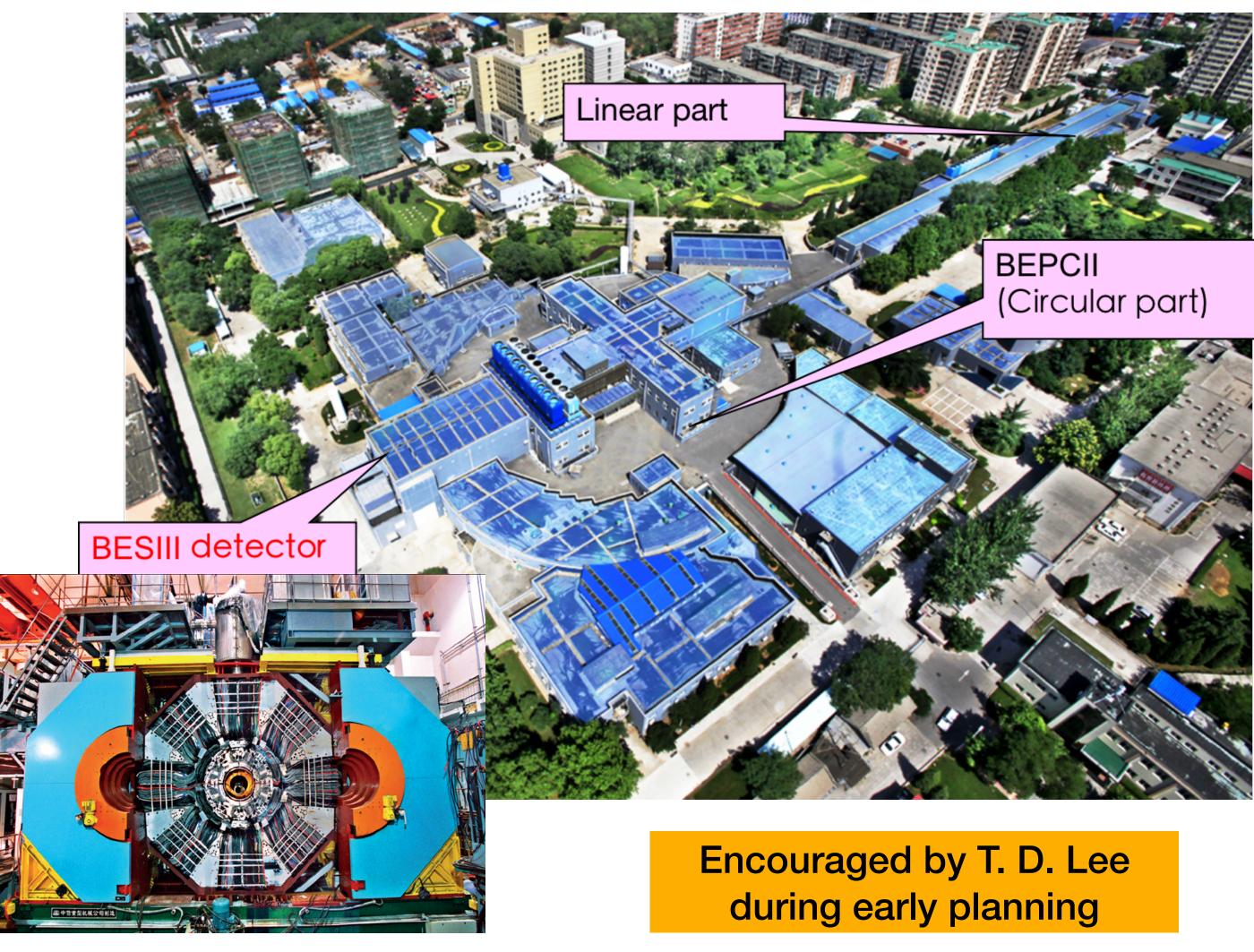
JHEP 04 (2025) 001, with X. G. He, J. P. Ma, C. Yang, Z. Y. Zou

Overview

• Produced $2.7 \times 10^9 \ \psi(2s)$, around 10^7 events of $\psi(2s) \to \tau^- \tau^+$.

• Luminosity will be shifted forward by two orders in ______.

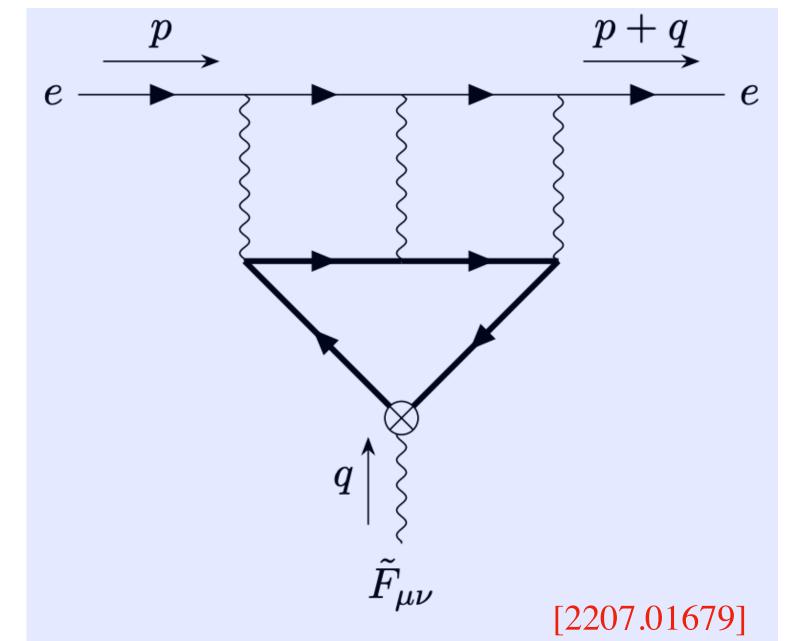




Overview

- τ and hyperons have short lifetimes.
- Traditional EDM measurement techniques are not feasible.
- May induce electron EDM.
- Can be probed directly at colliders.
- Experimental constraints on hyperon EDMs are currently in poor precisions.

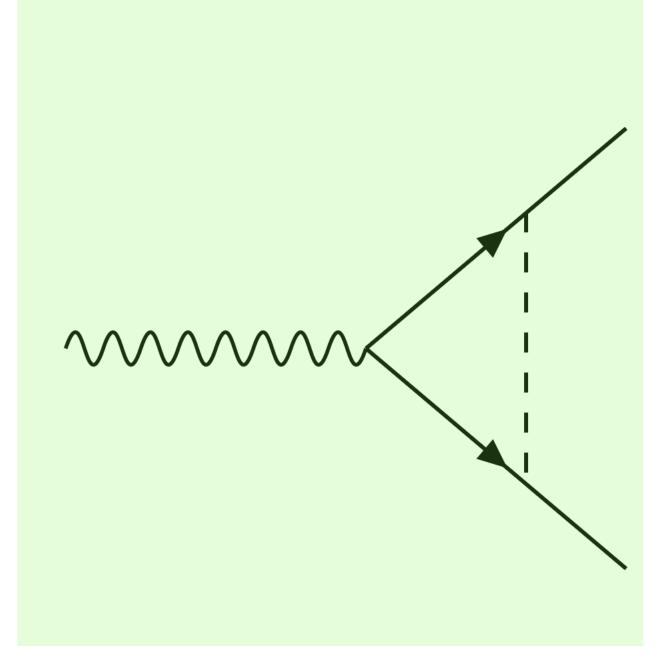
Particle



Particle

Method

Upper limit



	e^{-}	Ion trap	$4.1 \times 10^{-30} \ e \cdot \text{cm}$	neutron	Hg^*	$1.4 \times 10^{-26} \ e \cdot \text{cm}$	
	μ^-	(g-2) storage ring	$1.5 \times 10^{-19} \ e \cdot \text{cm}$	proton	Hg^*	$1.7 \times 10^{-25} \ e \cdot \text{cm}$	
_	$ au^-$	From eEDM	$4.1 \times 10^{-19} \ e \cdot \text{cm}$	Λ	From nEDM	$2 \times 10^{-22} e \cdot \text{cm}$	
	$ au^-$	e^+e^- colliders	$1.9 \times 10^{-17} \ e \cdot \text{cm}$	Λ	e^+e^- colliders	$5.5 \times 10^{-19} \ e \cdot \text{cm}$	(

