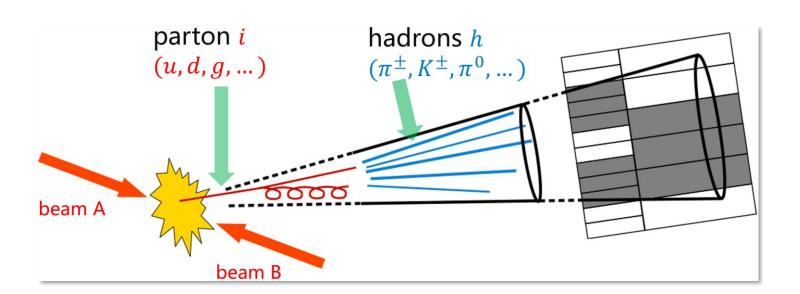
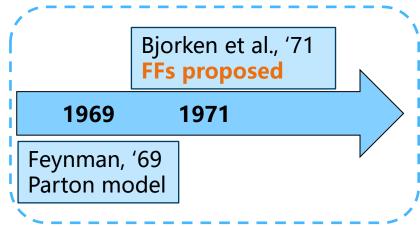
The 7th International Workshop on Future Tau Charm Facilities FTCF2025, Huangshan

November 23rd - 27th, 2025

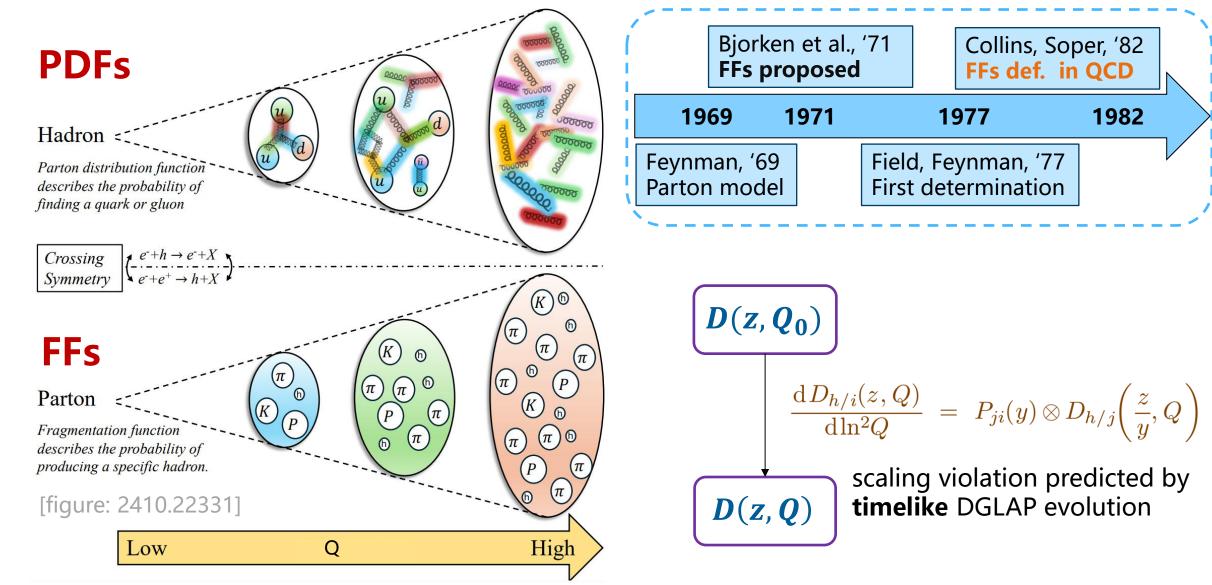



Recent Progress on Parton Fragmentation Functions

XiaoMin Shen(沈晓民), Institute of Modern Physics, CAS

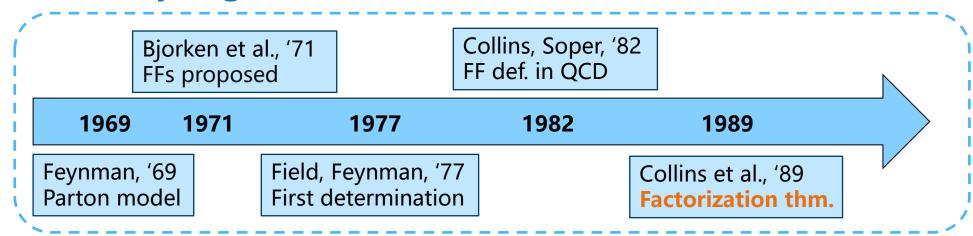
On behalf of the NPC Collaboration

Fragmentation Functions (FFs) in the parton model

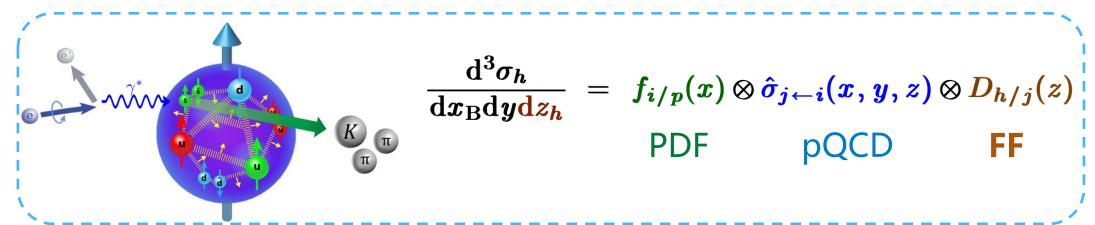


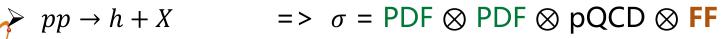
- ◆ Collinear FFs introduced as extension of the parton model in final state
 - number density of finding
 - a specific hadron h
 - with momentum fraction z "in" parton i

$$D_{m{h/i}}\!\left(z\!=\!rac{p_{m{h}}^+}{p_{m{i}}^+}
ight)\!\longleftrightarrow\!f_{m{i}/m{h}}\!\left(x\!=\!rac{p_{m{i}}^+}{p_{m{h}}^+}
ight)$$
 FF PDF

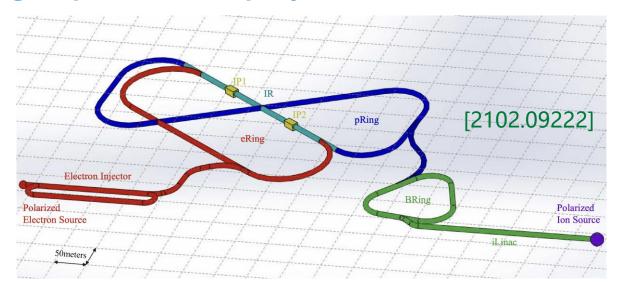


Fragmentation Functions (FFs) in QCD




FFs are key ingredients of QCD factorization framework

Semi-Inclusive DIS (SIDIS): e + N -> e + h + X



$$ightharpoonup e^+e^-
