The 7th International Workshop on Future Tau Charm Facilities

CP Violation in Charmed Baryon Weak Decays

Fanrong Xu

Jinan University

in collaboration with

Hai-Yang Cheng & Huiling Zhong

Phys. Rev. D 112, 054022 (2025)

November 25, Huangshan, China

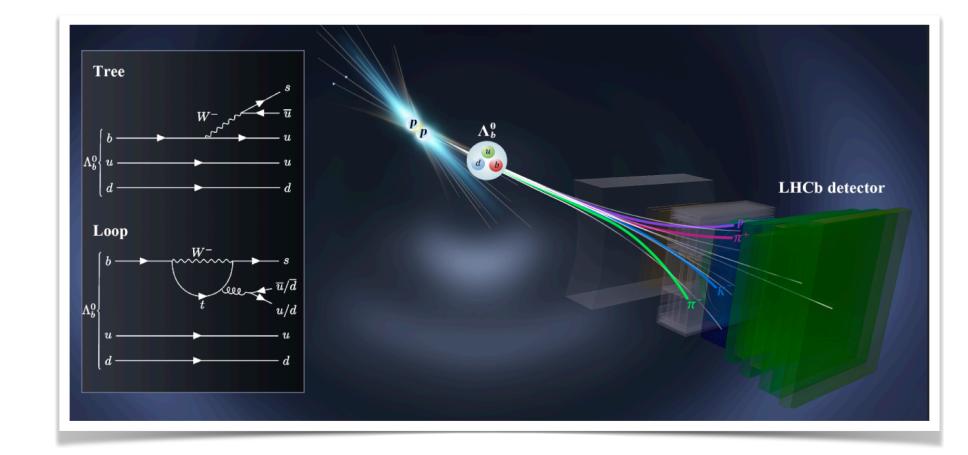
OUTLINE

- Introduction
- Topological diagrams
- Final-state rescattering
- CP violation
- Summary

CP VIOLATION IN BOTTOMED BARYON

A new milestone in direct CP violation of baryons.

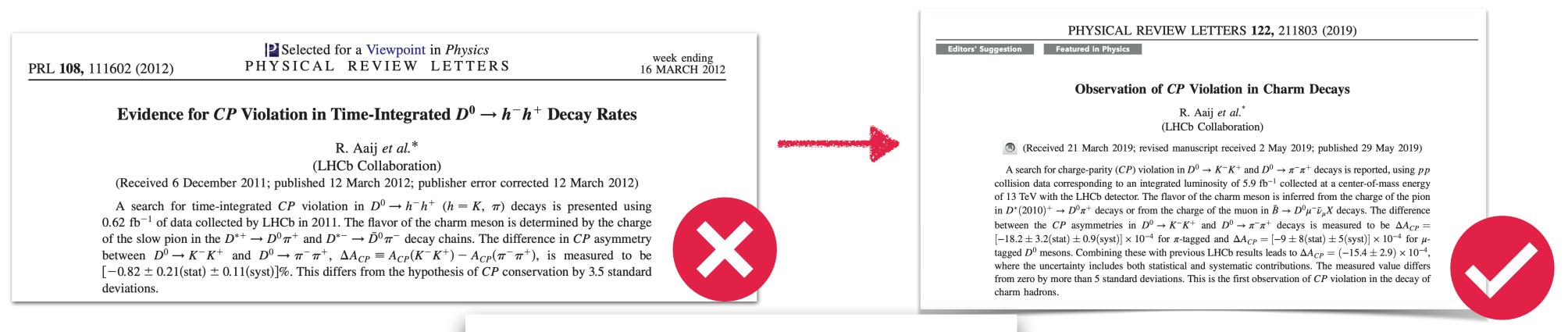
Article Open access Published: 16 July 2025


Observation of charge-parity symmetry breaking in baryon decays

LHCb Collaboration

Nature 643, 1223–1228 (2025) Cite this article

$$\mathcal{A}_{CP} \equiv \frac{\Gamma(\Lambda_b^0 \to pK^-\pi^+\pi^-) - \Gamma(\bar{\Lambda}_b^0 \to \bar{p}K^+\pi^-\pi^+)}{\Gamma(\Lambda_b^0 \to pK^-\pi^+\pi^-) + \Gamma(\bar{\Lambda}_b^0 \to \bar{p}K^+\pi^-\pi^+)}$$


$$\mathcal{A}_{CP} = (2.45 \pm 0.46 \pm 0.10)\%$$

The first-ever observation of CP violation in baryon decays!

CHARM CP VIOLATION

- Charm CP violation provides an additional window to explore fundamental physics.
- Charmed meson CP violation has been understood.

$$\Delta \mathcal{A}_{CP} = (-1.54 \pm 0.29) \times 10^{-3}$$

Hai-Yang Cheng's talk

$$\Delta \mathcal{A}_{CP} = -\frac{4\operatorname{Im}[(\lambda_s - \lambda_d)\lambda_b^*]}{|\lambda_s - \lambda_d|^2} \left(\left| \frac{P}{T + E} \right|_{KK} \sin \theta_{KK} + \left| \frac{P}{T + E} \right|_{\pi\pi} \sin \theta_{\pi\pi} \right)$$
$$= -1.31 \times 10^{-3} \left(\left| \frac{P}{T + E} \right|_{KK} \sin \theta_{KK} + \left| \frac{P}{T + E} \right|_{\pi\pi} \sin \theta_{\pi\pi} \right),$$

|P/T| naively expected to be $(\alpha_s(\mu_c)/\pi) \sim \mathcal{O}(0.1)$ $\Delta A_{CP} \sim 10^{-4}$

$$P^{
m LD} = E^{
m LD} pprox E$$
 $\Delta {\cal A}_{CP} = (-0.151 \pm 0.004)\%$

• Charmed baryon CP violation: a new frontier.

H.Y. Cheng, C.W. Chiang, PRD 86, 014014 (2012)

CP VIOLATION IN CHARMED BARYON

Naive expectation

$$\mathcal{A}_{CP} \equiv rac{\Gamma(\mathcal{B}_c o \mathcal{B}P) - \Gamma(\overline{\mathcal{B}}_c o \overline{\mathcal{B}}ar{P})}{\Gamma(\mathcal{B}_c o \mathcal{B}P) + \Gamma(\overline{\mathcal{B}}_c o ar{\mathcal{B}}ar{P})},$$

SCS process:
$$A = \lambda_d A_d + \lambda_s A_s$$

$$\mathcal{A}_{CP} = \frac{2\text{Im}(\lambda_d \lambda_s^*)}{|\lambda_d|^2} \frac{\text{Im}(A_d A_s^*)}{|A_d - A_s|^2} = (1.31 \times 10^{-3}) \frac{|A_d A_s|}{|A_d - A_s|^2} \sin\delta_{ds},$$

strong phase

 $\mathcal{O}(10^{-3})$ is expectable

Sizable strong phase observed:

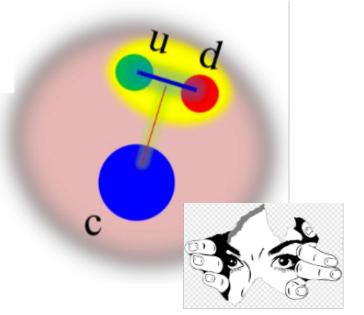
PHYSICAL REVIEW LETTERS 132, 031801 (2024)

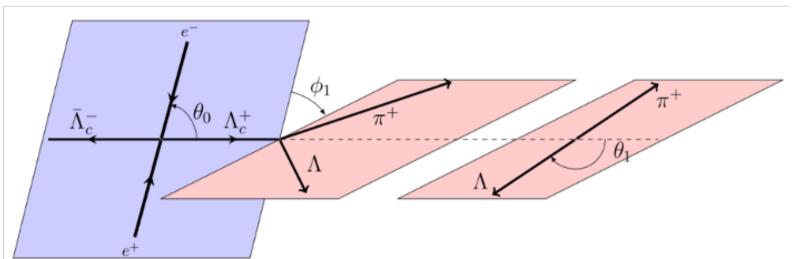
First Measurement of the Decay Asymmetry in the Pure W-Boson-Exchange Decay $\Lambda_c^+ \to \Xi^0 K^+$

M. Ablikim *et al.**
(BESIII Collaboration)

(Received 6 September 2023; accepted 30 November 2023; published 17 January 2024)

$$\alpha_{\Xi^0 K^+} = 0.01 \pm 0.16(\text{stat}) \pm 0.03(\text{syst})$$




$$\delta_p - \delta_s = -1.55 \pm 0.25 (\text{stat}) \pm 0.05 (\text{syst}) \text{ rad}$$

 $1.59 \pm 0.25(\text{stat}) \pm 0.05(\text{syst})$ rad.