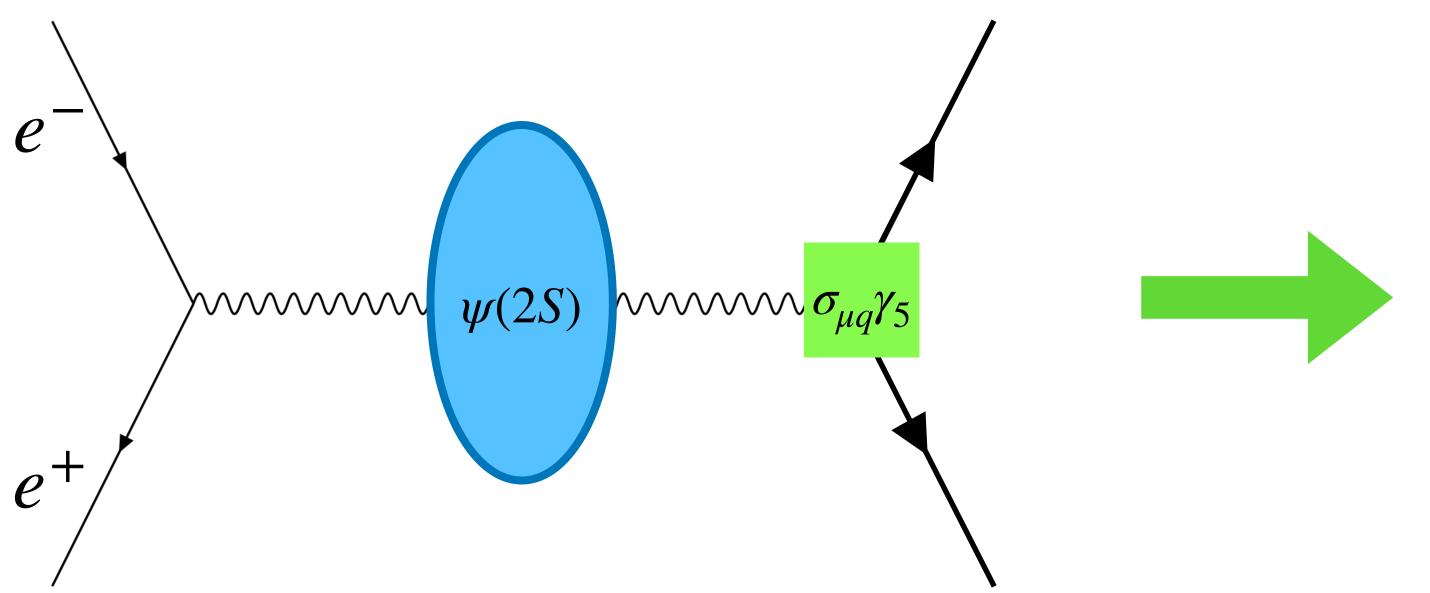
Upper limit

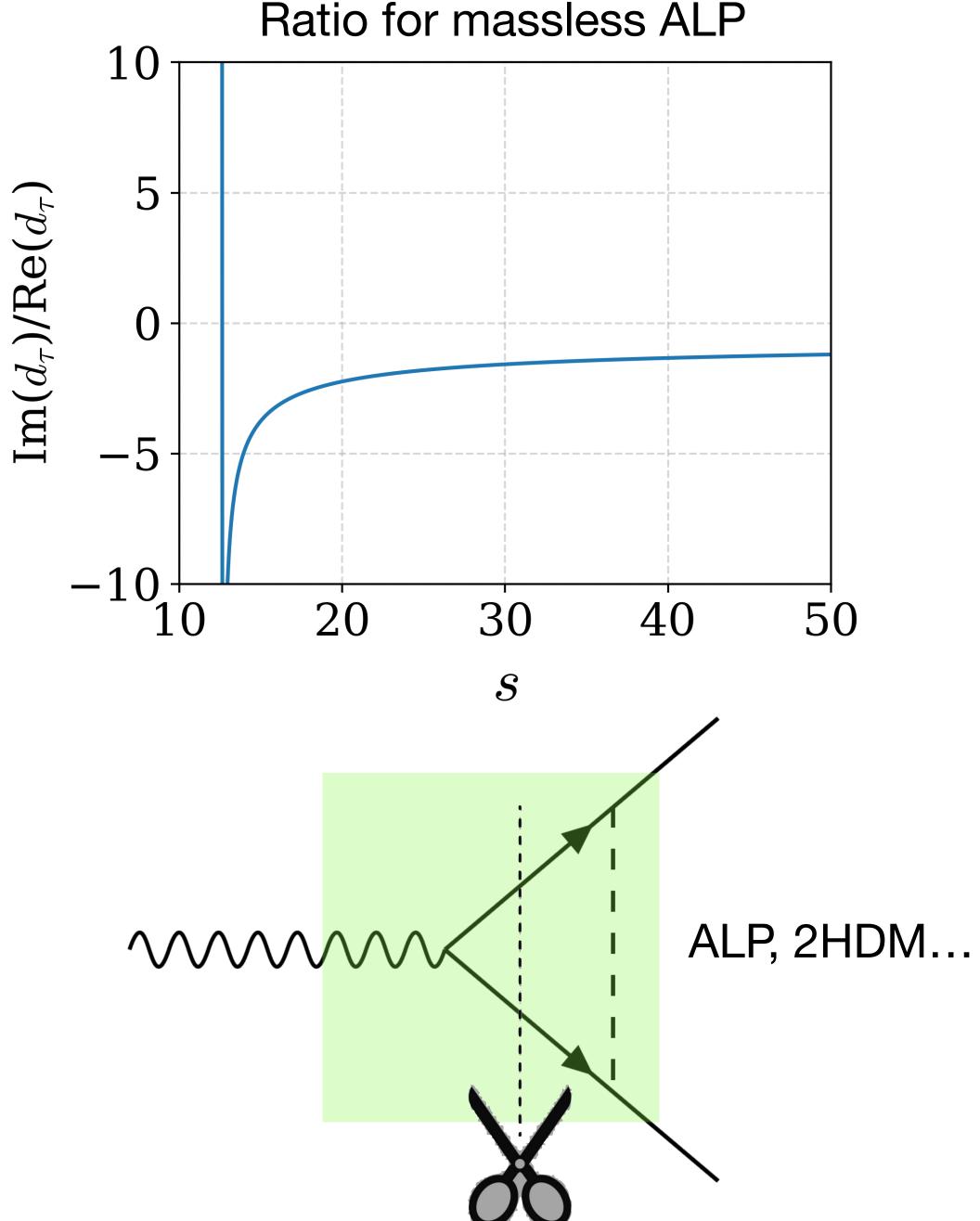
Method

• EDM is **timelike** here, unlike the usual case.

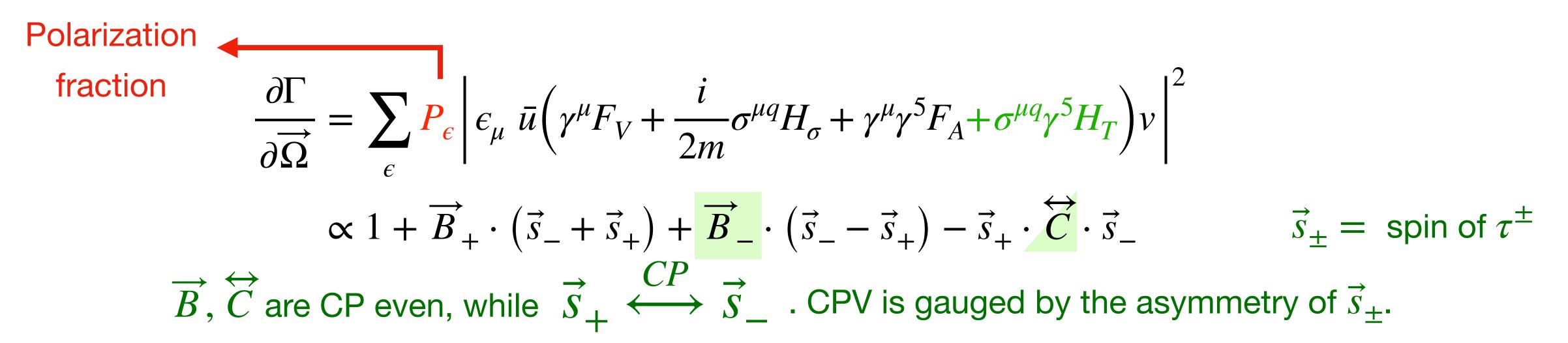
$$\mathcal{A}^{\mu} = \bar{u} \left(\gamma^{\mu} F_V + \frac{i}{2m} \sigma^{\mu q} H_{\sigma} + \gamma^{\mu} \gamma^5 F_A + \sigma^{\mu q} \gamma^5 H_T \right) v$$

