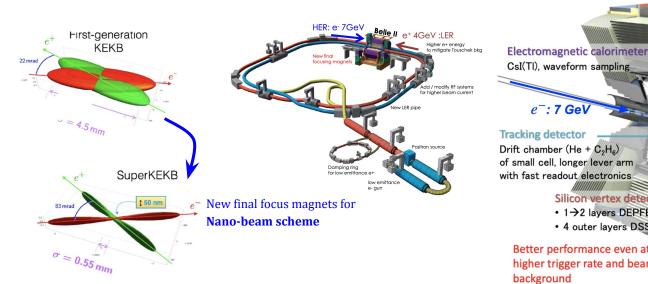


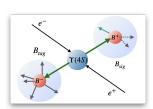
Belle II Upgrade

Yubo Han (university of Hawai'i) On behalf of the Belle II collaboration FTCF2025, Huangshan 23-27 November, 2025

Outline

- SuperKEKB and Belle II
- Belle II upgrade:
 - Motivations
 - Upgrade of each sub-detector
 - VTX, CDC, ECL, KLM, TOP
 - Schedule and milestones
- Summary & outlook


The experiment


SuperKEKB

- Asymmetric $e^{+}(4\text{GeV}) e^{-}(7\text{GeV})$ collider in Tsukuba, Japan
- Operating around the Y(4S) resonance ($\sqrt{s} = 10.58$ GeV)

Belle II

- A hermetic detector with known initial-state
- (Production of BB at threshold) Low-physics background 0
- Excellent tracking, PID and vertexing performance 0

Superconducting solenoid (1.5 T)

K, and u detector

- Resistive plate chamber (outer barrel) Scintillator + MPPC
 - (inner 2 barrel layers, end-caps)

e^- : 7 GeV

TOP (Time-of-Propagation) counter (barrel) Aerogel RICH (forward end-cap)

 e^+ : 4GeV

Silicon vertex detector

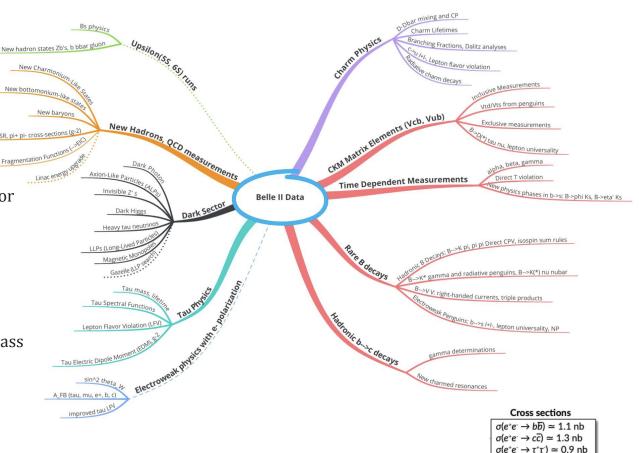
- 1→2 layers DEPFET (pixel)
- · 4 outer layers DSSD

Better performance even at the higher trigger rate and beam background

Trigger and DAQ Max L1 rate: 0.5→30 kHz Pipeline readout

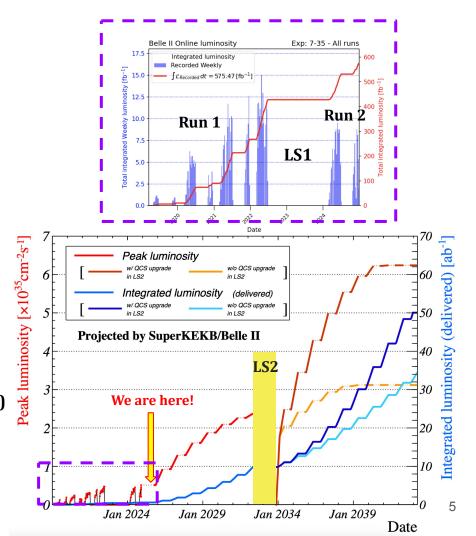
GRID computing CPU 1 MHEPSpec (105 core; ~ATLAS run1) and 100 PB storage at 50 ab⁻¹