Now is the time to theoretically explore charmed baryon CPV!

OBSERVABLES

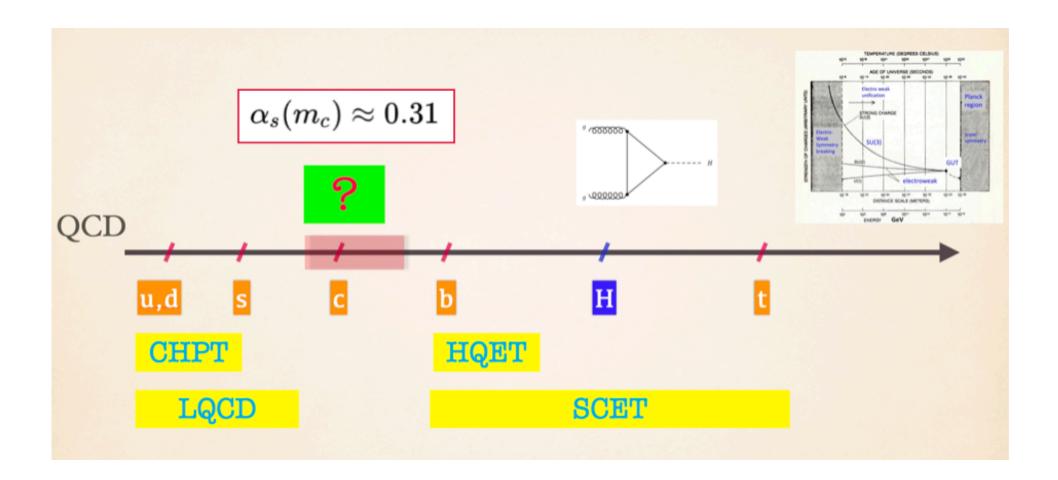
$$M(\mathcal{B}_i \to \mathcal{B}_f + P) = i\bar{u}_f(A - B\gamma_5)u_i,$$

$$\Gamma = \frac{p_c}{8\pi} \frac{(m_i + m_f)^2 - m_P^2}{m_i^2} \left(|A|^2 + \kappa^2 |B|^2 \right),$$

$$\alpha = \frac{2\kappa |A^*B| \cos(\delta_P - \delta_S)}{|A|^2 + \kappa^2 |B|^2}, \quad \beta = \frac{2\kappa |A^*B| \sin(\delta_P - \delta_S)}{|A|^2 + \kappa^2 |B|^2},$$

$$\gamma = \frac{|A|^2 - \kappa^2 |B|^2}{|A|^2 + \kappa^2 |B|^2},$$

$${\cal A}_{C\!P} \equiv rac{\Gamma({\cal B}_c o {\cal B}P) - \Gamma(\overline{\cal B}_c o ar{\cal B}ar{P})}{\Gamma({\cal B}_c o {\cal B}P) + \Gamma(\overline{\cal B}_c o ar{\cal B}ar{P})},$$



Decay Asymmetries (longitudinal, transvere)

UNDERLYING DYNAMICS: TOPOLOGICAL DIAGRAMS

• Charm system: challenging and charming

Topological diagrams provide a way to underlying dynamics

PHYSICAL REVIEW D VOLUME 44, NUMBER 9 1 NOVEMBER 1991

Quark-diagram analysis of charmed-baryon decays

Yoji Kohara

Yoji Kohara

Nihon University at Fujisawa, Fujisawa, Kanagawa 252, Japan

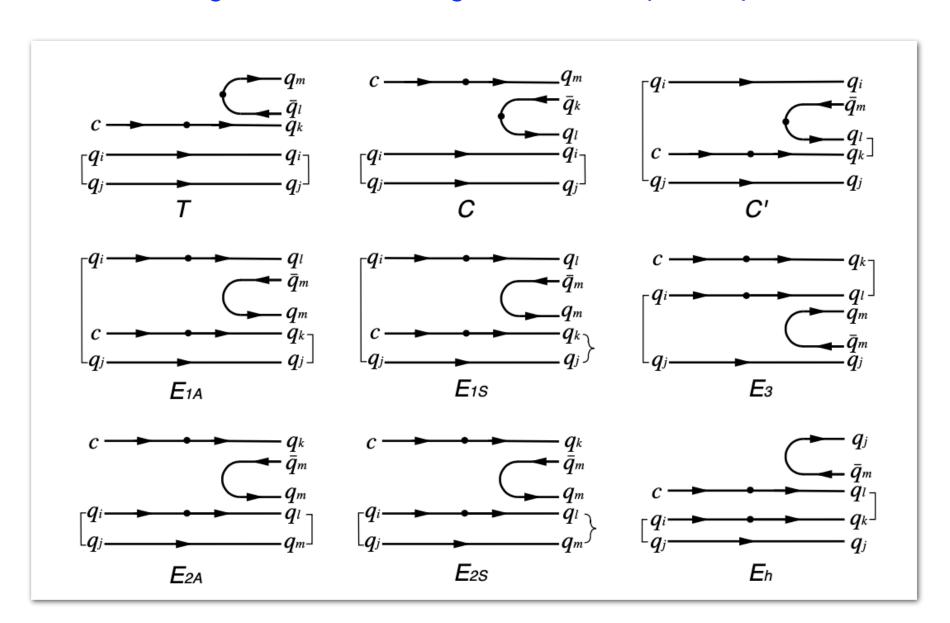
(Received 29 May 1991)

The Cabibbo-allowed two-body nonleptonic decays of charmed baryons to a SU(3)-octet (or -decuplet) baryon and a pseudoscalar meson are examined on the basis of the quark-diagram scheme. Some relations among the decay amplitudes or rates of various decay modes are derived. The decays of Ξ_c^+ to a decuplet baryon are forbidden.

PHYSICAL REVIEW D VOLUME 54, NUMBER 3 1 AUGUST 1996

Analysis of two-body decays of charmed baryons using the quark-diagram scheme

Ling-Lie Chau
Physics Department, University of California at Davis, California 95616


Hai-Yang Cheng and B. Tseng*

Institute of Physics, Academia Sinica, Taipei, Taiwan 115

(Received 25 August 1995)

TOPOLOGICAL DIAGRAM @ TREE

H. L. Zhong, FX, H.Y. Cheng, PRD 109 (2024), 114027; 2401.15926

$$\mathcal{A}_{\text{TDA}} = T(\mathcal{B}_{c})^{ij} H_{l}^{km} \left(\overline{\mathcal{B}}_{8}\right)_{ijk} (P^{\dagger})_{m}^{l}$$

$$+ C(\mathcal{B}_{c})^{ij} H_{k}^{ml} \left(\overline{\mathcal{B}}_{8}\right)_{ijl} (P^{\dagger})_{m}^{k} + C'(\mathcal{B}_{c})^{ij} H_{m}^{kl} \left(\overline{\mathcal{B}}_{8}\right)_{klj} (P^{\dagger})_{i}^{m}$$

$$+ E_{1A}(\mathcal{B}_{c})^{ij} H_{i}^{kl} \left(\overline{\mathcal{B}}_{8}\right)_{jkm} (P^{\dagger})_{l}^{m} + E_{1S}(\mathcal{B}_{c})^{ij} H_{i}^{kl} (P^{\dagger})_{l}^{m} \left[\left(\overline{\mathcal{B}}_{8}\right)_{jmk} + \left(\overline{\mathcal{B}}_{8}\right)_{kmj} \right]$$

$$+ E_{2A}(\mathcal{B}_{c})^{ij} H_{i}^{kl} \left(\overline{\mathcal{B}}_{8}\right)_{jlm} (P^{\dagger})_{k}^{m} + E_{2S}(\mathcal{B}_{c})^{ij} H_{i}^{kl} (P^{\dagger})_{k}^{m} \left[\left(\overline{\mathcal{B}}_{8}\right)_{jml} + \left(\overline{\mathcal{B}}_{8}\right)_{lmj} \right]$$

$$+ E_{3}(\mathcal{B}_{c})^{ij} H_{i}^{kl} \left(\overline{\mathcal{B}}_{8}\right)_{klm} (P^{\dagger})_{j}^{m} + E_{h}(\mathcal{B}_{c})^{ij} H_{i}^{kl} \left(\overline{\mathcal{B}}_{8}\right)_{klj} (P^{\dagger})_{m}^{m}$$