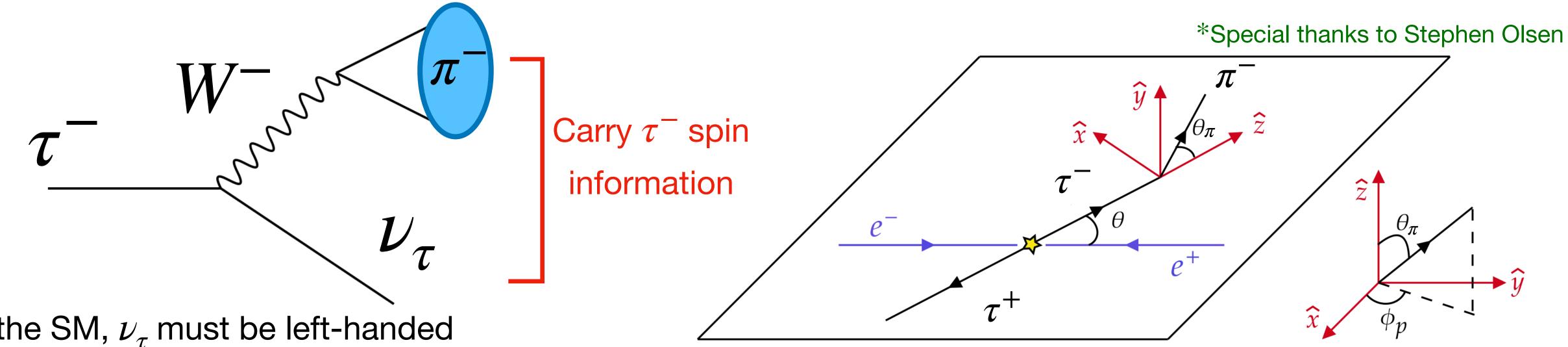
- Intermediate particles are on shell:
 - → EDM develops a imaginary part.
- It is more sensitive to some of the NP model.





To extract the timelike EDM, we square the amplitude:





In the SM, ν_{τ} must be left-handed

$$\rightarrow \langle \vec{p}_{\pi^{-}} \rangle = \langle \vec{s}_{\nu_{\tau}} \rangle = \langle \vec{s}_{-} \rangle \text{ and } \langle \vec{p}_{\pi^{+}} \rangle = -\langle \vec{s}_{\bar{\nu}_{\tau}} \rangle = -\langle \vec{s}_{+} \rangle.$$

[2204.11058]

Net results of the EDM formula:

Polarization fraction of
$$\tau^-$$
Polarization fraction of τ^+

$$\operatorname{Im}\left(d_{\tau}\right) = -\frac{3}{4} \frac{e\left(s + 2m_{\tau}^{2}\right)}{m_{\tau}\sqrt{s}\sqrt{s - 4m_{\tau}^{2}}} \left(\left\langle\hat{p}_{\pi^{-}}\cdot\hat{k}\right\rangle + \left\langle\hat{p}_{\pi^{+}}\cdot\hat{k}\right\rangle\right) \quad \text{No need for simultaneous detection of } \tau^{-} \to \pi^{-}\nu_{\tau} \text{ and } \tau^{+} \to \pi^{+}\overline{\nu}_{\tau}.$$

Re
$$(d_{\tau}) = e^{\frac{9}{4}} \frac{s + 2m_{\tau}^2}{m_{\tau} \sqrt{s^2 - 4sm_{\tau}^2}} \left\langle (\hat{p}_{\pi^-} \times \hat{p}_{\pi^+}) \cdot \hat{k} \right\rangle$$

Need for simultaneous detection of $\tau^- \to \pi^- \nu_{\tau}$ and $\tau^+ \to \pi^+ \overline{\nu}_{\tau}$. Statistics is suppressed by $\sqrt{\mathcal{BF}}$.

\sqrt{S}	$m_{\psi(2S)}$	$4.2~{ m GeV}$	$4.9 \mathrm{GeV}$	$5.6~{ m GeV}$	$6.3~{ m GeV}$	$7~{ m GeV}$
$\delta_{ m Im}$	1.8	0.9	0.7	0.7	0.7	0.7
$\delta_{\rm Re}(130\mu{\rm m})$	83	9.4	5.0	4.0	3.6	3.5

• The momenta cannot be fully reconstructed.

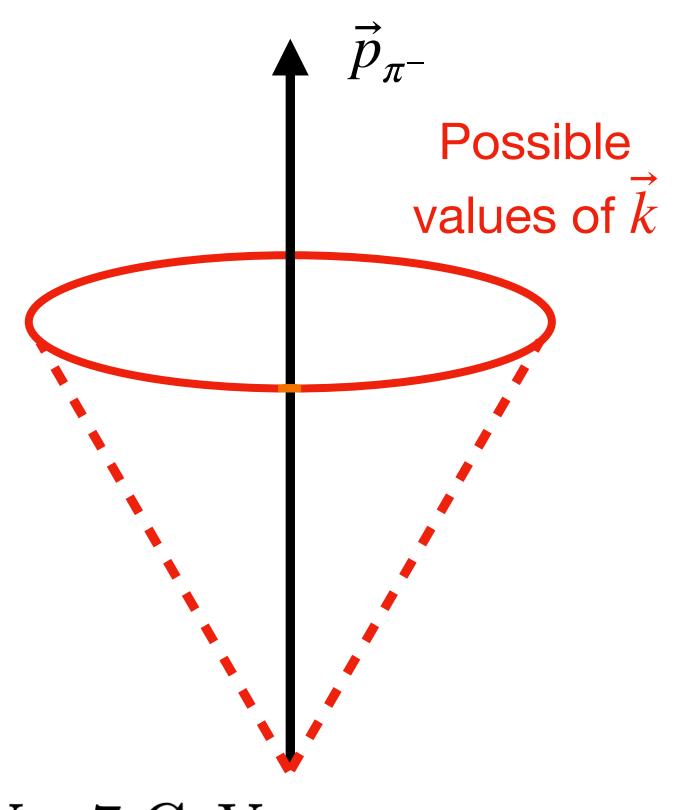
$$\operatorname{Im}\left(d_{\tau}\right) = -\frac{3}{4} \frac{e\left(s + 2m_{\tau}^{2}\right)}{m_{\tau}\sqrt{s}\sqrt{s} - 4m_{\tau}^{2}} \left(\left\langle\hat{p}_{\pi^{-}} \cdot \hat{k}\right\rangle + \left\langle\hat{p}_{\pi^{+}} \cdot \hat{k}\right\rangle\right)$$

• Fortunately, we can use $(k^\mu - p^\mu_{\pi^-})^2 = m^2_\nu$ to reconstruct $\hat{p}_{\pi^-} \cdot \hat{k}$.

$$\hat{p}_{\pi^{\pm}} \cdot \hat{k} = \pm \frac{4E_{\pi^{\pm}}m_{\tau}^2 - m_h^2\sqrt{s} - m_{\tau}^2\sqrt{s}}{\left(m_{\tau}^2 - m_h^2\right)\sqrt{s - 4m_{\tau}^2}}$$

• With E_π , we can determine $\hat{p}_{\pi^\pm} \cdot \hat{k}$ and \hat{k} up to a circle.

Table. Precision at $\frac{10^{-18}e}{10^{-18}}$ in units of $10^{-18}e$ cm, an order better than current data.