Belle II Physics

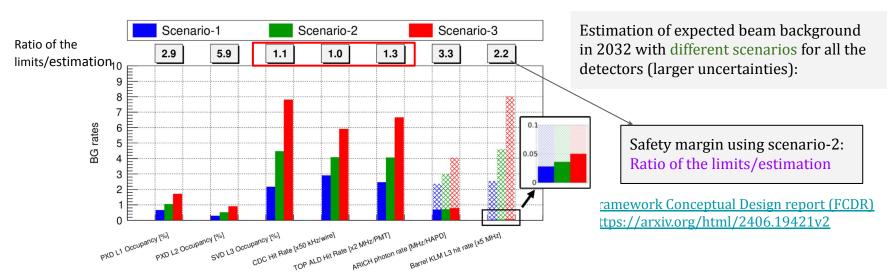

Primarily a **B factory**But not only B physics!

• Also tau, charm factories

 Clean background for spectroscopy and searching for dark sector

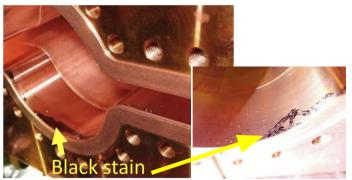

Various type of analyses:

- Lifetime, time-dependent measurement
- well-suited for decays with missing energy and missing mass

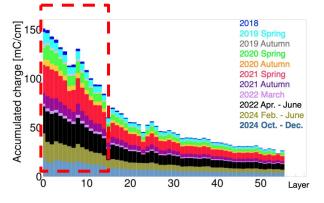

Status and prospect

- 575 *fb*⁻¹ data collected so far:
 - \circ 2019: **Run 1** data collection started (365 fb⁻¹)
 - \circ 2022.06: world record *Linst*: **4.7** × **10**³⁴ cm⁻² s⁻¹
 - ~2023.12 **LS1**, New Collimator, 2-layer PXD, etc
 - o 2024: start of **Run 2**
 - $0 2024.12.27 : \text{new } L_{inst} \text{ record (Belle II off) } 5.2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- Plenty of physics results with the data collected so far
- LS2 planned for a major upgrade: 2032
 - Targeting higher *Linst*: 6×10^{35} cm⁻² s⁻¹
 - Ultimate goal: $\sim 50 \text{ ab}^{-1}$
 - Upgrade & Redesign of the Interaction Region (IR)
 - Window for upgrades of the Belle II detector

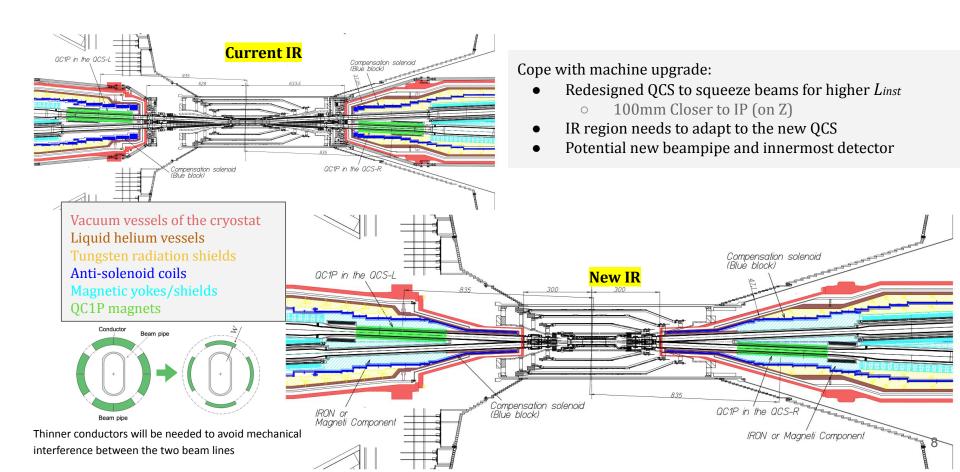
Motivations


- New final focus quadrupole magnet system (QCS) to achieve the ambitious goal: $L_{inst} = \frac{6 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}}{10^{35} \text{ cm}^{-2} \text{ s}^{-1}}$
- Mechanical:
 - Inner Region (IR) need to adapt to new QCS; New beampipe and innermost detector are required
- Severe beam background level:
 - Both single-beam and luminosity backgrounds will significantly increase (x5 for scenario-2)
 - Beam background reaching the limits of several sub-detectors: SVD, CDC, TOP