ightharpoonup h + X (SIA) => \sigma = pQCD \otimes FF$$

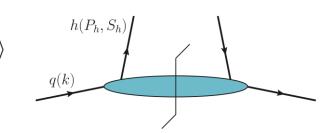
FFs play a key role in the era of high-precision physics

Electron-Ion Collider (EIC)

- start operation in the early 2030s
- unprecedented access to nucleon structure
- FFs will be key inputs/outputs

Efforts from China

- **BESIII** [2211.11253, 2401.17873, 2502.16084]
- **STCF** See Haiping Peng's talk on Nov.24
- **EicC**: helicity structure of sea quarks



FFs are major physical targets and key inputs of future colliders.


Determination of FFs

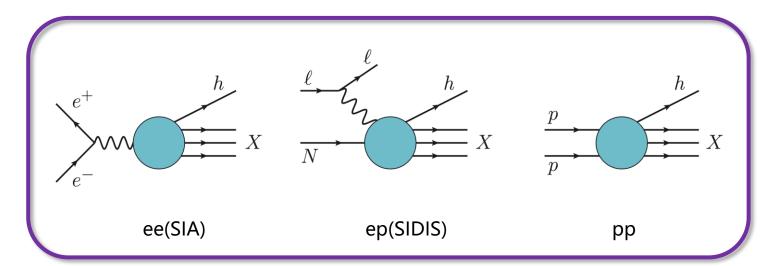
❖ Field theory definiton of the collinear (integrated) quark FFs [Collins, Soper '82]

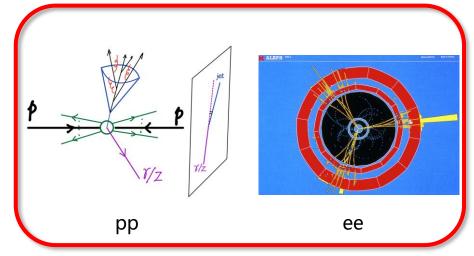
$$D_{h/q}(z) = \frac{z}{4} \sum_{X} \int \frac{d\xi^{+}}{2\pi} e^{iP_{h}^{-}\xi^{+}/z} \operatorname{Tr} \left[\langle 0 | \mathcal{W}(\infty^{+}, \xi^{+}) | \psi_{q}(\xi^{+}, 0^{-}, \vec{0}_{T}) | P_{h}, S_{h}; X \rangle \right] \times \langle P_{h}, S_{h}; X | \bar{\psi}_{q}(0^{+}, 0^{-}, \vec{0}_{T}) | \mathcal{W}(0^{+}, \infty^{+}) | 0 \rangle \gamma^{-}$$