Undetermined

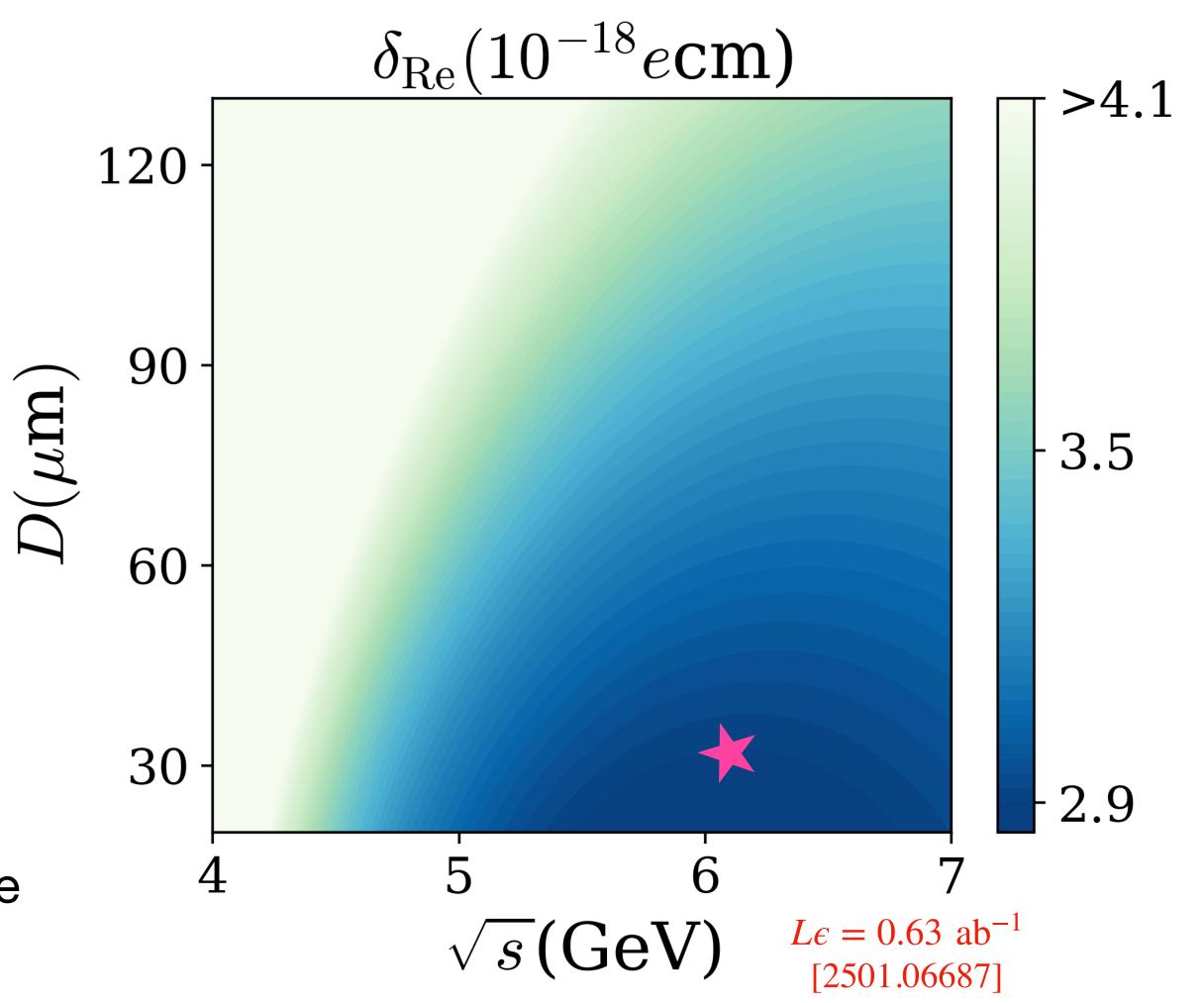
$$\sigma_{xy} = 130 \ \mu \text{m} \longrightarrow 30 \ \mu \text{m}$$

• We propose to add silicon pixel detectors at STCF and filter the fast decay events.

\sqrt{s}	$m_{\psi(2S)}$	$5.6 \; \mathrm{GeV}$	$6.3 \mathrm{GeV}$
$\delta_{ m Im}$	1.8	0.7	0.7
$\delta_{\mathrm{Re}}(180)$	235	4.9	4.2
$\delta_{\mathrm{Re}}(130)$	83	4.0	3.6
$\delta_{ m Re}(80)$	29	3.3	3.1
$\delta_{ m Re}(30)$	11	2.9	2.8

Table. Precision of d_{τ} with $D=180,\ 130...$

- As the central energy \sqrt{s} goes up $D_0 \uparrow$ but scattering width $\sigma \downarrow$.
- ** sweet spot @ $\sqrt{s} = 6.3$ GeV, pushing the upper bound to 10^{-18} ecm.

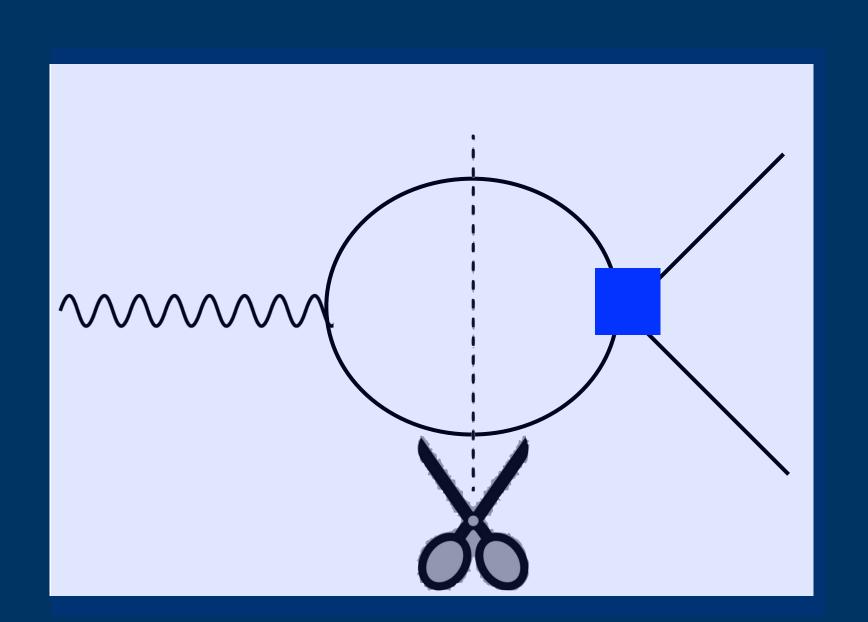


See also [2511.03786]

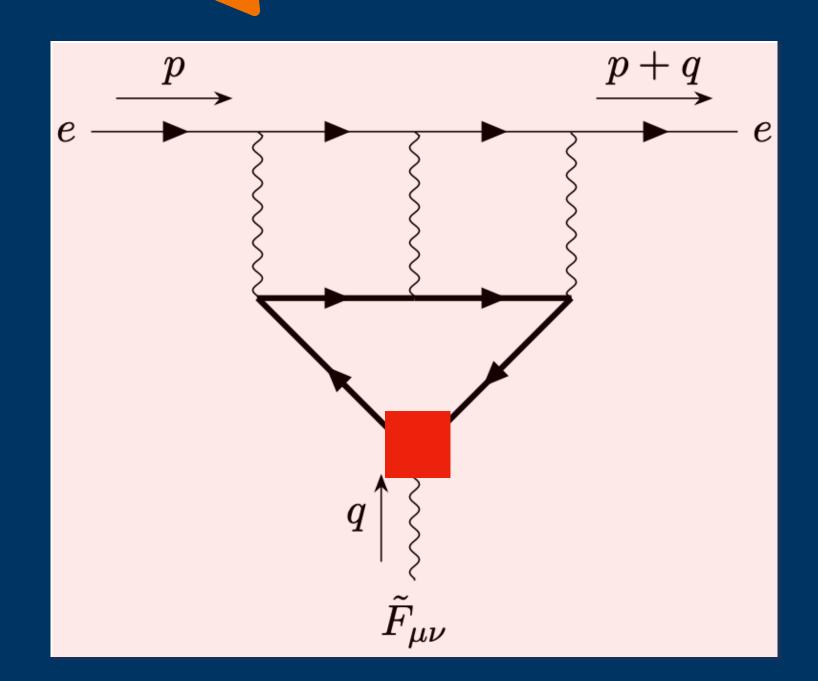
What NP we are looking at?

$$\mathcal{L}_{\text{eff}} = \frac{i}{\Lambda^2} C_{SP}^{\tau\tau} (\overline{\tau} \gamma_5 \tau) (\overline{\tau} \tau) - d_{\tau}^0 \frac{i}{2} F^{\mu\nu} \overline{\tau} \sigma_{\mu\nu} \gamma_5 \tau$$

Colliders are sensitive to ...