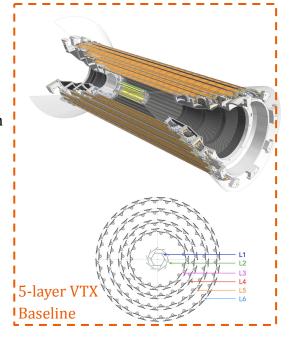
Motivations

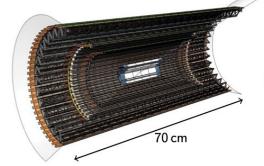

Main issues during Run1/2:

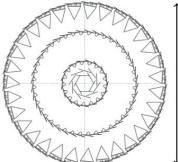
- Sudden Beam Los (SBL): significant beam charge loss
 - PXD2 was switched off for that (~2% damaged area by SBL),
 occasionally leading to quenching of Superconducting magnets
 - Attempts to understand the issue:
 - Installed Knockers => SBL events decreased
 - Flipped clearing electrodes => no improvement
 - Cleaned the black stains near flanges => no more SBL from that location
 - Faster beam loss detection and emergency shutdown implemented to protect detector
- CDC aging issue: (Carsten's talk on Tuesday)
 - Gain drop of 10-15% observed in the inner super layers
 - Various studies ongoing to understand the issue and evaluate the impact on performance
- **Beam-beam interaction** (short beam lifetime)
 - Upgrade of the IR



Identified as burnt silicon, most likely from the degradation of vacuum sealant (VACSEAL)

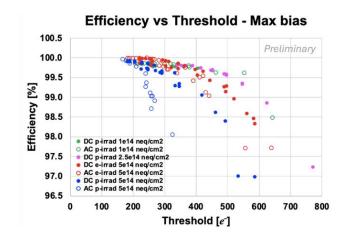


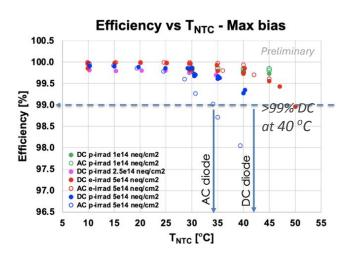

Upgrade of the IR



Vertex detector upgrade: VTX

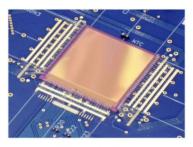
- PXD + SVD \Rightarrow new VTX
- Key performance requirements for the upgrade:
 - Higher spatial and time granularity to cope with the harsh background condition
 - o Spatial resolution: < 15 um
 - Low Material budget: 0.2% 0.8% X/X₀ per layer for the inner and outer layers
 - Hit rates capability: up to 120 MHz/cm²
 - <u>Fast timestamping</u>: capabilities in 50-100 ns
 - Power dissipation: < 200 mW/cm²
 - Radiation tolerance (inner layer over 10 years operation): TID up to 1 MGy and NIEL of $5x10^{14}$ n_{eq}/cm²
- A 5- or 6-layer depleted monolithic active pixel sensors (DMAPS)
 - Radius: 14 mm ~ 140 mm
 - Improve low-momentum tracking and impact parameter resolution
 - TJ-Monopix2 is a good starting point