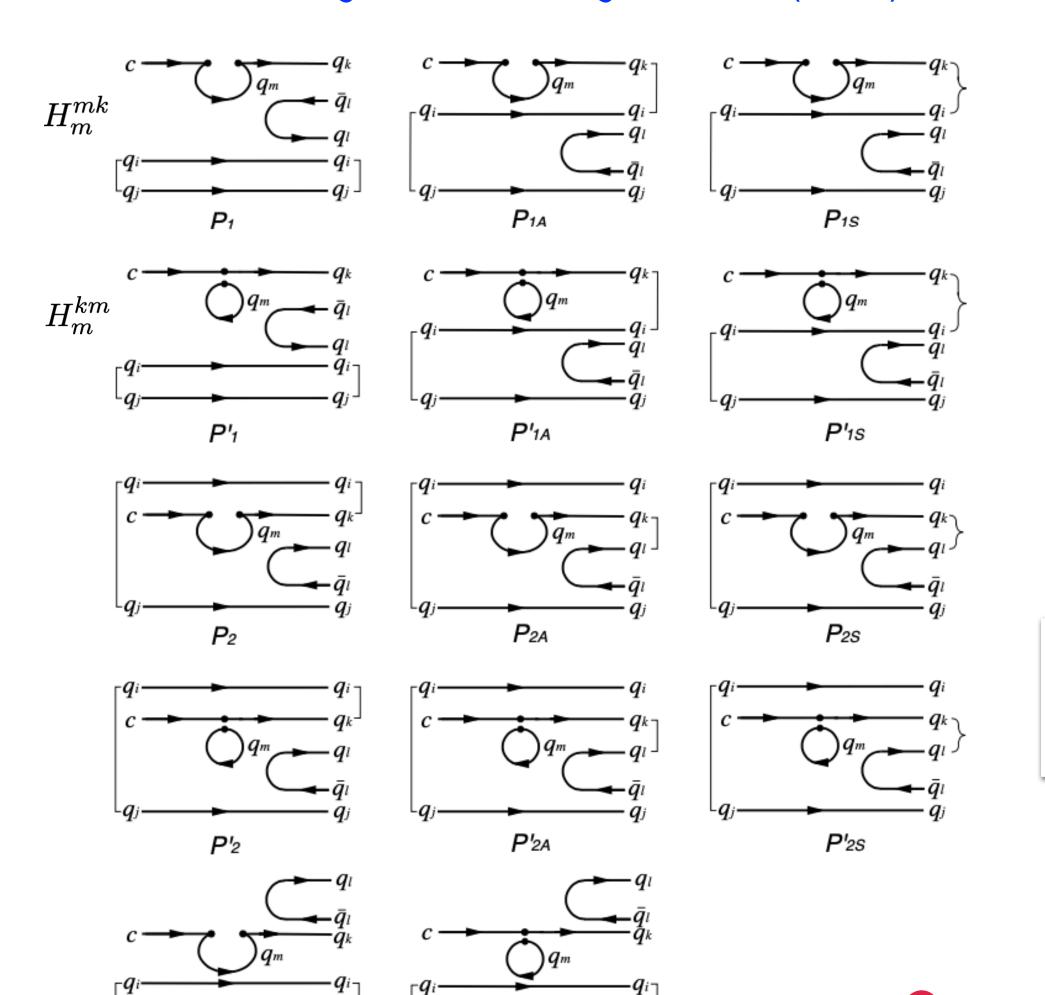
• reduce independent diagrams to 7

$$E_{2A} = -E_{1A}, \qquad E_{2S} = -E_{1S}.$$
 (KPW theorem)

• further reduction to 5 by redefinition

$$\tilde{T} = T - E_{1S}, \quad \tilde{C} = C + E_{1S}, \quad \tilde{C}' = C' - 2E_{1S},$$
 $\tilde{E}_1 = E_{1A} + E_{1S} - E_3, \quad \tilde{E}_h = E_h + 2E_{1S}.$

$$H_m^{kl}(ar{q}_kc)(ar{q}_lq^m)$$


Weak interaction

$$(\mathcal{B}_c)^{ij} = \begin{pmatrix} 0 & \Lambda_c^+ & \Xi_c^+ \ -\Lambda_c^+ & 0 & \Xi_c^0 \ -\Xi_c^+ & -\Xi_c^0 & 0 \end{pmatrix} \qquad P_j^i = \begin{pmatrix} rac{\pi^0}{\sqrt{2}} + rac{\eta_8}{\sqrt{6}} + rac{\eta_1}{\sqrt{3}} & \pi^+ & K^+ \ \pi^- & -rac{\pi^0}{\sqrt{2}} + rac{\eta_8}{\sqrt{6}} + rac{\eta_1}{\sqrt{3}} & K^0 \ K^- & \overline{K}^0 & -\sqrt{rac{2}{3}}\eta_8 + rac{\eta_1}{\sqrt{3}} \end{pmatrix}$$

$$(\mathcal{B}_8)^i_j = \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda + \frac{1}{\sqrt{2}}\Sigma^0 & \Sigma^+ & p \\ \Sigma^- & \frac{1}{\sqrt{6}}\Lambda - \frac{1}{\sqrt{2}}\Sigma^0 & n \\ \Xi^- & \Xi^0 & -\sqrt{\frac{2}{3}}\Lambda \end{pmatrix} \qquad (\mathcal{B}_8)_{ijk} = \epsilon_{ijl}(\mathcal{B}_8)^l_k$$

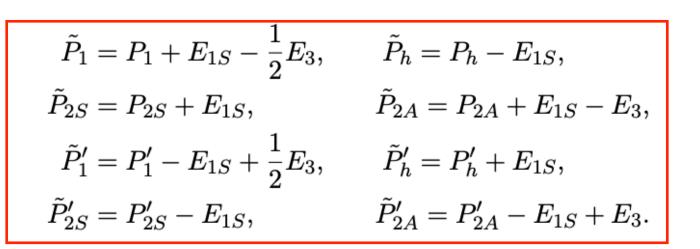
TOPOLOGICAL DIAGRAM @ PENGUIN

H.Y. Cheng, FX, H. L. Zhong, PRD 111 (2025), 034011

Similar to tree diagrams

$$\mathcal{A}_{\text{TDA}} = P_{h}(\mathcal{B}_{c})^{ij} H_{m}^{mk} (\overline{\mathcal{B}}_{8})_{ijk} (P^{\dagger})_{l}^{l} + P_{1}(\mathcal{B}_{c})^{ij} H_{m}^{mk} (\overline{\mathcal{B}}_{8})_{ijl} (P^{\dagger})_{k}^{l}$$

$$+ P_{2A}(\mathcal{B}_{c})^{ij} H_{m}^{mk} (\overline{\mathcal{B}}_{8})_{kil} (P^{\dagger})_{j}^{l} + P_{2S}(\mathcal{B}_{c})^{ij} H_{m}^{mk} (P^{\dagger})_{j}^{l} [(\overline{\mathcal{B}}_{8})_{kli} + (\overline{\mathcal{B}}_{8})_{ilk}]$$


$$+ P'_{h}(\mathcal{B}_{c})^{ij} H_{m}^{km} (\overline{\mathcal{B}}_{8})_{ijk} (P^{\dagger})_{l}^{l} + P'_{1}(\mathcal{B}_{c})^{ij} H_{m}^{km} (\overline{\mathcal{B}}_{8})_{ijl} (P^{\dagger})_{k}^{l}$$

$$+ P'_{2A}(\mathcal{B}_{c})^{ij} H_{m}^{km} (\overline{\mathcal{B}}_{8})_{kil} (P^{\dagger})_{j}^{l} + P'_{2S}(\mathcal{B}_{c})^{ij} H_{m}^{km} (P^{\dagger})_{j}^{l} [(\overline{\mathcal{B}}_{8})_{kli} + (\overline{\mathcal{B}}_{8})_{ilk}]$$

$$H_{k}^{ij} = \frac{1}{2} \left[(H_{15})_{k}^{ij} + (H_{\overline{6}})_{k}^{ij} \right] + \delta_{k}^{j} \left(\frac{3}{2} (H_{3p})^{i} - \frac{1}{2} (H_{3t})^{i} \right) + \delta_{k}^{i} \left(\frac{3}{2} (H_{3t})^{j} - \frac{1}{2} (H_{3p})^{j} \right)$$