Tightly constrained by



au EDM - NP

For NP without new fermions: $d_{\tau}^{0} \propto m_{\tau}/\Lambda^{2} \sim C_{SP}^{\tau\tau}/\Lambda^{2}$, (m_{τ}) for chiral flip)

$$\mathcal{L}_{\text{eff}} = \frac{i}{\Lambda^2} C_{SP}^{\tau\tau} (\overline{\tau} \gamma_5 \tau) (\overline{\tau} \tau) - d_{\tau}^0 \frac{i}{2} F^{\mu\nu} \overline{\tau} \sigma_{\mu\nu} \gamma_5 \tau,$$

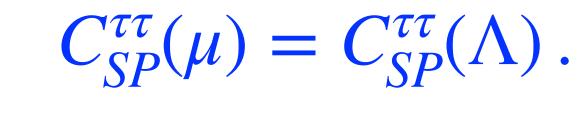
At $q^2 = 0$, we have that :

$$d_{\tau} = d_{\tau}^{0}(\mu) - \frac{m_{\tau}}{\Lambda^{2}} \frac{e}{4\pi^{2}} C_{SP}^{\tau\tau}(\mu) \ln \frac{m_{\tau}}{\mu}$$

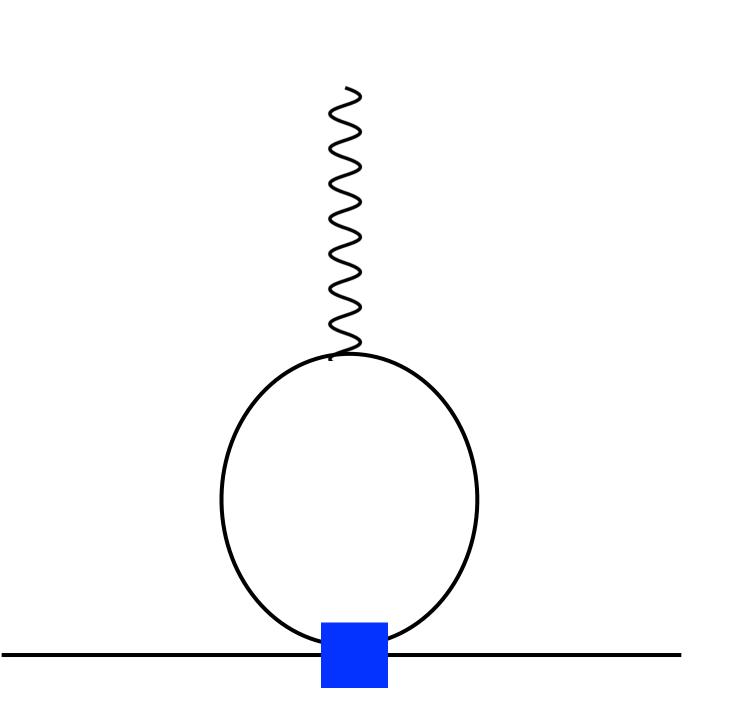
No direct constraint on $C_{SP}^{ au au}(m_{ au})$ but from the running :

$$d_{\tau}^{0}(\mu) = d_{\tau}^{0}(\Lambda) + \frac{m_{\tau}}{\Lambda^{2}} \frac{e}{4\pi^{2}} C_{SP}^{\tau\tau}(\Lambda) \ln \frac{\Lambda}{\mu}, \qquad C_{SP}^{\tau\tau}(\mu) = C_{SP}^{\tau\tau}(\Lambda).$$

$$\approx 7$$
 for TEV NP



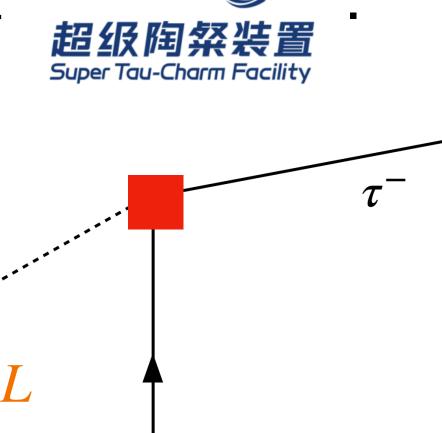
Conclusion: Needs fine-tuning or NP at low energies to evade the eEDM constraint !!

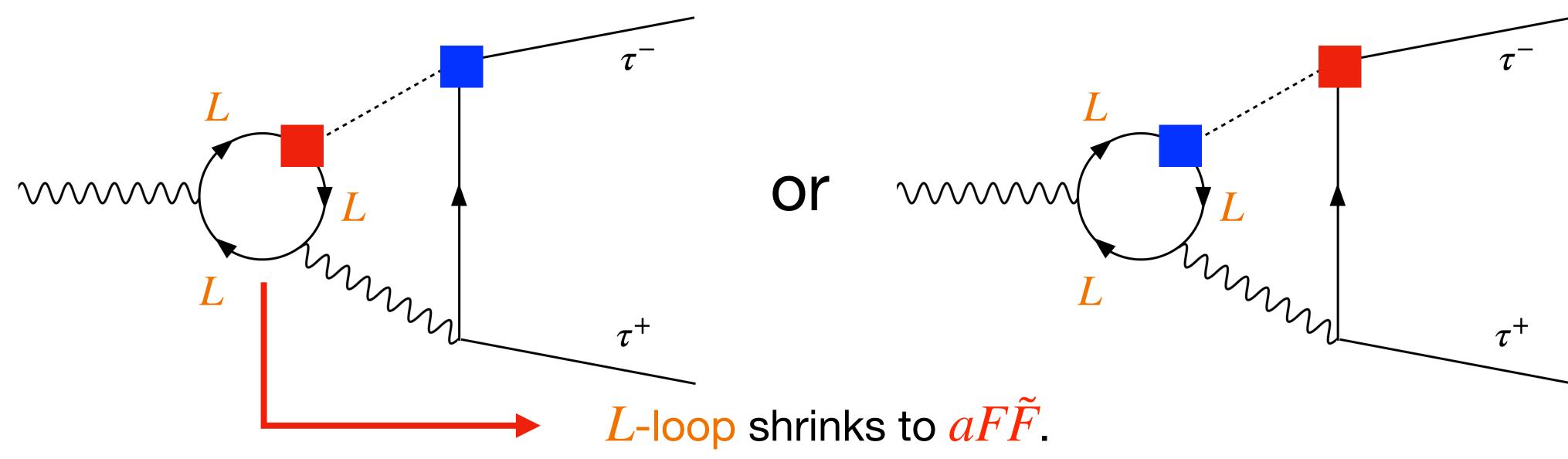


au EDM - ALP

Scenario 1:
$$\mathscr{L}_{\text{int}} = \tilde{g}_{\tau} a \bar{\tau} \tau + \frac{g}{4} a F \tilde{F}$$
, or $\mathscr{L}_{\text{int}} = g_{\tau} a \bar{\tau} i \gamma_5 \tau + \frac{g}{4} a F^2$

- ALP couples to new heavy fermion L and τ with opposite parities.
- The Bar-Zee diagram receives **no** chiral enhancement, $m_{\tau} \sim m_a \sim \sqrt{q^2}$.
- $d_{\tau} \sim 10^{-21} e \mathrm{cm}$, two orders smaller than precision at