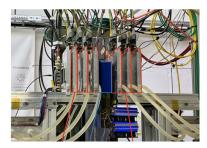



28 cm

Vertex detector upgrade: VTX sensor

OBELIX sensor: Optimized BELLE II monolithic active pixel sensor

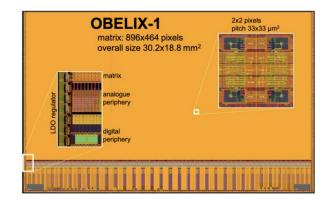

- 1. Derived from TJ-monopix2 (developed for the ATLAS inner Tracker upgrade)
 - a. TJ 180 nm technology
 - b. Pitch size: 33 um
 - c. Time-stamping capability with 50ns resolution
 - d. New digital periphery designed to be compatible with the Belle II trigger&DAQ system
- 2. Laboratory tests and test beam studies been performed (on TJ-Monopix2 as a reference) E.g. Irradiated TJ-Monopix2 beam test @March 2025
 - -> operation temperature should < 40 °C; DC diode chosen for higher operation range


The DMAPS upgrade of the

Belle II Vertex Detector

TJM2 sensor bonded on a test board

Triggerless readout with no memories in periphery


DESY, EUDET telescope. 4.2 GeV electron beam

Vertex detector upgrade: VTX

- Schedule :
 - OBELIX-1: New version in preparation
 - First review of OBELIX-1 design completed, addressing feedback in progress
 - Submission targeted for December 2025
 - First test starting in summer 2026
 - **OBELIX-2:** design starts in early 2026

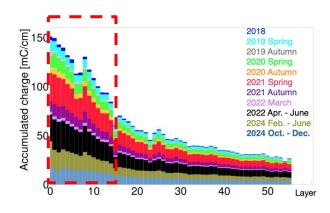
More studies not covered today:

- Performance validation and comparison with current Belle II
 - Improved detection efficiency, impact parameter resolution and vertexing resolution (more in backup slides)
- DAQ development
- Cooling strategy and support method heavily studied
- Outer layer of VTX (oVTX) also potential input to the trigger

VTX upgrade is in good organization and had good progress already!

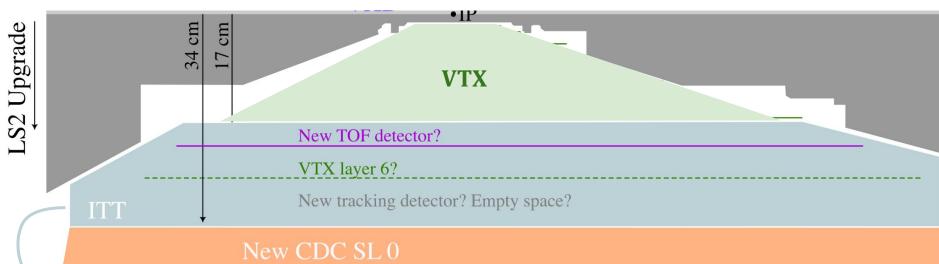
Slides


CDC upgrade


- Main tracking detector, also contributes to PID and Trigger
 - Covering radius from 160 -1130 mm
 - o 56 layers in total, grouped into 9 super-layers
 - Gas: He:ethane = 50:50
 - Gas system improved for better monitoring/control of H₂O during LS1
- Main issues during Run1/2: Aging issue
 - Active studies being done, with more planned in the future
 - Tests with e- beam line are scheduled
 - Collaborations established with detector experts work on this issue
 - Special dataset will be taken with lower HV for testing
 - One of the critical issue to be understood

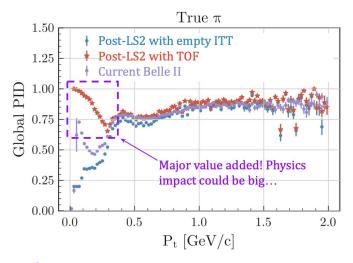
\Rightarrow CDC upgrade scenarios :

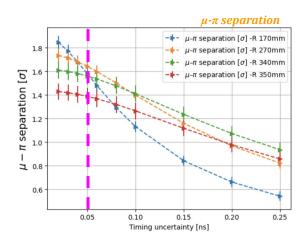
- Use of current CDC: IF the aging issue was understood
- New CDC with larger inner radius = current CDC without SL0 and SL1


Others: New front-end board with better cross-talk tolerance, power consumption, and radiation hardness

Potential space for a Inner Timing Tracker (ITT)

If the new CDC scenario was chosen:


A Gap between VTX and new CDC => leaving tracks in this region uncovered -low pt tracks


Proposal: Add a detector here!