$$\mathcal{A}_{\text{TDA}}^{\lambda_b} = \tilde{b}_1(\mathcal{B}_c)_i (H_3)^j (\overline{\mathcal{B}}_8)_j^i (P^{\dagger})_l^l + \tilde{b}_2(\mathcal{B}_c)_i (H_3)^j (\overline{\mathcal{B}}_8)_j^l (P^{\dagger})_l^i + \tilde{b}_3(\mathcal{B}_c)_i (H_3)^i (\overline{\mathcal{B}}_8)_j^l (P^{\dagger})_l^j + \tilde{b}_4(\mathcal{B}_c)_i (H_3)^l (\overline{\mathcal{B}}_8)_j^i (P^{\dagger})_l^j + \tilde{b}_5(\mathcal{B}_c)_i (H_{15^b})_l^{jk} (\overline{\mathcal{B}}_8)_j^i (P^{\dagger})_k^l,$$

$$\begin{split} \tilde{b}_1 &= \frac{1}{4}(\tilde{T} - 3\tilde{C}) - \frac{1}{2}\tilde{C}' - \frac{1}{2}\tilde{E}_h - 2\tilde{P}_h - 2\tilde{P}_{2S}, \\ \tilde{b}_2 &= \frac{1}{2}\tilde{C}' + 2\tilde{P}_{2S}, \\ \tilde{b}_3 &= -\frac{1}{2}\tilde{C}' + \frac{1}{2}\tilde{E}_{1A} - \tilde{P}_{2A} - \tilde{P}_{2S}, \\ \tilde{b}_4 &= -\frac{1}{4}(3\tilde{T} - \tilde{C}) + \frac{1}{2}\tilde{C}' + \frac{1}{2}\tilde{E}_1 - 2\tilde{P}_1 + \tilde{P}_{2A} + \tilde{P}_{2S}, \\ \tilde{b}_5 &= \tilde{T} + \tilde{C}, \end{split}$$

contribute to CPV

EQUIVALENCE BETWEEN TDA & IRA

TDA

X.G. He, Y. J. Shi and W. Wang, EPJC 80 (2020), 359

$$\mathcal{A}_{ ext{TDA}} = \mathcal{A}_{ ext{TDA}}^{ ext{tree}} + \mathcal{A}_{ ext{TDA}}^{\lambda_b}$$

H.Y. Cheng, FX, H. L. Zhong, PRD 111 (2025), 034011; 2505.07150

$$\mathcal{A}_{\text{TDA}}^{\text{tree}} = (T+C)(\mathcal{B}_c)_i (H_{15})_m^{jl} (\overline{\mathcal{B}}_8)_j^i (P^{\dagger})_l^m - E_h(\mathcal{B}_c)_i (H_{\overline{6}})_l^{ij} (\overline{\mathcal{B}}_8)_j^l (P^{\dagger})_m^m$$

$$+ (T-C-C'-2E_{1S})(\mathcal{B}_c)_i (H_{\overline{6}})_m^{jl} (\overline{\mathcal{B}}_8)_j^i (P^{\dagger})_l^m - C'(\mathcal{B}_c)_i (H_{\overline{6}})_m^{ij} (\overline{\mathcal{B}}_8)_j^l (P^{\dagger})_l^m$$

$$+ (E_{1A} - E_{1S} - E_3)(\mathcal{B}_c)_i (H_{\overline{6}})_j^{il} (\overline{\mathcal{B}}_8)_m^j (P^{\dagger})_l^m + 2E_{1S}(\mathcal{B}_c)_i (H_{\overline{6}})_m^{jl} (\overline{\mathcal{B}}_8)_j^m (P^{\dagger})_l^i$$

$$\mathcal{A}_{\text{TDA}}^{\lambda_b} = \tilde{b}_1(\mathcal{B}_c)_i (H_3)^j (\overline{\mathcal{B}}_8)_j^i (P^{\dagger})_l^l + \tilde{b}_2(\mathcal{B}_c)_i (H_3)^j (\overline{\mathcal{B}}_8)_j^l (P^{\dagger})_l^i + \tilde{b}_3(\mathcal{B}_c)_i (H_3)^i (\overline{\mathcal{B}}_8)_j^l (P^{\dagger})_l^j + \tilde{b}_4(\mathcal{B}_c)_i (H_3)^l (\overline{\mathcal{B}}_8)_j^i (P^{\dagger})_l^j + \tilde{b}_5(\mathcal{B}_c)_i (H_{15^b})_l^{jk} (\overline{\mathcal{B}}_8)_j^i (P^{\dagger})_k^l,$$

IRA

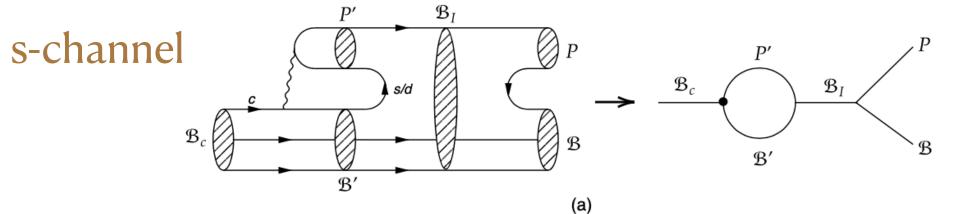
 $ilde{b}_1 = ilde{f}_3^a, \qquad ilde{b}_2 = ilde{f}_3^b, \qquad ilde{b}_3 = ilde{f}_3^c, \ ilde{b}_4 = ilde{f}_3^d, \qquad ilde{b}_5 = ilde{f}^e.$

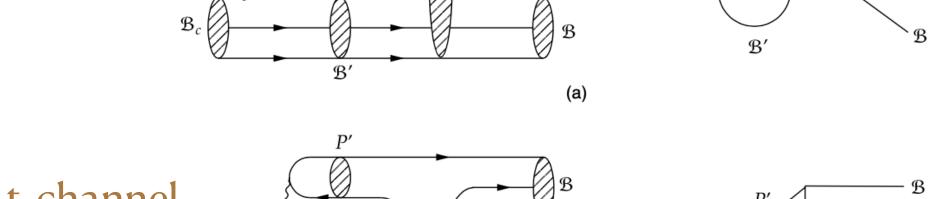
$$\mathcal{A}_{\mathrm{IRAb}}^{\mathrm{tree}} = \tilde{f}^{a} \left(\overline{\mathcal{B}}_{c}\right)^{ik} \left(H_{\overline{6}}\right)_{ij} \left(\mathcal{B}_{8}\right)_{k}^{j} \left(P^{\dagger}\right)_{l}^{l} + \tilde{f}^{b} \left(\mathcal{B}_{c}\right)^{ik} \left(H_{\overline{6}}\right)_{ij} \left(\overline{\mathcal{B}}_{8}\right)_{k}^{l} \left(P^{\dagger}\right)_{l}^{j} + \tilde{f}^{c} \left(\mathcal{B}_{c}\right)^{ik} \left(H_{\overline{6}}\right)_{ij} \left(\overline{\mathcal{B}}_{8}\right)_{l}^{j} \left(P^{\dagger}\right)_{k}^{l} + \tilde{f}^{e} \left(\mathcal{B}_{c}\right)_{i} \left(H_{15}\right)_{l}^{ik} \left(\overline{\mathcal{B}}_{8}\right)_{i}^{j} \left(P^{\dagger}\right)_{k}^{l}, \qquad \text{C.Q. Geng, X.G. He, X.N. Jin}$$

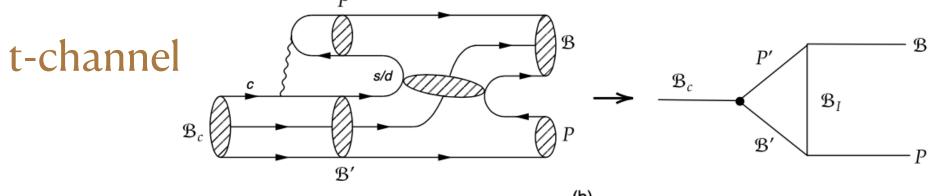
C.Q. Geng, X.G. He, X.N. Jin, C.W. Liu and C. Yang, PRD 109, L071302