- Using quantum computers [2406.05683, 2510.18869]
- Global data fits based on factorization formula

+ ee(SIA) + pp collisions

Outline


- > Introduction
- ➤ Global fits of FFs at NLO
- ➤ Global fits of FFs at NNLO
- > Summary


NPC= Non-Perturbative Physics Collaboration

collaboration	NNFF	JAM	DSS+	BDSSV	MAP	NPC
SIA(ee)	✓	\checkmark	\checkmark	\checkmark	✓	
SIDIS (ep)	X	\checkmark	✓	\checkmark	\checkmark	✓ \
pp incl. hadron	X	X	\checkmark	X	X	✓
hadron in jet	X	X	X	X	X	$\setminus \checkmark$
FFs (charged h)	π^{\pm}, K^{\pm}, p	π^{\pm},K^{\pm}	π^{\pm}, K^{\pm}, p	π^\pm	$\pi^{\pm},\!K^{\pm}$	π^{\pm}, K^{\pm}, p
FFs (neutral h)			$\mid \eta \mid$			K^0,η,Λ
pQCD order	NNLO	NLO	NLO	appr. NNLO	appr. NNLO	NLO

Only some of the recent global analyses are shown here.

NPC FFs analyses incorporate various types of data

single-inclusive hadron production

hadron-in-jet measurements

> Hadron-in-jet data provides direct probe of z dependence

$$\frac{p_{T,h}}{p_{T,j}} \stackrel{\mathrm{LO}}{\longrightarrow} z$$

All theoretical predictions calculated with FMNLO.

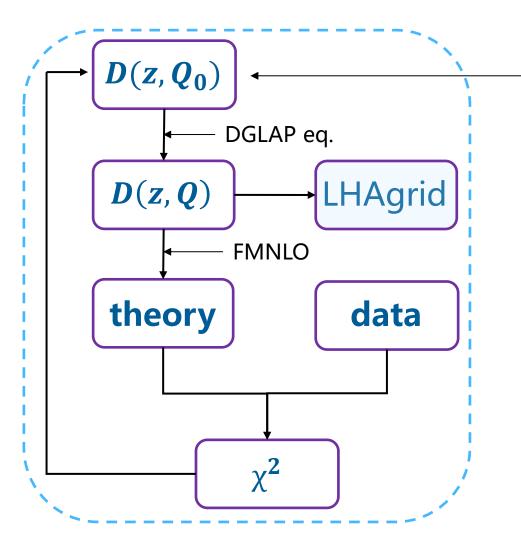

[Liu, XS, Zhou, Gao, 2305.14620 (JHEP)]

figure credit: A. Metz, A. Vossen,1607.02521; ALEPH Collaboration

XiaoMin Shen(沈晓民) FTCF2025, Huangshan Page 8

Fit framework

Parameterization at starting scale Q_0 = 4.0 GeV

$$zD_i^h(z, Q_0) = z^{\alpha_i^h} (1-z)^{\beta_i^h} \exp\left(\sum_{n=0}^m a_{i,n}^h(\sqrt{z})^n\right)$$

parton-to- π^+	favored	α	β	a_0	a_1	a_2	d.o.f.
u	Y						5
$\overline{d} \simeq u$	Y	-	-		-	-	1
$\bar{u} = d$	N					x	4
$s = \bar{s} \simeq \bar{u}$	N	-				x	3
$c=ar{c}$	N					x	4
$b = \overline{b}$	N					x	4
g	N		\mathbf{F}				4

parton-to- K^+	favored	$ \alpha $	β	a_0	a_1	a_2	d.o.f.
u	Y					x	4
$\bar{s} \simeq u$	Y	-	-		-,	x	1
$\bar{u}=d=\bar{d}=s$	N					x	4
$c=ar{c}$	N					x	4
$b=ar{b}$	N					x	4
g	N		F			x	3

parton-to- p	favored	$ \alpha $	β	a_0	a_1	a_2	d.o.f.
u=2d	Y					x	4
$\bar{u} = \bar{d} = s = \bar{s}$	N				\mathbf{x}	x	3
$c = \bar{c}$	N					x	4
$b=ar{b}$	N					x	4
g	N		F			x	3