- Fast timing detector (PID based on TOF) -> ITT region (Inner Timing Tracker)
- → Identify a fast timing, practical solution with acceptable material.
 - Preliminary simulation to understand the performance

ITT

- Preliminary studies have been done to understand the potential benefits and requirements to the actual technology:
 - Promising PID improvement: TOF-base PID with 50ps timing resolution
 - Further studies to be done to understand the contribution to tracking and trigger

- Potential scenarios:
 - TOF: LGAD is an attractive option for its timing performance and well-established technology
 - Pure tracking layer

ECL upgrade

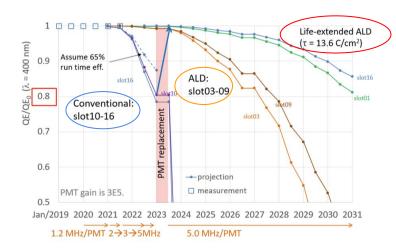
- <u>Degraded energy and time resolution</u> is expected with higher pileup noise (fluctuation of the beam background events overlapping the signal)
 - \circ Efforts on benchmarking the impact with physics performance (ongoing): π^0 mass resolution, more channel to be explored
- New ShaperDSP (digitizer board): with faster shaping, higher sample-rate ADC, higher-granularity trigger cell, new
 FPGA and new optical trigger links and fully digital trigger output

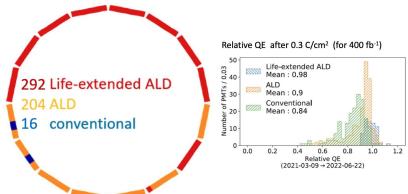
 Present ShaperDSP
- New electronics chain: new Trigger and DAQ chain for the new shaper
- Upgrade of the simulation to emulate the response of the new ShaperDSP

Status: Design of the first prototype of new ShaperDSP in progress

To FAM Sum 16-4x4 TC AT Spartan-3 Shaper ADC 0.57u **Buffer FPGA** 0.5 us present Present shape **New ShaperDSP** 1x1TC 0.25 new Digital trigger Shaper ~0.15 us **FPGA Buffer** Kintex UltraScale 15

New shape


ECL upgrade talk


Time of Propagation counter (TOP)

- TOP Belle II main PID detector in the barrel region:
 - Operating smoothly and performing well without major issues
 - Evidence of accelerated aging of PMTs under high hit rate
 - Photocathodes are damaged by ions or residual gas in the tube
 - Atomic layer deposition (ALD) to mitigate this
 - Replacement of the Microchannel Plate photomultiplier
 Tubes (MCP-PMTs) has started to ensure stable operation
 throughout the entire experiment

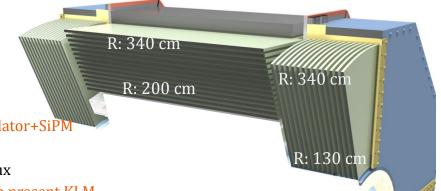
Middle-term upgrade plan:

- (primary)Complete replacement of MCP-PMTs with lifetime-extended ALD type: end of 2026
 - At the moment, ~50% of PMTs are still ALD type with a shorter lifetime
 - 220 new MCP-PMTs needed => production started already
 - Studies ongoing to understand the ageing differences
- (alternative) Further R&D to explore replacing MCP-PMTs with SiPMs

Upgrade of KLM

R: 340 cm
R: 340 cm
R: 340 cm
R: 340 cm
R: 130 cm

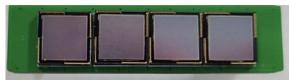
- Detection of K_{l} and μ :
 - Large-surface-area, thin planar detectors outside the superconducting solenoid
 - Consisting of an alternating sandwich of 4.7 cm thick iron plates and active detector elements
 - \circ K_L detection had been essential for decays with missing mass