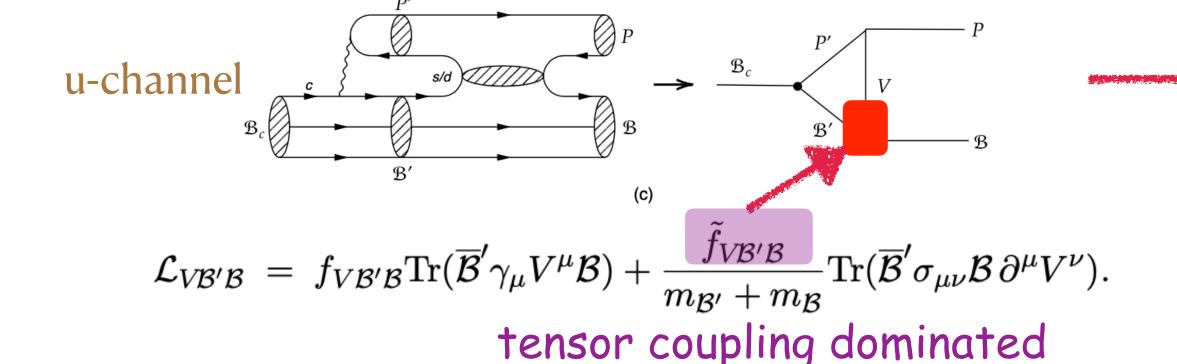
$$\mathcal{A}_{\mathrm{IRAb}}^{\lambda_{b}} = \tilde{f}_{3}^{a}(\mathcal{B}_{c})_{i} (H_{3})^{j} (\overline{\mathcal{B}}_{8})_{j}^{i} (P^{\dagger})_{k}^{k} + \tilde{f}_{3}^{b}(\mathcal{B}_{c})_{k} (H_{3})^{i} (\overline{\mathcal{B}}_{8})_{i}^{l} (P^{\dagger})_{l}^{k} + \tilde{f}_{3}^{c}(\mathcal{B}_{c})_{i} (H_{3})^{i} (\overline{\mathcal{B}}_{8})_{j}^{l} (P^{\dagger})_{l}^{j} + \tilde{f}^{e}(\mathcal{B}_{c})_{i} (H_{15^{b}})_{l}^{jk} (\overline{\mathcal{B}}_{8})_{j}^{i} (P^{\dagger})_{k}^{l}.$$

$$+ \tilde{f}_{3}^{d}(\mathcal{B}_{c})_{i} (H_{3})^{l} (\overline{\mathcal{B}}_{8})_{j}^{i} (P^{\dagger})_{l}^{j} + \tilde{f}^{e}(\mathcal{B}_{c})_{i} (H_{15^{b}})_{l}^{jk} (\overline{\mathcal{B}}_{8})_{j}^{i} (P^{\dagger})_{k}^{l}.$$


$$\times \text{G. He, C.W. Liu, Sci. Bull. 70 (2025) 2598}$$


FINAL-STATE RESCATTERING


Factorizable contribution:
$$\mathcal{L}_{\mathcal{B}_c\mathcal{B}P} = \sum_{P,R,R} F_{\mathcal{B}_c\mathcal{B}P} P^{\dagger} \overline{\mathcal{B}} \mathcal{B}_c = (P^{\dagger})^k_j (\overline{\mathcal{B}})^l_i \left(\tilde{F}^+_V (H_+)^{ij}_k + \tilde{F}^-_V (H_-)^{ij}_k \right) (\mathcal{B}_c)_l,$$


X.G. He, C.W. Liu, Sci. Bull. 70 (2025) 2598

Non-factorizable contribution: FSR

$$A^{s} = S^{-} \left[-\frac{1}{3} (r_{-} + 4) \tilde{f}^{b} - \frac{1}{3} (r_{-}^{2} + 4r_{-}) \tilde{f}^{c} - \frac{1}{6} (7r_{-} - 2) \tilde{f}_{3}^{b} + \frac{1}{18} (r_{-} + 1) (7r_{-} - 2) \tilde{f}_{3}^{c} - \frac{1}{6} r_{-} (7r_{-} - 2) \tilde{f}_{3}^{d} \right],$$

$$\begin{split} A^t &= \sum_{\lambda = \pm} T_{\lambda}^{-} \left[-\frac{1}{9} (2r_{\lambda}^2 + 4r_{\lambda} + 11) \tilde{f}^a + \frac{1}{3} (2r_{\lambda}^2 - r_{\lambda}) \tilde{f}^b + \frac{1}{3} (r_{\lambda}^2 - 2r_{\lambda} + 3) \tilde{f}^c \right. \\ &+ \frac{1}{3} (2r_{\lambda}^2 - 2r_{\lambda} - 4) \tilde{f}^d - \frac{1}{18} (10r_{\lambda}^2 + 2r_{\lambda} + 1) \tilde{f}_3^a + \frac{1}{3} (r_{\lambda}^2 - \frac{5}{2} r_{\lambda} + 1) \tilde{f}_3^b \\ &- \frac{1}{18} (r_{\lambda}^2 + 11r_{\lambda} + 1) \tilde{f}_3^c + \frac{1}{6} (r_{\lambda} + 1)^2 \tilde{f}_3^d \right], \end{split}$$

$$A^{u} = U^{-} \left[\frac{2}{3} (1 - 2\rho_{+}) \tilde{f}^{b} + \tilde{f}^{d} - \frac{1}{2} \tilde{f}_{3}^{a} + \frac{1}{6} (1 + 2\rho_{+}) \tilde{f}_{3}^{b} - \frac{1}{18} (1 + 10\rho_{+}) \tilde{f}_{3}^{c} + \frac{1}{6} (1 - 2\rho_{+}) \tilde{f}_{3}^{d} \right],$$

H.Y. Cheng, FX, H.L. Zhong, PRD 112 (2025) 5, 054022

- 1. LCSR indicates tensor coupling one order of magnitude larger T.M. Aliev et. al., PRD 80 (2009), 016010
- 2. Realistic calculation in $B_c \to BV$ implies two traces are of the same order C. P. Jia et. al., JHEP 11, 072 (2024)

MATCHING FSR & IRA (TDA)

 $\tilde{f}^b = \tilde{F}_V^- - (r_- + 4)S^- - 2(2\rho_+ - 1)U^- + (2r_-^2 - r_-)T^-,$

$$A^{\text{FSR}} = A^{\text{IRA}}$$

 $\tilde{f}^a = -\frac{1}{2}(2r_-^2 + 4r_- + 11)T^-$

$$\begin{split} \tilde{f}^c &= -r_-(r_- + 4)S^- + (r_-^2 - 2r_- + 3)T^-, \\ \tilde{f}^d &= \tilde{F}_V^- + 3U^- + (2r_-^2 - 2r_- - 4)T^-, \\ \tilde{f}^e &= \tilde{F}_V^+, \\ \tilde{f}^a_3 &= \frac{1}{4}(-\tilde{F}_V^+ + 2\tilde{F}_V^-) - \frac{3}{2}U^- - \frac{1}{6}(10r_-^2 + 2r_- + 1)T^-, \\ \tilde{f}^b_3 &= -\frac{1}{2}(7r_- - 2)S^- + \frac{1}{2}(1 + 2\rho_+)U^- + \frac{1}{2}(2r_-^2 - 5r_- + 2)T^-, \\ \tilde{f}^c_3 &= \frac{1}{6}(r_- + 1)(7r_- - 2)S^- - \frac{1}{6}(r_-^2 + 11r_- + 1)T^- - \frac{1}{6}(10\rho_+ + 1)U^-, \\ \tilde{f}^d_3 &= -\frac{1}{4}(\tilde{F}_V^+ + 2\tilde{F}_V^-) - \frac{1}{2}r_-(7r_- - 2)S^- + \frac{1}{2}U^- + \frac{1}{2}(r_- + 1)^2T^-, \end{split}$$