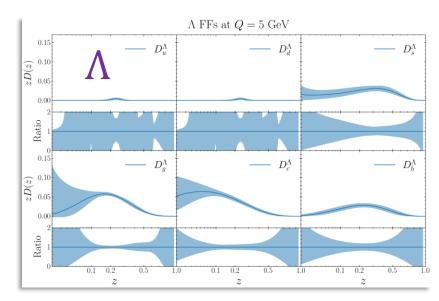
simultaneous fit of $\pi^{\pm}, K^{\pm}, p/\bar{p}$ FFs

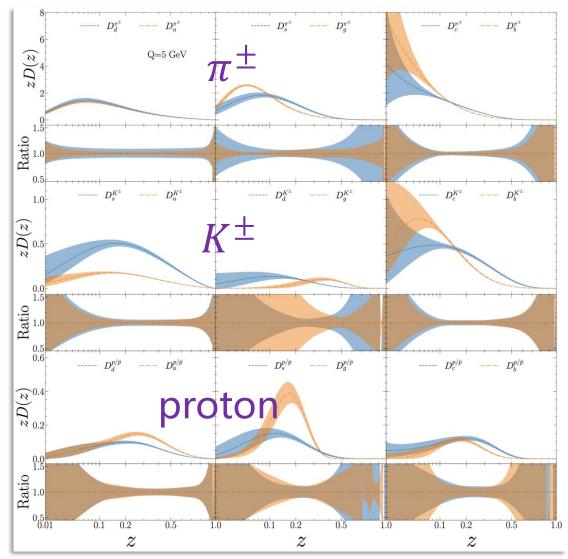
Good agreement between theory and data

	Experiments	N_{pt}	χ^2	χ^2/N_{pt}
la in int	ATLAS jets †	446	350.8	0.79
h in jet	ATLAS $Z/\gamma + \text{jet}^{\dagger}$	15	31.8	2.12
	CMS $Z/\gamma + \text{jet}^{\dagger}$	15	17.3	1.15
	LHCb Z + jet	20	30.6	1.53
pp	ALICE inc. hadron	147	150.6	1.02
	STAR inc. hadron	60	42.2	0.70
	pp sum	703	623.3	0.89
	TASSO	8	7.0	0.88
	TPC	12	11.6	0.97
	OPAL	20	16.3	0.81
ee	OPAL (202 GeV) †	17	24.2	1.42
CC	ALEPH	42	31.4	0.75
	DELPHI	78	36.4	0.47
	DELPHI (189 GeV)	9	15.3	1.70
	SLD	198	211.6	1.07
	SIA sum	384	353.8	0.92
	H1 [†]	16	12.5	0.78
	H1 (asy.) †	14	12.2	0.87
ер	ZEUS †	32	65.5	2.05
	COMPASS (061)	124	107.3	0.87
	COMPASS (16p)	97	56.8	0.59
	SIDIS sum	283	254.4	0.90
	Global total	1370	1231.5	0.90

	collaboration	year	$\sqrt{s}[\mathrm{GeV}]$	χ^2	$N_{ m pt}$	$\chi^2/N_{ m pt}$
	TASSO	1985	14	5.65	9	0.63
	TASSO	1985	22	5.87	6	0.98
	TASSO	1985	34	16.03	13	1.23
	TASSO	1990	14.8	12.56	9	1.40
	TASSO	1990	21.5	3.78	6	0.63
	TASSO	1990	34.5	17.51	13	1.35
	TASSO	1990	35	14.76	13	1.14
	TASSO	1990	42.6	33.60	13	2.58
	TPC	1984	29	2.75	8	0.34
	MARK II	1985	29	12.65	17	0.74
	HRS	1987	29	33.16	12	2.76
	CELLO	1990	35	2.71	9	0.30
	TOPAZ	1995	58	0.29	4	0.07
	OPAL	1991	91.2	7.75	7	1.11
	OPAL	1995	91.2	13.63	16	0.85
	OPAL	2000	91.2	8.62	16	0.54
	ALEPH	1998	91.2	6.39	16	0.40
	ALEPH	2000	91.2	12.72	14	0.91
	ALEPH jet 1	2000	91.2	14.91	12	1.24
	ALEPH jet 2	2000	91.2	8.21	13	0.63
	ALEPH jet 3	2000	91.2	8.55	11	0.78
	DELPHI	1995	91.2	7.55	13	0.58
	SLD	1999	91.2	7.39	9	0.82
	SLD c -tagged	1999	91.2	17.44	9	1.94
	SLD b-tagged	1999	91.2	11.12	9	1.24
	SIA sum			285.60	277	1.03
	JS $Q^2 \in 160,640 {\rm GeV^2}$	2012	318	4.41	5	0.88
ZEU	IS $Q^2 \in 640, 2560 \mathrm{GeV}^2$	2012	318	3.26	5	0.65
ZEUS	$Q^2 \in 2560, 10240 \text{GeV}^2$	2012	318	2.74	2	1.37
	SIDIS sum			10.41	12	0.87
A	LICE $N_{K_S^0}^{13{ m TeV}}/N_{K_S^0}^{7{ m TeV}}$	2021	13000 & 7000	2.88	10	0.29
	ALICE $N_{K_S^0}/N_{\pi^\pm}$	2021	13000	5.79	15	0.39
	pp sum			8.67	25	0.35
	total sum			304.68	314	0.97
		_	o			