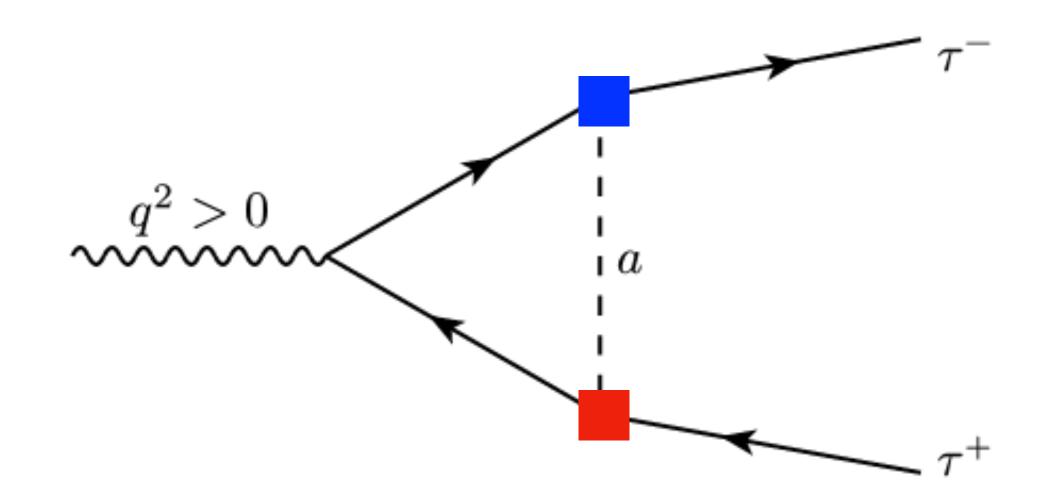


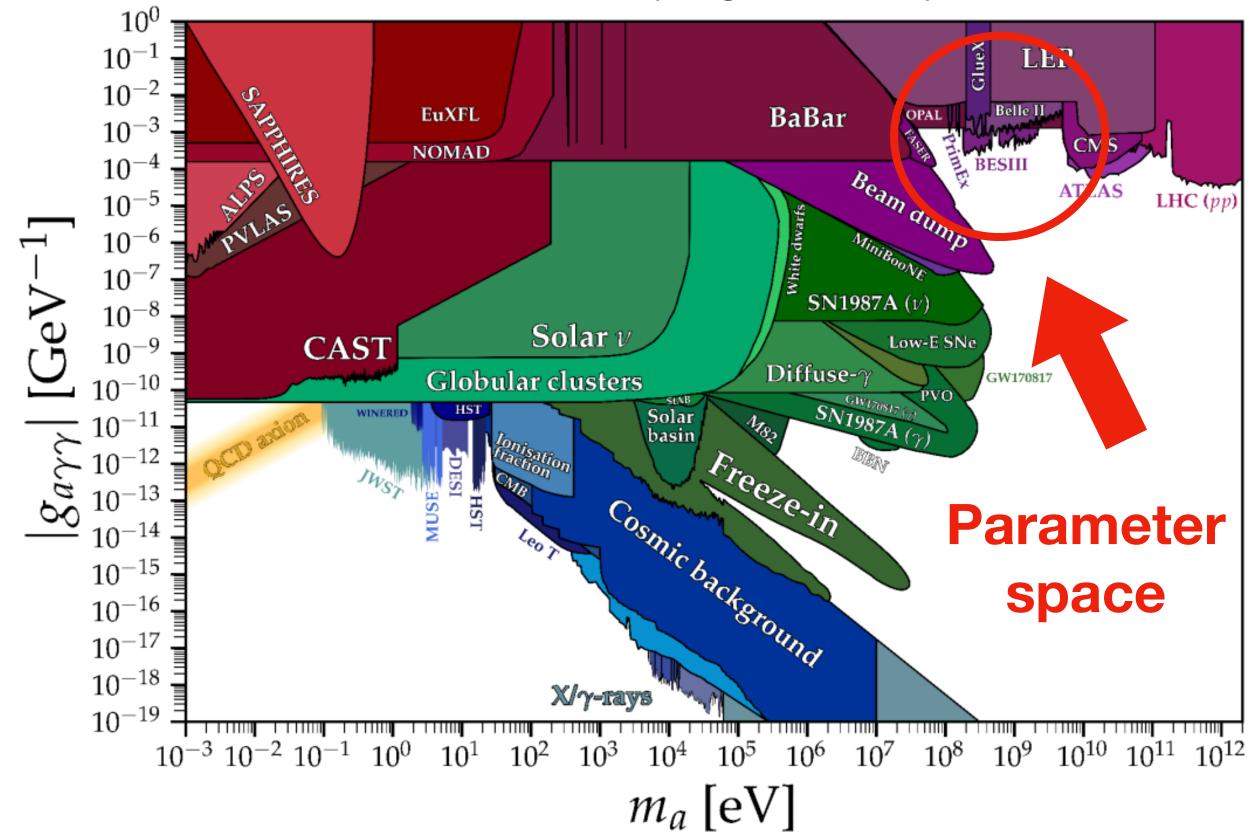


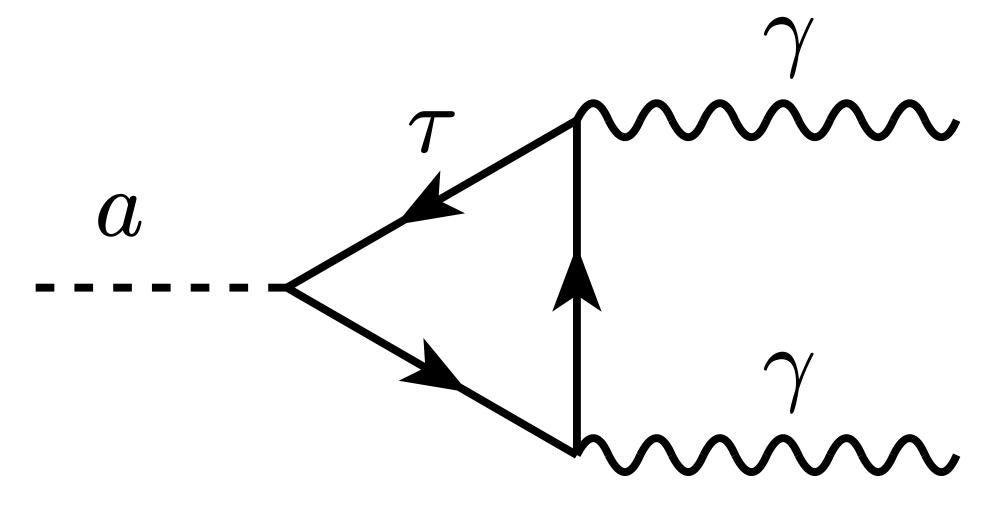
• τ EDM - ALP

Scenario 2: $\mathscr{L}_{\text{int}} = a \overline{\tau} (\tilde{g}_{\tau} + i g_{\tau} \gamma_{5}) \tau \sum_{\substack{10^{-5} \\ 10^{-6} \\ 1'}}^{10}$

- ALP couples to τ with both parities.
- The tightest constraint : $\gamma^* \rightarrow a\gamma$.