Two independent upgrade options under study:

- Option-1: Rebuild detector panels and replace all RPCs with scintillator+SiPM
- Option-2: Change the RPC operation mode from streamer to proportional mode

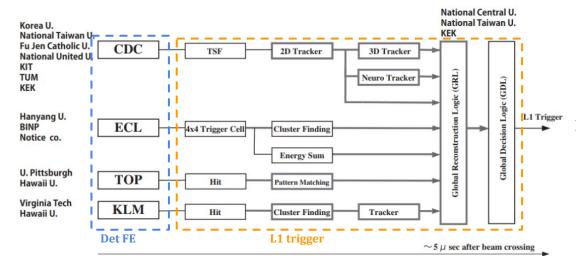
Upgrade of KLM

Two independent upgrade options under study:


- Option-1: rebuild detector panels and replace all RPCs with scintillator+SiPM
 - Allow fast timing (~ 100 ps):
 - Rejects out-of-time hits from the ambient neutron flux
 - Access to K_i momentum via TOF => not possible with present KLM
 - 2m flight length -> momentum resolution of ~13% for 1.5 GeV/c K_L
 - Mechanically complicated: Requires roll-out of Belle II and opening of the forward and backward endcap doors
 - Access of all the panels will be challenging: beamline-supporting concrete shield blocks the bottom 3 sectors
 - Need to coordinate with other subsystems for installation
 - Status: A small prototype been built with 60 scintillators and will be ready for testing soon
- Option-2: Change the RPC operation mode from streamer to proportional mode
 - Keep the existing KLM detector panels untouched
 - New preamplifier required to operate in proportional mode

Shiming's talk on Belle II KLM upgrade

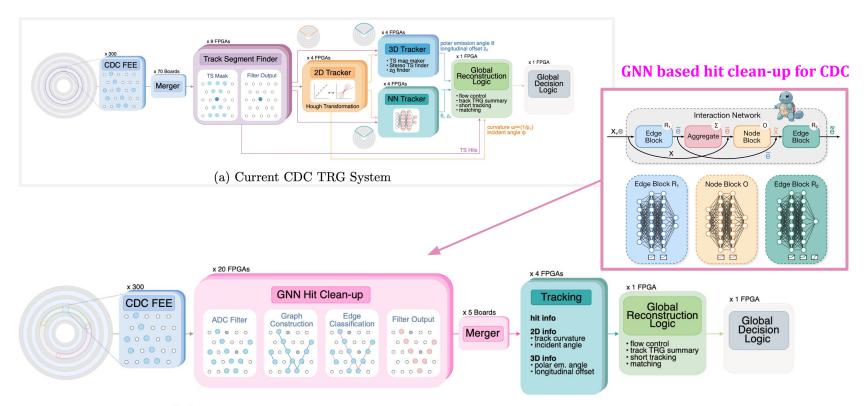
30 scintillator strips. Array size: 50ccmm × 50ccmm × 6ccmm



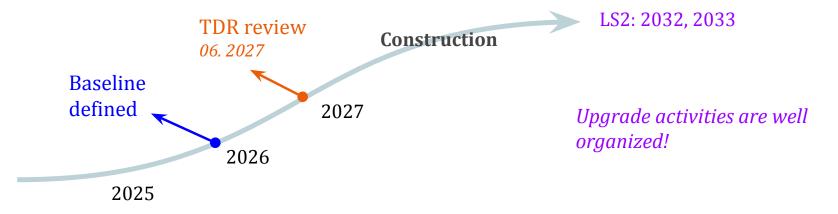
SiPM array

Trigger

- Current Hardware trigger: (L1 trigger)
 - CDC and ECL are taking a major role to trigger charged particles
 - KLM for muons and TOP for precise event time measurement
 - Matching of sub-triggers (GRL); final trigger decision
 - o UT, universal trigger board, used by different sub-trigger commonly
- Further upgrades are needed to satisfy the high lumi environment:
 - Next-generation universal Trigger board: UT5 for ML and AI engine
 - Upgrade on both hardware and firmware