NPC23 K⁰ FFs fit


NPC23 π^{\pm} , K^{\pm} , p FFs fit


The NPC FF sets at NLO

... are publicly available

LHAPDF 6.5.5

Main page	PDF sets	Class hierarchy	Examples	More						
2070000	NPC23_	Plp_nlo			(tarball)	(info file)	127			
2070200	NPC23_	_KAp_nlo			(tarball)	(info file)	127			
2070400	NPC23_	_PRp_nlo			(tarball)	(info file)	127			
2070600	NPC23_	_PIm_nlo			(tarball)	(info file)	127			
2070800	NPC23_	NPC23_KAm_nlo (tarball) (info file)								
2071000	NPC23_	NPC23_PRm_nlo (tarball) (info file)								
2071200	NPC23_	_PIsum_nlo			(tarball)	(info file)	127			
2071400	NPC23_	_KAsum_nlo			(tarball)	(info file)	127			
2071600	NPC23_	_PRsum_nlo			(tarball)	(info file)	127			
2071800	NPC23_	_CHHAp_nlo			(tarball)	(info file)	127			
2072000	NPC23_	_CHHAm_nlo			(tarball)	(info file)	127			
2072200	NPC23_	_CHHAsum_nlo			(tarball)	(info file)	127			

Both charged and neutral hadron FFs determined

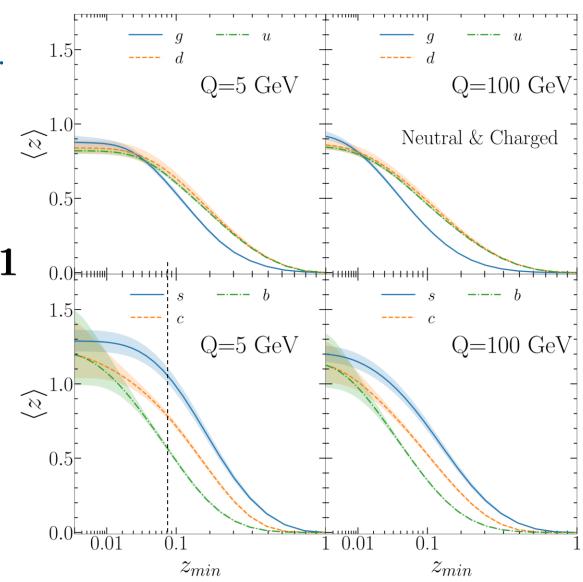
collaboration	NNFF	JAM	DSS+	BDSSV	MAP	NPC
SIA(ee)	✓	\checkmark	✓	\checkmark	\checkmark	√
SIDIS (ep)	X	\checkmark	\checkmark	✓	\checkmark	√
pp incl. hadron	X	X	\checkmark	X	X	\checkmark
hadron in jet	X	X	X	X	X	\checkmark
FFs (charged h)	π^{\pm}, K^{\pm}, p	$\pi^{\pm},\!K^{\pm}$	π^{\pm},K^{\pm},p	π^\pm	$\pi^{\pm},\!K^{\pm}$	$\pi^{\pm},\!K^{\pm},\!p$
FFs (neutral h)			$\mid \eta \mid$			K^0,η,Λ
pQCD order	NNLO	NLO	NLO	appr. NNLO	appr. NNLO	NLO

- > FFs determination at NLO from Non-perturbative Physics Collaboration (NPC)
 - NPC23 FFs to light charged hadrons:

Gao, Liu, **XS**, Xing, Zhao, *PRL 132, 261903,* '24 Gao, Liu, **XS**, Xing, Zhao, *PRD 110, 114019,* '24 (Editors' suggestion)

NPC23 FFs to light neutral hadrons:

Gao, Liu, Li, XS, Xing, Zhao, Zhou, PRD 112, 054045, '25


Test sum rule using neutral + charged hadron FFs

parton i hadrons $h = \pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, \cdots$