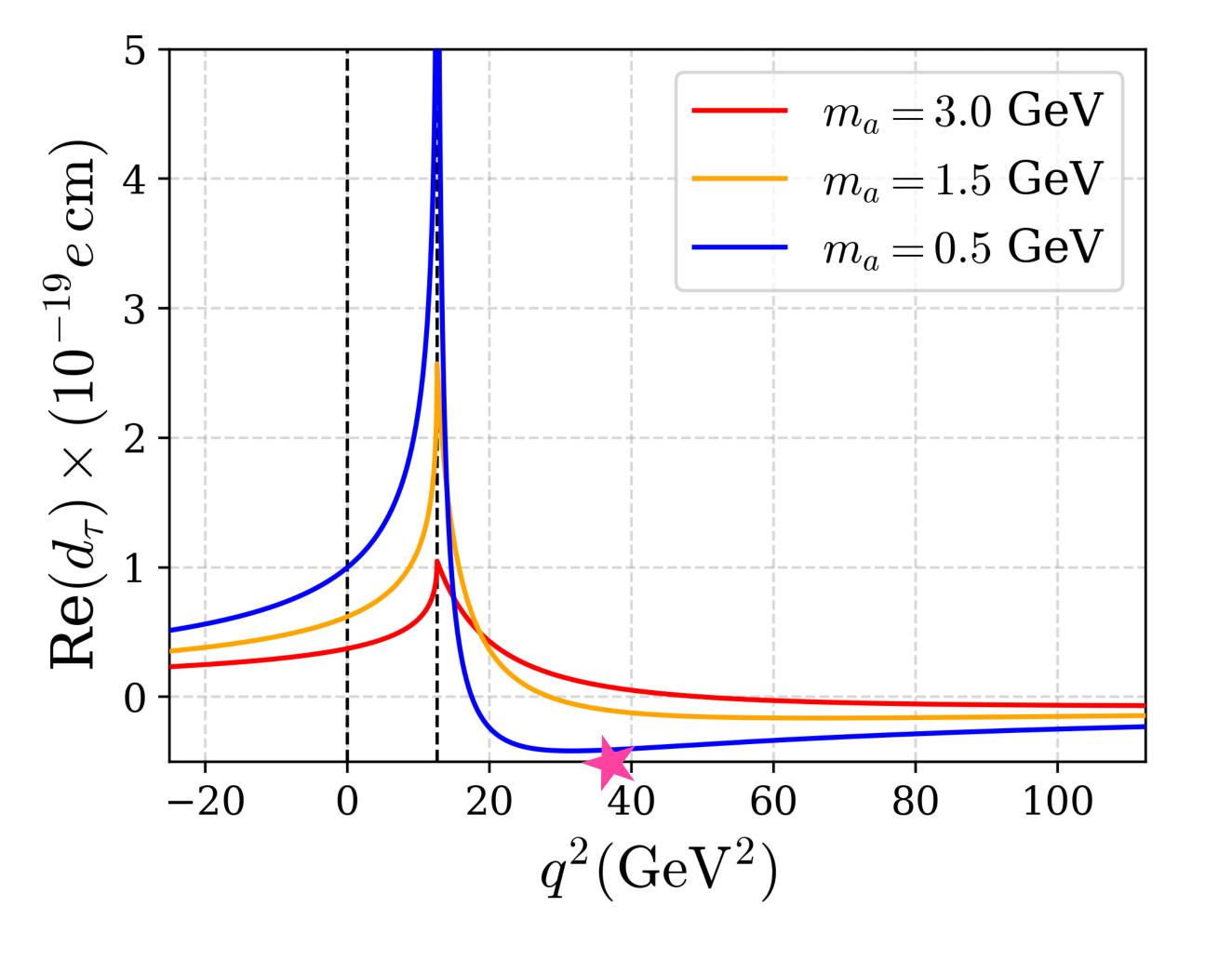


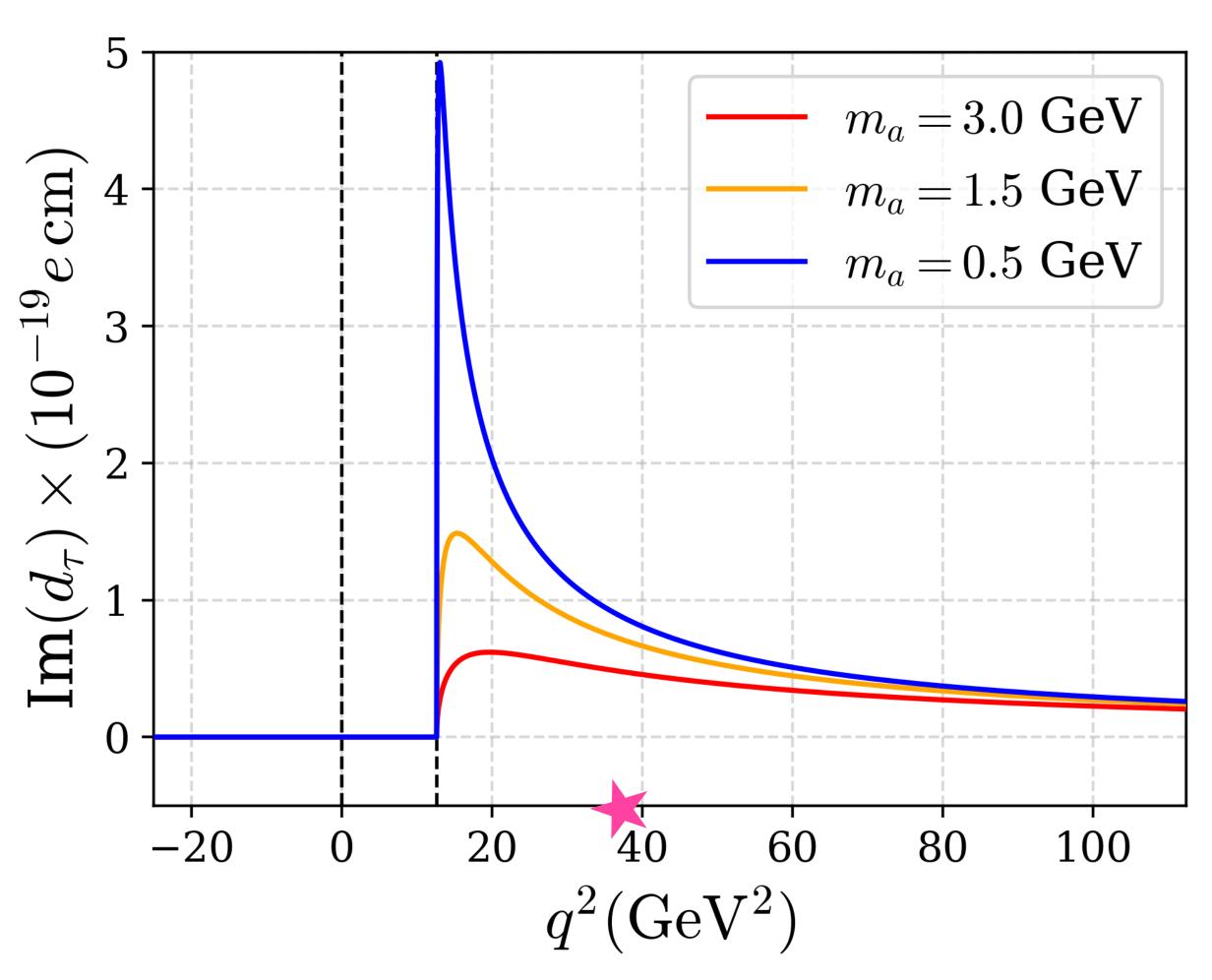


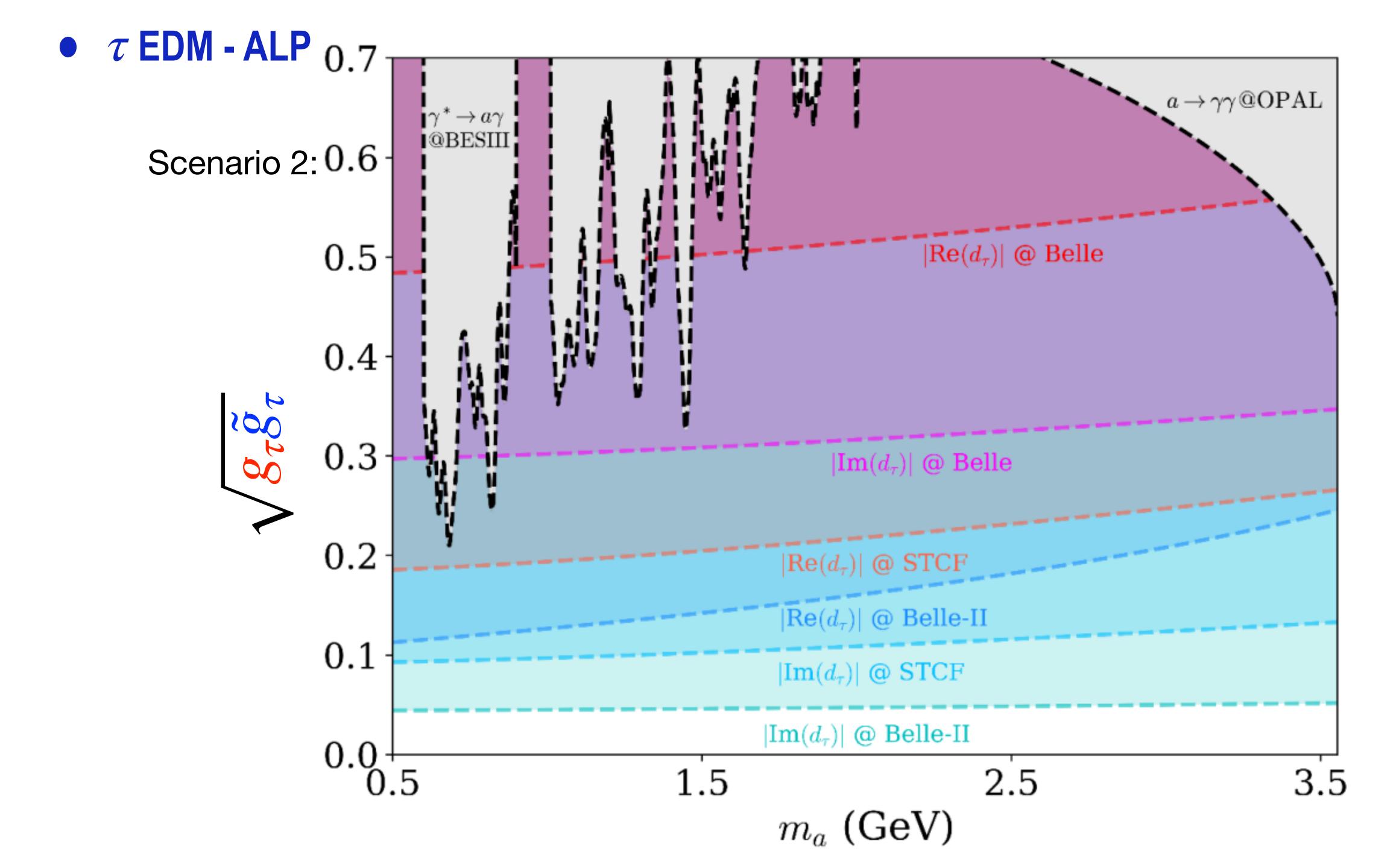


• τ EDM - ALP

Scenario 2:
$$\mathcal{L}_{\text{int}} = a\overline{\tau}(\tilde{g}_{\tau} + ig_{\tau}\gamma_{5})\tau$$







Conclusions

Timelike EDM opens a new window to probe NP

at future τ colliders

 ${
m Im}(d_f)$ is sensitive to light NP and can be served as a complementary test of the conventional EDM.