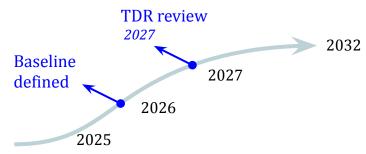

UT generation	UT3	UT4	UT5
Main FPGA (Xilinx)	Virtex6	Virtex Ultrascale	Versal
	XC6VHX380-565	XCVU080-190	
Sub FPGA (Xilinx)		Artex7	Artex7, Zynq
# Logic gate	500k	2000k	8000k
Optical transmission rate	8 Gbps	25 Gbps	58 Gbps
# UT boards	30	30	10
Cost per a board (k\$)	15	30	50
Time schedule	2014-	2019-2026	2024-2032

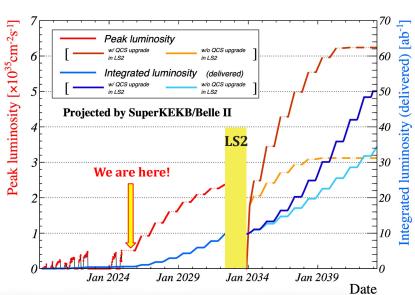
Potential new inputs to L1-trigger:


New VTX and ITT as the input to L1 trigger

Trigger: ML for FE

(b) Future Upgrade Concept for the CDC Trigger System


Upgrade timeline

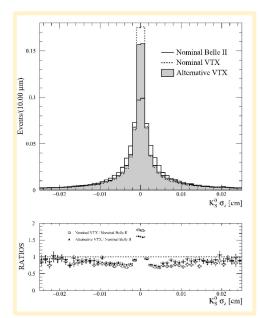


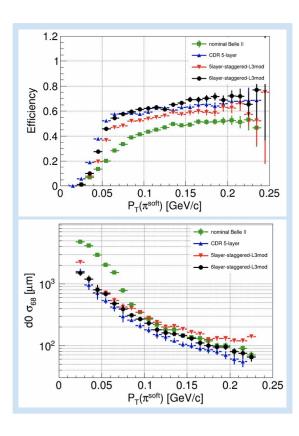
- A lot more R&D activities going on but not covered today!
- Various options are still being studied in parallel and they are all on the table
- Major timeline towards LS2:
 - Early 2026: converge on a baseline upgrade scenario
 - QCS envelope geometry
 - Understand more about the CDC aging issue
 - ITT scenario if there will be an ITT volume
 - Post-LS2 Beam Background estimation
 - TDR review planned in 2027

Summary & outlook

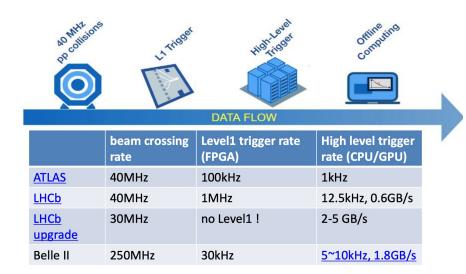
- Belle II has been operating and collecting data successfully in the past several years
- Ambitious plans targeting much higher Linst have been made
- LS2 planned: Upgrade of Belle II detector to operate under higher luminosity with improved performance:
 - Large number of ongoing R&D studies
 - Huge amount of work to be done in the next few years
- Targeting TDR review in 2027
- Stay tuned!

backup

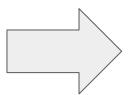

VTX performance and geometry optimization based on simulation


• Improved detection efficiency and improved impact parameter resolution for π_{c}

$$\circ B^0 \to D^{*-} (\to D^0 \pi_s^{-})^{\stackrel{s}{}} \mu^+ v_{\mu}$$


- Better vertex resolution
 - $\circ B^0 \to J/\psi K_{\varsigma}^0$
- <u>Material budget:</u> less material for inner layer

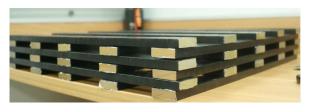
→ More studies in the future (Move this slide to backup)