The momentum sum rule:

$$\lim_{z_{\min} \to 0} \sum_{h} \int_{z_{\min}}^{1} [zD_{h/i}(z)] dz = 1$$

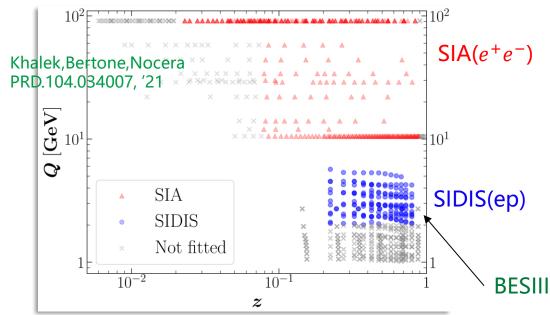
Gao, Liu, **XS**, Xing, Zhao, *PRL 132, 261903,* '24 Gao, Liu, Li, **XS**, Xing, Zhao, Zhou, *PRD 112, 054045, '25*

MP XiaoMin Shen(沈晓民) FTCF2025, Huangshan Page 13

Outline

- > Introduction
- > NPC analyses of FFs at NLO
- > NPC analyses of FFs at NNLO + constraints on PDFs
- > Summary

collaboration	NNFF	JAM	$\mathrm{DSS}+$	BDSSV	MAP	NPC	NPC
SIA(ee)	√	√	√	√	✓	√	√
SIDIS (ep)	X	\checkmark	\checkmark	\checkmark	\checkmark	√	✓
pp incl. hadron	X	X	✓	X	X	✓	X
hadron in jet	X	X	X	X	X	✓	X
FFs	π^{\pm}, K^{\pm}, p	$\pi^{\pm},\!K^{\pm}$	$\pi^{\pm}, K^{\pm}, p, h^{\pm}$	π^\pm	$\pi^{\pm},\!K^{\pm}$	$\pi^{\pm},\!K^{\pm},\!p,\!h^{\pm}$	$\pi^{\pm},\!K^{\pm}$
			η			K^0,η,Λ	
pQCD order	NNLO	NLO	NLO	appr. NNLO	appr. NNLO	NLO	NNLO

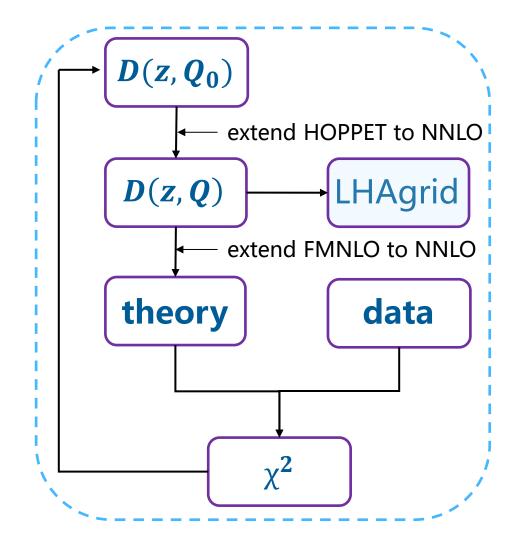

Global analysis of FFs at full NNLO: the datasets

> $SIA(e^+e^-)$ data used in the fit:

	/-/O.J.	1 ()		C1 -4-4	1 1
exp.	$\sqrt{s}/{ m GeV}$	$ \operatorname{lum.}(n_Z) $	year	final states	hadrons
DELPHI	189	157.7 pb^{-1}	2002	inc. had.	π^{\pm}, K^{\pm}
OPAL	m_Z	780 000	1994	$Z\! o qar q$	π^{\pm}, K^{\pm}
ALEPH	m_Z	520 000	1995	$Z\! o qar q$	π^{\pm}, K^{\pm}
DELPHI	m_Z	1 400 000	1998	$Z\! o qar q$	π^{\pm}, K^{\pm}
				$Z\! o\!bar{b}$	π^{\pm}, K^{\pm}
				$Z\! o qar q$	π^{\pm}, K^{\pm}
SLD	m_Z	400 000	2004	$Z\! o\!bar{b}$	π^{\pm}, K^{\pm}
				$Z \rightarrow c\bar{c}$	π^{\pm}, K^{\pm}
TASSO	44	34 pb^{-1}	1989	inc. had.	π^{\pm},π^0
TASSO	34	77 pb^{-1}	1989	inc. had.	π^{\pm}, K^{\pm}
$\mathrm{TPC}/2\gamma$	29	70 pb^{-1}	1988	inc. had.	π^{\pm}, K^{\pm}
Belle	10.52	$68 \; {\rm fb^{-1}}$	2013	inc. had.	π^{\pm}, K^{\pm}
BaBar	10.54	$0.91 \; \mathrm{fb^{-1}}$	2013	inc. had.	π^{\pm}, K^{\pm}
BESIII	2.0-3.671	253 pb^{-1}	2025	inc. had.	π^{\pm}, K^{\pm}

[BESIII, **PRL**135, 151901, 2025]