• The momenta cannot be fully reconstructed.

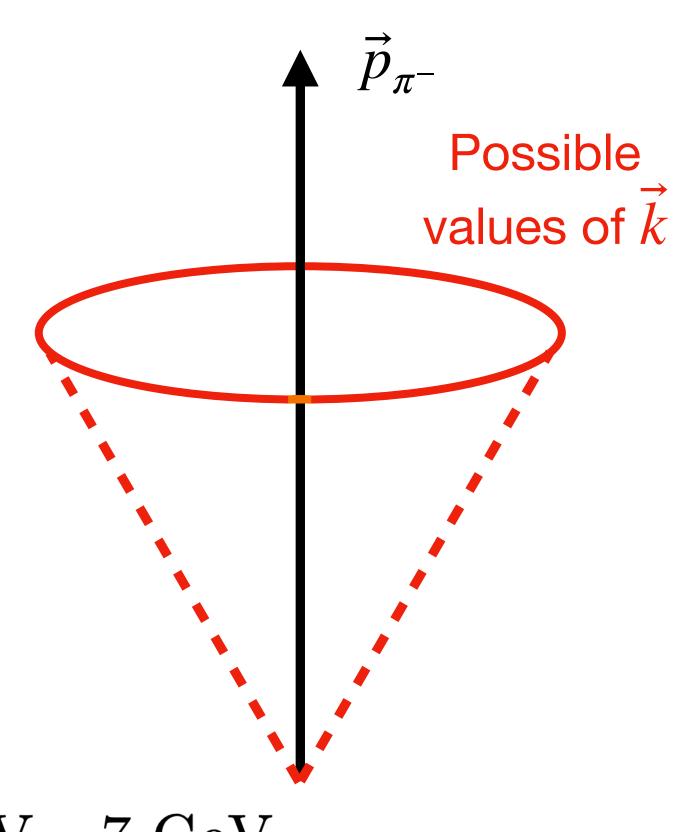
$$\operatorname{Im}\left(d_{\tau}\right) = -\frac{3}{4} \frac{e\left(s + 2m_{\tau}^{2}\right)}{m_{\tau}\sqrt{s}\sqrt{s} - 4m_{\tau}^{2}} \left(\left\langle\hat{p}_{\pi^{-}} \cdot \hat{k}\right\rangle + \left\langle\hat{p}_{\pi^{+}} \cdot \hat{k}\right\rangle\right)$$

• Fortunately, we can use $(k^\mu - p^\mu_{\pi^-})^2 = m^2_\nu$ to reconstruct $\hat{p}_{\pi^-} \cdot \hat{k}$.

$$\hat{p}_{\pi^{\pm}} \cdot \hat{k} = \pm \frac{4E_{\pi^{\pm}}m_{\tau}^2 - m_h^2\sqrt{s} - m_{\tau}^2\sqrt{s}}{\left(m_{\tau}^2 - m_h^2\right)\sqrt{s - 4m_{\tau}^2}}$$

• With E_π , we can determine $\hat{p}_{\pi^\pm} \cdot \hat{k}$ and \hat{k} up to a circle.

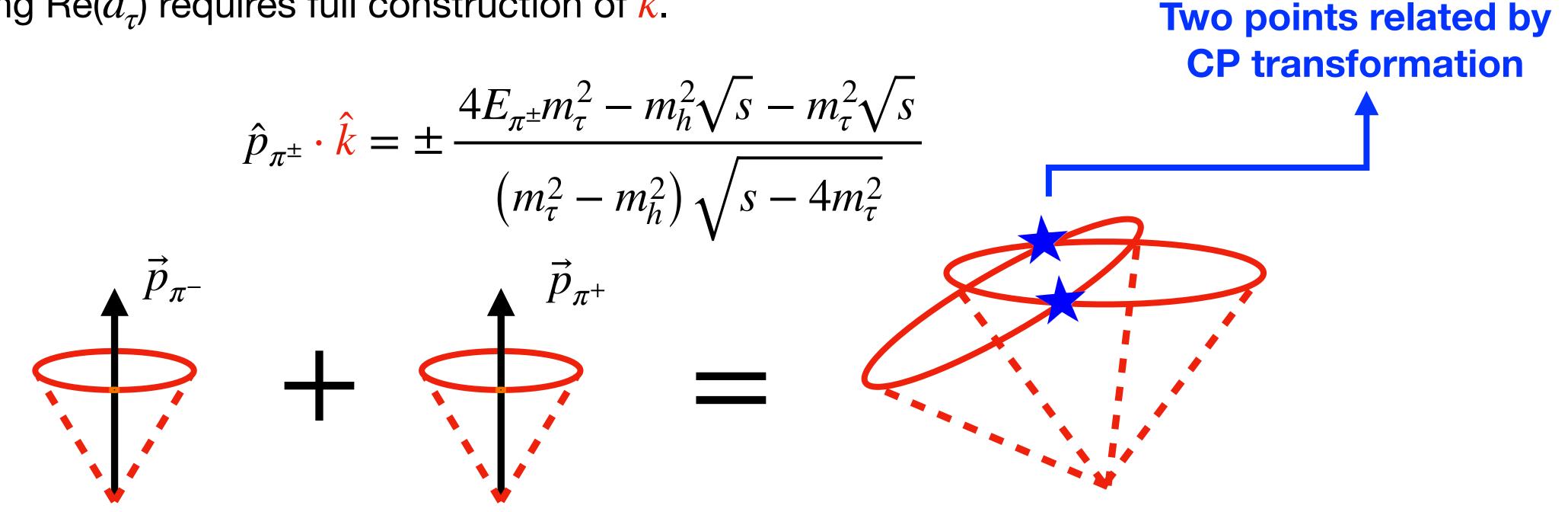
Table. Precision at $\frac{10^{-18}e}{10^{-18}}$ in units of $10^{-18}e$ cm, an order better than current data.



Undetermined

\bullet τ EDM

• Probing $\operatorname{Re}(d_{\tau})$ requires full construction of \hat{k} .



• Combining constraints from both $\hat{p}_{\pi^+} \cdot \hat{k}$ and $\hat{p}_{\pi^-} \cdot \hat{k}$, we constrain \hat{k} up to two points \bigstar . Geometrical pictures are shown above.

$$\hat{k} = u\hat{p}_{\pi^{+}} + v\hat{p}_{\pi^{-}} \pm w \left(\hat{p}_{\pi^{+}} \times \hat{p}_{\pi^{-}}\right)$$

• The u, v, w are known but \pm represents the ambiguity of \star .

\bullet τ EDM

At Belle, the ambiguity is treated as a random number.

$$\hat{k} = u\hat{p}_{\pi^{+}} + v\hat{p}_{\pi^{+}} \pm w \left(\hat{p}_{\pi^{+}} \times \hat{p}_{\pi^{-}}\right) \rightarrow \hat{k}_{r} = u\hat{p}_{\pi^{+}} + v\hat{p}_{\pi^{+}} + rw \left(\hat{p}_{\pi^{+}} \times \hat{p}_{\pi^{-}}\right)$$

• The r is taken to be either +1 or -1 randomly.

Re
$$(d_{\tau}) = e^{\frac{9}{4}} \frac{s + 2m_{\tau}^{2}}{m_{\tau} \sqrt{s^{2} - 4sm_{\tau}^{2}}} \left\langle \left(\hat{p}_{\pi^{-}} \times \hat{p}_{\pi^{+}}\right) \cdot \hat{k} \right\rangle \neq 0$$
,

but
$$\left\langle \left(\hat{p}_{\pi^{-}} \times \hat{p}_{\pi^{+}} \right) \cdot \hat{k} \right\rangle \neq \left\langle \left(\hat{p}_{\pi^{-}} \times \hat{p}_{\pi^{+}} \right) \cdot \hat{k}_{r} \right\rangle \propto \left\langle r \right\rangle = 0$$

- Re $(d_{\tau}) = (-6.2 \pm 6.3) \times 10^{-18} e$ cm @Belle may be improved. [2108.11543]
- Brief conclusion: measuring the full $ec{k}$ is necessary for measuring $\mathrm{Re}\ (d_{ au})$.