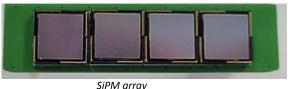

CDC upgrade

Others: New front-end board with better cross-talk tolerance, power consumption, and radiation hardness

- New 8-channel 65nm front-end ASIC (TDC+flash-ADC)
 - o 6 ASICs per board
- Rad-hard optical module QSFP (for data transmission to trigger/DAQ)
 - Total dose: ~1kGy
 - \circ Candidates of QSFP are selected through γ and n radiation hardness tests

Status: electronics design is close to completion => review is planned soon




New

Upgrade of KLM

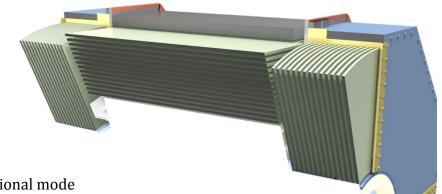
Two independent upgrade options under study:

- Option-1: rebuild detector panel and replace all RPCs with scintillator+SiPM
- Allow fast timing (100ps):
 - Reject out-of-time hits from the ambient neutron flux
 - Access to K_i momentum via TOF => not possible with present KLM
 - 100 ps, 2m flight length -> momentum resolution of ~13% for 1.5GeV/c K_L
 - Critical for decays with missing mass and CPV
- Mechanically complicated: Requires roll-out of Belle II and opening of the forward and backward endcap doors
 - Access of all the panels will be challenging: beamline-supporting concrete shield blocks the bottom 3 sectors
 - Need to coordinate with other subsystems for installation => challenging and requires ~1 year to accomplish the installation steps
- Status: A small prototype been built with 60 scintillators and will be ready for testing soon

R: 340 cm

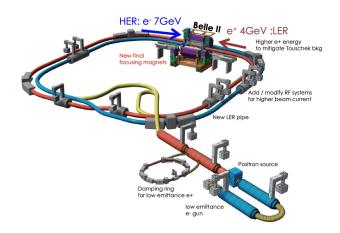
R: 200 cm

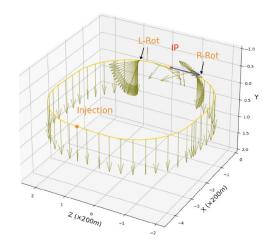
27


R: 130 cr

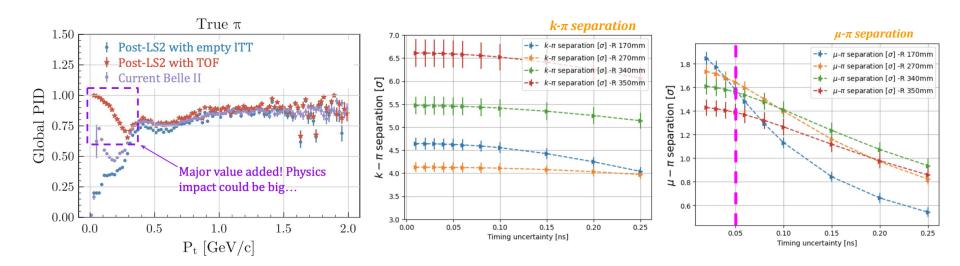
Upgrade of KLM

Two independent upgrade options under study:


Option-2: Change the RPC operation mode from streamer to proportional mode


- Keep the existing KLM detector panels untouched
- Maintaining present KLM performance in high background condition
- New preamplifier required to work with the proportional mode

Chiral Belle


- Polarized electron beams in HER -> enable unique and powerful sensitivities to new physics and precision neutral current measurement at 10 GeV:
 - Neutral current universality between c and b quarks and all three generation leptons at energy below Z⁰

ITT

- Preliminary studies been done to understand the potential benefit and requirements to the actual technology:
 - Promising PID improvement: TOF-base PID with 50ps timing resolution
 - Further study to be done to understand the contribution to tracking and trigger

- TOF: LGAD is an attractive option for its timing performance and well-established technology
- Other option: evaluation of a pure tracking layer method based on CMOS-strip in parallel