> **separated** kinematic region of e^+e^- and ep data (before BESIII measurement)


- Kinematic cuts in our analyses:
 - Q > 3 GeV (SIA)
 - Q > 2 GeV(SIDIS)
 - z > 0.01, $E_h > E_{h,min}$ (0.8 GeV by default)

the first test on universality of FFs at Q~3 GeV using both ee and SIDIS data

XiaoMin Shen(沈晓民) FTCF2025, Huangshan Page 15

Global analysis of FFs at full NNLO: theoretical prediction

 \triangleright FFs at starting scale $Q_0 = 1.4 \text{ GeV}$

$$zD_i^h(z, Q_0) = z^{\alpha_i^h} (1-z)^{\beta_i^h} \exp\left(\sum_{n=0}^m a_{i,n}^h z^{n/2}\right)$$

+charge/isospin symmetries

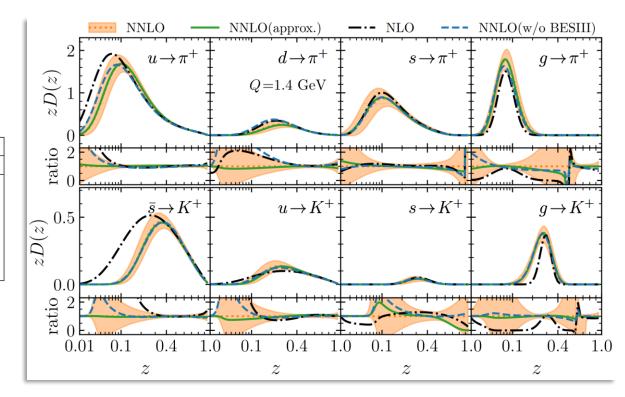
- \triangleright FFs at arbitrary energy scale Q
 - 3-loop timelike DGLAP evolution

[Mitov, Moch, Vogt, Almasy]

[Chen, Yang, Zhu, Zhu, '20]

> SIA/SIDIS coefficient functions at NNLO

[Bonino+, '24], [Goyal+, '24]


the **first** global FF fit (ee+SIDIS) at full NNLO accuracy

Global analysis of FFs at full NNLO: results

> Fit quality of the NNLO analyses

	В	ESIII	CO	MPASS	B-fa	actories	H	E-SIA		globa	1
$E_{h,\min}[\mathrm{GeV}]$	$N_{ m pt}$	$\chi^2/N_{ m pt}$	$N_{ m pt}$	χ^2	$\chi^2/N_{ m pt}$						
0.5	242	1.26	358	1.65	233	1.06	426	1.19	1259	1650.2	1.31
0.6	212	1.21	290	1.59	228	0.92	423	0.97	1153	1338.8	1.16
0.7	182	1.11	214	1.47	223	0.61	413	0.84	1032	997.2	0.97
0.8	152	0.98	142	1.30	218	0.53	407	0.82	919	781.8	0.85
0.9	122	1.05	94	1.29	213	0.52	407	0.80	836	687.1	0.82
1.0	98	1.14	54	0.97	209	0.49	403	0.80	764	587.2	0.77

energy cut of the identified hadron

LHAgrids of our FFs have been submitted to the LHAPDF repository.

https://www.lhapdf.org/pdfsets.html

XiaoMin Shen(沈晓民) FTCF2025, Huangshan Page 17

Application: constraining proton PDFs at NNLO

SIDIS may also constrain PDFs:

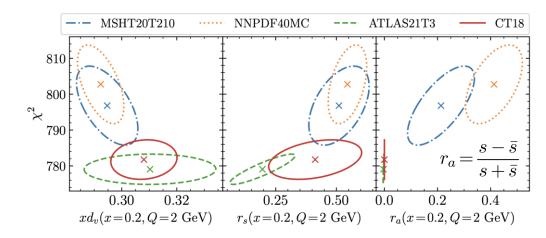
$$rac{\mathrm{d}^3\sigma_h}{\mathrm{d}x_\mathrm{B}\mathrm{d}y\mathrm{d}z_h} \ = \ f_{i/p}(x)\otimes\hat{\sigma}_{j\leftarrow i}(x,y,z)\otimes D_{h/j}(z)$$
 unpolarized PDF FF

➤ LO xsec of SIDIS off an isoscalar target (COMPASS)

$$\frac{\mathrm{d}\sigma^{K^{+}}}{\mathrm{d}x\mathrm{d}y\mathrm{d}z} - \frac{\mathrm{d}\sigma^{K^{-}}}{\mathrm{d}x\mathrm{d}y\mathrm{d}z}$$