$$r_- = r_+ = 2.5 \pm 0.8$$
 X.G. He, C.W. Liu, Sci. Bull. 70 (2025) 2598

$$ilde{
ho}_{+} = -21$$
 T.M. Aliev et. al., PRD 80 (2009), 016010

$$A^{\text{FSR}} = A^{\text{TDA}}$$

$$\begin{split} \tilde{T} &= \frac{1}{2} (\tilde{F}_V^+ + \tilde{F}_V^-) - \frac{1}{2} (r_- + 4) S^- + \frac{1}{2} (2r_-^2 - r_-) T^- - (2\rho_+ - 1) U^-, \\ \tilde{C} &= \frac{1}{2} (\tilde{F}_V^+ - \tilde{F}_V^-) + \frac{1}{2} (r_- + 4) S^- - \frac{1}{2} (2r_-^2 - r_-) T^- + (2\rho_+ - 1) U^-, \\ \tilde{C}' &= -(r_- + 4) S^- + (r_- + 4) T^- - (4\rho_+ + 1) U^-, \\ \tilde{E}_1 &= r_- (r_- + 4) S^- - (r_-^2 - 2r_- + 3) T^-, \\ \tilde{E}_h &= -\frac{1}{3} (2r_-^2 + 4r_- + 11) T^-, \end{split}$$

$$\begin{split} \tilde{b}_1 &= \frac{1}{4} (-\tilde{F}_V^+ + 2\tilde{F}_V^-) - \frac{1}{6} (10r_-^2 + 2r_- + 1)T^- - \frac{3}{2}U^-, \\ \tilde{b}_2 &= -\frac{1}{2} (7r_- - 2)S^- + \frac{1}{2} (2r_-^2 - 5r_- + 2)T^- + \frac{1}{2} (2\rho_+ + 1)U^-, \\ \tilde{b}_3 &= \frac{1}{6} (r_- + 1)(7r_- - 2)S^- - \frac{1}{6} (r_-^2 + 11r_- + 1)T^- - \frac{1}{6} (10\rho_+ + 1)U^-, \\ \tilde{b}_4 &= -\frac{1}{4} (\tilde{F}_V^+ + 2\tilde{F}_V^-) - \frac{1}{2} r_- (7r_- - 2)S^- + \frac{1}{2} (r_- + 1)^2 T^- + \frac{1}{2} U^-, \end{split}$$

FIT STRATEGY

• Experimental inputs: 44 BFs and Lee-Yang parameters (updated to 2025/03)

$$\mathcal{B}(\Xi_c^+ \to \Sigma^+ K_S^0) = (1.94 \pm 0.90) \times 10^{-3},$$
 $\mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+) = (7.19 \pm 3.23) \times 10^{-3},$ Belle and Belle-II, JHEP08 (2025) 195;2503.17643 $\mathcal{B}(\Xi_c^+ \to \Xi^0 K^+) = (4.9 \pm 2.3) \times 10^{-4}.$

 To fit 19 parameters corresponding to 5 sets of parameters tree level topological diagrams

$$|\tilde{T}|_S e^{i\delta_S^{\tilde{T}}}, \quad |\tilde{C}|_S e^{i\delta_S^{\tilde{C}}}, \quad |\tilde{C}'|_S e^{i\delta_S^{\tilde{C}}'}, \quad |\tilde{E}_1|_S e^{i\delta_S^{\tilde{E}_1}}, \quad |\tilde{E}_h|_S e^{i\delta_S^{\tilde{E}_h}},$$
 $|\tilde{T}|_P e^{i\delta_P^{\tilde{T}}}, \quad |\tilde{C}|_P e^{i\delta_P^{\tilde{C}}}, \quad |\tilde{C}'|_P e^{i\delta_P^{\tilde{C}}'}, \quad |\tilde{E}_1|_P e^{i\delta_P^{\tilde{E}_1}}, \quad |\tilde{E}_h|_P e^{i\delta_P^{\tilde{E}_h}},$

• To extract 5 sets of FSR parameters (F^+, F^-, S^-, T^-, U^-) and penguin coefficients

$$|\tilde{b}_{1}|_{S}e^{i\delta_{S}^{\tilde{b}_{1}}}, \quad |\tilde{b}_{2}|_{S}e^{i\delta_{S}^{\tilde{b}_{2}}}, \quad |\tilde{b}_{3}|_{S}e^{i\delta_{S}^{\tilde{b}_{3}}}, \quad |\tilde{b}_{4}|_{S}e^{i\delta_{S}^{\tilde{b}_{4}}}, \\ |\tilde{b}_{1}|_{P}e^{i\delta_{P}^{\tilde{b}_{1}}}, \quad |\tilde{b}_{2}|_{P}e^{i\delta_{P}^{\tilde{b}_{2}}}, \quad |\tilde{b}_{3}|_{P}e^{i\delta_{P}^{\tilde{b}_{3}}}, \quad |\tilde{b}_{4}|_{P}e^{i\delta_{P}^{\tilde{b}_{4}}}.$$

INPUTS

Observable	PDG [55]	BESIII	Belle	LHCb	Average
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+)$	1.29 ± 0.05				1.29 ± 0.05
$10^2\mathcal{B}(\Lambda_c^+ \to \Sigma^0\pi^+)$	1.27 ± 0.06				1.27 ± 0.06
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)$	1.24 ± 0.09				1.24 ± 0.09
$10^2\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)$	0.32 ± 0.05				0.32 ± 0.05
$10^2\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')$	0.41 ± 0.08				0.41 ± 0.08
$10^2\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$	0.55 ± 0.07				0.55 ± 0.07
$10^4 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+)$	6.42 ± 0.31				6.42 ± 0.31
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$	3.70 ± 0.31				3.70 ± 0.31
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S)$	4.7 ± 1.4				4.7 ± 1.4
$10^4 \mathcal{B}(\Lambda_c^+ \to n\pi^+)$	6.6 ± 1.3				6.6 ± 1.3
$10^4 \mathcal{B}(\Lambda_c^+ \to p\pi^0)$	< 0.8	$1.56^{+0.75}_{-0.61}$			$1.56^{+0.75}_{-0.61}$
$10^2 \mathcal{B}(\Lambda_c^+ \to p K_S)$	1.59 ± 0.07	-0.01			1.59 ± 0.07
$10^3 \mathcal{B}(\Lambda_c^+ \to p \eta)$	1.57 ± 0.12	1.63 ± 0.33			1.58 ± 0.11
$10^4 \mathcal{B}(\Lambda_c^+ \to p \eta')$	4.8 ± 0.9				4.8 ± 0.9
$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	1.43 ± 0.27		1.80 ± 0.52		1.80 ± 0.52
$10^2 \frac{\mathcal{B}(\Xi_c^0 \to \Xi^- K^+)}{\mathcal{B}(\Xi^0 \to \Xi^- \pi^+)}$	2.75 ± 0.57				2.75 ± 0.57
$10^2 \frac{\mathcal{B}(\Xi_c^0 \to \Lambda K_S^0)}{\mathcal{B}(\Xi_c^0 \to \Xi_c \to +)}$	22.5 ± 1.3				22.5 ± 1.3
$10^{2} \frac{\mathcal{B}(\Xi_{c}^{0} \to \Sigma^{0} K_{S}^{0})}{\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-} \pi^{+})}$	3.8 ± 0.7				3.8 ± 0.7
$10^2 \frac{\mathcal{B}(\Xi_c^0 \to \Sigma^+ K^-)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	12.3 ± 1.2				12.3 ± 1.2
$10^3\mathcal{B}(\Xi_c^0\to\Xi^0\pi^0)$			6.9 ± 1.6		6.9 ± 1.6
$10^3\mathcal{B}(\Xi_c^0\to\Xi^0\eta)$			1.6 ± 0.5		1.6 ± 0.5
$10^3 \mathcal{B}(\Xi_c^0 \to \Xi^0 \eta')$			1.2 ± 0.4		1.2 ± 0.4
$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+)$	1.6 ± 0.8		$0.719 \pm 0.323 \; [24]$		0.84 ± 0.48
$\alpha(\Lambda_c^+ \to \Lambda^0 \pi^+)$	-0.755 ± 0.006			-0.782 ± 0.010	-0.762 ± 0.006
$\alpha(\Lambda_c^+ \to \Sigma^0 \pi^+)$	-0.466 ± 0.018				-0.466 ± 0.018
$\alpha(\Lambda_c^+ \to pK_S)$	0.18 ± 0.45			-0.744 ± 0.015	-0.743 ± 0.028
$\alpha(\Lambda_c^+ \to \Sigma^+ \pi^0)$	-0.484 ± 0.027				-0.484 ± 0.027
$\alpha(\Lambda_c^+ \to \Sigma^+ \eta)$	-0.99 ± 0.06				-0.99 ± 0.06
$\alpha(\Lambda_c^+ \to \Sigma^+ \eta')$	-0.46 ± 0.07				-0.46 ± 0.07
$\alpha(\Lambda_c^+ \to \Lambda^0 K^+)$	-0.585 ± 0.052			-0.569 ± 0.065	-0.579 ± 0.041
$\alpha(\Lambda_c^+ o \Sigma^0 K^+)$	-0.54 ± 0.20				-0.54 ± 0.20
$\alpha(\Lambda_c^+ \to \Xi^0 K^+)$		0.01 ± 0.16			0.01 ± 0.16
$\alpha(\Xi_c^0 \to \Xi^- \pi^+)$	-0.64 ± 0.05				-0.64 ± 0.05
$\alpha(\Xi_c^0 \to \Xi^0 \pi^0)$			-0.90 ± 0.27		-0.90 ± 0.27
$\beta(\Lambda_c^+ \to \Lambda^0 \pi^+)$				0.368 ± 0.021	0.368 ± 0.021
$\beta(\Lambda_c^+ \to \Lambda^0 K^+)$				0.35 ± 0.13	0.35 ± 0.13
$\gamma(\Lambda_c^+ o \Lambda^0 \pi^+)$				0.502 ± 0.017	0.502 ± 0.017
$\gamma(\Lambda_c^+ o \Lambda^0 K^+)$				-0.743 ± 0.071	-0.743 ± 0.071
$10^2 \mathcal{B}(\Xi_c^+ \to \Sigma^+ K_S^0)$			0.194 ± 0.090 [24]		0.194 ± 0.090
$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+)$			$0.719 \pm 0.323 \; [24]$		0.719 ± 0.323
$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^0 K^+)$			0.049 ± 0.023 [24]		0.049 ± 0.023
$10^4 \mathcal{B}(\Xi_c^+ \to p K_S^0)$			7.16 ± 3.25 [25]		7.16 ± 3.25
$10^4 \mathcal{B}(\Xi_c^+ \to \Lambda \pi^+)$		2	84.52 ± 2.09 [25]		4.52 ± 2.09
$10^4 \mathcal{B}(\Xi_c^+ \to \Sigma^0 \pi^+)$			1.20 ± 0.55 [25]		1.20 ± 0.55

TABLE I: The decay amplitudes of SCS processes in the TDA.

Channel	$\widetilde{ ext{TDA}}$
$\Lambda_c^+ \to \Lambda K^+$	$\frac{1}{\sqrt{6}} [\frac{1}{2} (\lambda_d - \lambda_s) (4\tilde{T} - \tilde{C}' + 2\tilde{E}_1) + \lambda_b (\tilde{b}_2 - 2\tilde{b}_4 + \frac{1}{2}\tilde{b}_5)]$
$\Lambda_c^+ \to \Sigma^0 K^+$	$\frac{1}{\sqrt{2}} \left[\frac{1}{2} (\lambda_d - \lambda_s) \tilde{C}' + \lambda_b \tilde{b}_2 \right]$
$\Lambda_c^+ o \Sigma^+ K^0$	$rac{1}{2}(\lambda_d-\lambda_s) ilde{C}'+\lambda_b ilde{b}_2$
$\Lambda_c^+ o p \pi^0$	$\frac{1}{\sqrt{2}} [\frac{1}{2} (\lambda_d - \lambda_s) (-2\tilde{C} - \tilde{C}' - \tilde{E}_1) + \lambda_b (\tilde{b}_4 + \frac{3}{4} \tilde{b}_5)]$
$\Lambda_c^+ \to p\eta_8$	$\frac{1}{\sqrt{6}} \left[\frac{1}{2} (\lambda_d - \lambda_s) (6\tilde{C} + \tilde{C}' - \tilde{E_1}) + \lambda_b (-2\tilde{b}_2 + \tilde{b}_4 + \frac{3}{4}\tilde{b}_5) \right]$
$\Lambda_c^+ \to p \eta_1$	$\frac{1}{\sqrt{3}} [\frac{1}{2} (\lambda_d - \lambda_s) (\tilde{C}' - \tilde{E_1} + 3\tilde{E_h}) + \lambda_b (3\tilde{b}_1 + \tilde{b}_2 + \tilde{b}_4)]$
$\Lambda_c^+ \to n \pi^+$	$\frac{1}{2}(\lambda_d - \lambda_s)(2\tilde{T} - \tilde{C}' - \tilde{E}_1) + \lambda_b(\tilde{b}_4 - \frac{1}{4}\tilde{b}_5)$
$\Xi_c^0 \to \Lambda \pi^0$	$\frac{1}{2\sqrt{3}}[\frac{1}{2}(\lambda_d - \lambda_s)(-2\tilde{C} - 2\tilde{C}' + \tilde{E}_1) + \lambda_b(\tilde{b}_2 + \tilde{b}_4 + \frac{3}{4}\tilde{b}_5)]$
$\Xi_c^0 o \Lambda \eta_8$	$\frac{1}{6} \left[\frac{1}{2} (\lambda_d - \lambda_s) (6\tilde{C} + 3\tilde{E}_1) + \lambda_b (\tilde{b}_2 + 6\tilde{b}_3 + \tilde{b}_4 + \frac{3}{4}\tilde{b}_5) \right]$
$\Xi_c^0 o \Lambda \eta_1$	$\frac{1}{3\sqrt{2}} \left[\frac{1}{2} (\lambda_d - \lambda_s) (3\tilde{C}' - 3\tilde{E}_1 + 9\tilde{E}_h) + \lambda_b (3\tilde{b}_1 + \tilde{b}_2 + \tilde{b}_4) \right]$
$\Xi_c^0\to \Sigma^0\pi^0$	$\frac{1}{2}[\frac{1}{2}(\lambda_d - \lambda_s)(-2\tilde{C} - \tilde{E_1}) + \lambda_b(\tilde{b}_2 + 2\tilde{b}_3 + \tilde{b}_4 + \frac{3}{4}\tilde{b}_5)]$
$\Xi_c^0 o \Sigma^0 \eta_8$	$\frac{1}{2\sqrt{3}} \left[\frac{1}{2} (\lambda_d - \lambda_s) (6\tilde{C} + 2\tilde{C}' + \tilde{E}_1) + \lambda_b (\tilde{b}_2 + \tilde{b}_4 + \frac{3}{4} \tilde{b}_5) \right]$
$\Xi_c^0 o \Sigma^0 \eta_1$	$\frac{1}{\sqrt{6}} \left[\frac{1}{2} (\lambda_d - \lambda_s) (-\tilde{C}' + \tilde{E}_1 - 3\tilde{E}_h) + \lambda_b (3\tilde{b}_1 + \tilde{b}_2 + \tilde{b}_4) \right]$
$\Xi_c^0 \to \Sigma^+ \pi^-$	$\frac{1}{2}(\lambda_d-\lambda_s)(-\tilde{E_1})+\lambda_b(\tilde{b}_2+\tilde{b}_3)$
$\Xi_c^0 o \Sigma^- \pi^+$	$\frac{1}{2}(\lambda_d - \lambda_s)(2\tilde{T}) + \lambda_b(\tilde{b}_3 + \tilde{b}_4 - \frac{1}{4}\tilde{b}_5)$
$\Xi_c^0\to\Xi^0K^0$	$\frac{1}{2}(\lambda_d - \lambda_s)(-\tilde{C}' - \tilde{E}_1) + \lambda_b \tilde{b}_3$
$\Xi_c^0 \to \Xi^- K^+$	$\frac{1}{2}(\lambda_d - \lambda_s)(-2\tilde{T}) + \lambda_b(\tilde{b}_3 + \tilde{b}_4 - \frac{1}{4}\tilde{b}_5)$
$\Xi_c^0 o pK^-$	$\frac{1}{2}(\lambda_d - \lambda_s)\tilde{E_1} + \lambda_b(\tilde{b}_2 + \tilde{b}_3)$
$\Xi_c^0 o n \bar K^0$	$\frac{1}{2}(\lambda_d - \lambda_s)(\tilde{C}' + \tilde{E}_1) + \lambda_b \tilde{b}_3$
$\Xi_c^+ \to \Lambda \pi^+$	$\frac{1}{\sqrt{6}} \left[\frac{1}{2} (\lambda_d - \lambda_s) (-2\tilde{T} + 2\tilde{C}' - \tilde{E}_1) + \lambda_b (-\tilde{b}_2 - \tilde{b}_4 + \frac{1}{4} \tilde{b}_5) \right]$
$\Xi_c^+ \to \Sigma^0 \pi^+$	$\frac{1}{\sqrt{2}} \left[\frac{1}{2} (\lambda_d - \lambda_s) (2\tilde{T} + \tilde{E}_1) + \lambda_b (-\tilde{b}_2 + \tilde{b}_4 - \frac{1}{4} \tilde{b}_5) \right]$
$\Xi_c^+ \to \Sigma^+ \pi^0$	$\frac{1}{\sqrt{2}} \left[\frac{1}{2} (\lambda_d - \lambda_s) (2\tilde{C} - \tilde{E}_1) + \lambda_b (\tilde{b}_2 - \tilde{b}_4 - \frac{3}{4} \tilde{b}_5) \right]$
$\Xi_c^+ \to \Sigma^+ \eta_8$	$\frac{1}{\sqrt{6}} \left[\frac{1}{2} (\lambda_d - \lambda_s) (-6\tilde{C} - 2\tilde{C}' - \tilde{E}_1) + \lambda_b (-\tilde{b}_2 - \tilde{b}_4 - \frac{3}{4} \tilde{b}_5) \right]$
$\Xi_c^+ \to \Sigma^+ \eta_1$	$\frac{1}{\sqrt{3}} \left[\frac{1}{2} (\lambda_d - \lambda_s) (\tilde{C}' - \tilde{E}_1 + 3\tilde{E}_h) + \lambda_b (-3\tilde{b}_1 - \tilde{b}_2 - \tilde{b}_4) \right]$
$\Xi_c^+\to\Xi^0K^+$	$\frac{1}{2}(\lambda_d-\lambda_s)(2\tilde{T}-\tilde{C}'-\tilde{E}_1)+\lambda_b(-\tilde{b}_4+\frac{1}{4}\tilde{b}_5)$
$\Xi_c^+ o p \bar K^0$	$\frac{1}{2}(\lambda_d - \lambda_s)\tilde{C}' + \lambda_b(-\tilde{b}_2)$