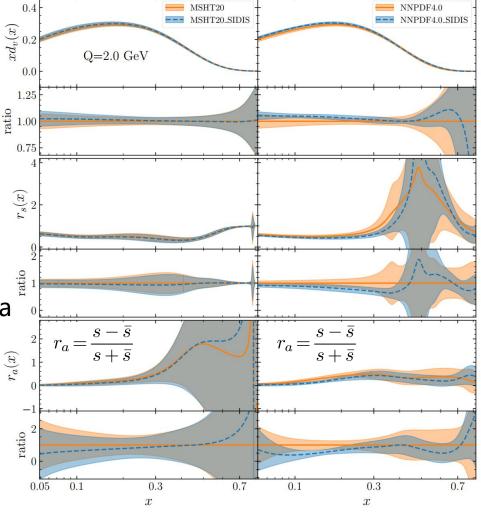
$$\sim 2\left(u_{v}(x) + d_{v}(x)\right)\left(D_{u}^{K^{+}}(z) - D_{\bar{u}}^{K^{+}}(z)\right)$$

$$+ \left(s(x) - \bar{s}(x)\right)\left(D_{s}^{K^{+}}(z) - D_{\bar{s}}^{K^{+}}(z)\right) + \cdots$$


is sensitive to strangeness asymmetry

$$r_a = \frac{s - \bar{s}}{s + \bar{s}}$$

Application: constraining proton PDFs at NNLO


 \triangleright Correlation between χ^2 and PDFs

Modified PDFs which reflect the impact of SIDIS data

- Reweighting of the NNPDF4.0 PDF set
- Profiling of the MSHT20 PDF set

[Gao, XS, Xing, Zhao, Zhou, PRL 135, 041902, 2025]

PDF sets before and after reweighting/profiling

Summary

- > FFs are key inputs for calculations of hadron production rate from first principles.
- > NPC collaboration has delivered precise and comprehensive FF sets at NLO.
- We present the first global (SIA+SIDIS) FFs determination at full NNLO.

collaboration	NPC	NPC
SIA(ee)	\checkmark	\checkmark
SIDIS (ep)	\checkmark	\checkmark
pp incl. hadron	\checkmark	X
hadron in jet	\checkmark	X
FFs	π^{\pm},K^{\pm},p	π^{\pm},K^{\pm}
	K^0,η,Λ	
pQCD order	NLO	NNLO

FF sets from NPC available from https://www.lhapdf.org/pdfsets.html

NLO charged hadron:

Gao, Liu, XS, Xing, Zhao, PRL 132, 261903, 2024

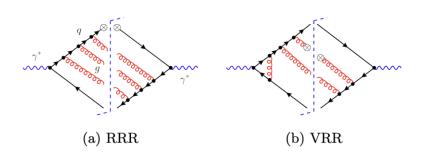
Gao, Liu, XS, Xing, Zhao, PRD 110, 114019, 2024

NLO neutral hadron:

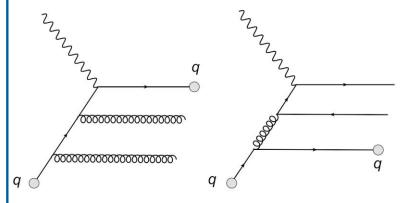
Gao, Liu, Li, **XS**, Xing, Zhao, Zhou, *PRD 112, 054045,* 2025

NNLO:

Gao, XS, Xing, Zhao, Zhou, PRL 135, 041902, 2025

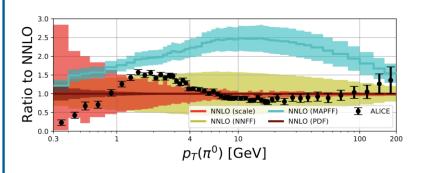

Thank you for your attention!

XiaoMin Shen(沈晓民) FTCF2025, Huangshan Page 20


Recent progress from pQCD

$SIA(e^+e^-)$ at N3LO

[He, Xing, Yang, Zhu, PRL.135.101901(2025)]


SIDIS(ep) at NNLO

[Bonino, Gehrmann, et al. & Goyal, Moch, et al.]

PRL.132.251901, '24, PRL.132.251902, '24, PRL.133.211904, '24, PRL.133.211905, '24, 2504.05376, 2506.24078, 2510.00100, 2510.18872

❖pp at NNLO

[Czakon, Generet, Mitov, Poncelet, PRL.135.171902(2025)]

NPC collaboration gathering on July 19th 2025

in neighborhood of Huizhou city (host of EICc)

Jun Gao, ChongYang Liu, Meng Yang Li, XiaoMin Shen, HongXi Xing, YuXiang Zhao, Bin Zhou, YiYu Zhou Shanghai JiaoTong Univ., South China Normal Univ., Institute of Modern Physics, CAS