FITTED PARAMETERS

	$ X_i _S$	$ X_i _P$	$\delta_S^{X_i}$	$\delta_P^{X_i}$	
	$(10^{-2}G_1$	$_{\mathrm{F}}~\mathrm{GeV}^{2})$	(in radian)		
$ ilde{T}$	4.31 ± 0.11	12.11 ± 0.31	_	2.39 ± 0.04	
$ ilde{C}$	3.23 ± 0.48	11.35 ± 0.93	3.10 ± 0.11	-0.72 ± 0.16	
$ ilde{C}'$	5.84 ± 0.35	17.74 ± 0.92	0.02 ± 0.04	2.27 ± 0.11	
$ ilde{E_1}$	2.79 ± 0.19	10.41 ± 0.47	-2.81 ± 0.06	1.83 ± 0.09	
$ ilde{E_h}$		13.26 ± 1.83	2.70 ± 0.11	-1.85 ± 0.20	
\tilde{F}_{V}^{+}	1.10 ± 0.43	0.83 ± 0.46	0.13 ± 0.35	2.01 ± 1.37	
\tilde{F}_{V}^{-}	0.48 ± 0.43	7.01 ± 1.79	0.69 ± 1.02	-2.81 ± 0.15	
S^-	0.12 ± 0.01	0.92 ± 0.05	-2.20 ± 0.11	1.66 ± 0.08	
T^-	0.39 ± 0.04	1.19 ± 0.16	-0.45 ± 0.11	1.29 ± 0.20	
U^-	0.04 ± 0.00	0.22 ± 0.01	0.17 ± 0.08	2.43 ± 0.08	
$ ilde{b}_1$	4.57 ± 0.78	16.04 ± 2.43	2.89 ± 0.13	-2.00 ± 0.18	
$ ilde{b}_2$	0.49 ± 0.11	10.00 ± 0.22	1.30 ± 0.25	-1.11 ± 0.07	
$ ilde{b}_3$	1.38 ± 0.30	10.89 ± 1.13	2.93 ± 0.19	2.47 ± 0.11	
$ ilde{b}_4$	3.16 ± 0.37	11.94 ± 0.93	0.23 ± 0.10	-0.96 ± 0.15	
$ ilde{b}_5$	1.10 ± 0.43	0.83 ± 0.46	0.13 ± 0.35	2.01 ± 1.37	

fit directly

	Case I	-	Case II		
	TDA	IRA	TDA	IRA	
$\overline{\chi^2}$	65.47	65.47	89.53	90.08	
$\chi^2/d.o.f.$	3.27	3.27	3.73	3.75	

$$|T^-| > |S^-| > |U^-|$$

- \triangleright S^- is not negligible
- U^- is not negligible: compensated by large ρ^+
- $ilde{b}_1$ is not negligible: hairpin is contained.

PREDICTION 1: CPV

TABLE III: The predicted CP observables calculated with $\rho_+ = -21$ and $r_- = 2.5$ in both TDA (upper) and IRA (lower).

$\Lambda_c^+ \to \Lambda^0 K^+$ $\Lambda_c^+ \to \Sigma^0 K^+$ $\Lambda_c^+ \to \Sigma^+ K_S$	0.64 ± 0.03 0.64 ± 0.03	0.49 ± 0.87	5.07 ± 2.27	0.90 1.0.09	0.00 0.00	W 00 1 4 0F
$\Lambda_c^+ o \Sigma^0 K^+$			0.01 - 2.21	-0.30 ± 0.83	6.89 ± 0.82	-7.66 ± 1.67
		0.49 ± 0.91	5.07 ± 2.30	-0.30 ± 0.87	6.89 ± 0.82	-7.66 ± 1.68
	0.39 ± 0.02	-1.33 ± 0.27	-1.04 ± 0.25	-1.73 ± 0.64	-4.68 ± 0.97	2.93 ± 0.50
$\Lambda_c^+ \to \Sigma^+ K_S$	0.39 ± 0.02	-1.33 ± 0.28	-1.04 ± 0.25	-1.73 ± 0.67	-4.68 ± 0.98	2.93 ± 0.50
$n_c \rightarrow \omega \cdot n_S$	0.39 ± 0.02	-1.33 ± 0.27	-1.04 ± 0.25	-1.73 ± 0.64	-4.68 ± 0.97	2.93 ± 0.50
	0.39 ± 0.02	-1.33 ± 0.28	-1.04 ± 0.25	-1.73 ± 0.67	-4.68 ± 0.98	2.93 ± 0.50
$\Lambda_c^+ \to p \pi^0$	0.19 ± 0.03	-7.88 ± 2.92	-0.86 ± 4.46	-13.13 ± 2.76	6.97 ± 9.17	-0.78 ± 2.09
$1_c \rightarrow pn$	0.19 ± 0.03	-7.88 ± 2.95	-0.86 ± 4.57	-13.13 ± 2.75	6.97 ± 9.78	-0.78 ± 2.21
$\Lambda_c^+ \to p \eta$	1.63 ± 0.09	2.55 ± 0.23	2.55 ± 0.58	2.54 ± 0.24	0.45 ± 0.31	-0.77 ± 0.44
$c \rightarrow p\eta$	1.63 ± 0.09	2.55 ± 0.22	2.55 ± 0.59	2.54 ± 0.24	0.45 ± 0.31	-0.77 ± 0.44
$\Lambda_c^+ \to p \eta'$	0.52 ± 0.08	-14.40 ± 1.26	-17.31 ± 4.08	-13.57 ± 1.78	-1.81 ± 2.62	-0.69 ± 2.33
$c \rightarrow p_{ij}$	0.52 ± 0.08	-14.40 ± 1.26	-17.31 ± 4.06	-13.57 ± 1.78	-1.81 ± 2.76	-0.69 ± 2.35
$\Lambda_c^+ \to n \pi^+$	0.61 ± 0.06	-5.16 ± 0.90	-0.65 ± 0.84	-17.36 ± 2.48	-5.55 ± 3.86	-2.99 ± 1.43
c - ren	0.61 ± 0.06	-5.16 ± 0.90	-0.65 ± 0.86	-17.36 ± 2.54	-5.55 ± 3.89	-2.99 ± 1.47
$\Xi_c^0 \rightarrow \Lambda^0 \pi^0$	0.07 ± 0.01	1.76 ± 2.31	0.92 ± 0.41	29.36 ± 57.57	51.88 ± 308.2	-23.28 ± 31.01
c / II n	0.07 ± 0.02	1.76 ± 2.32	0.92 ± 0.41	29.36 ± 57.67	51.88 ± 69.69	-23.28 ± 16.56
$\Xi_c^0 \to \Lambda^0 \eta$	0.40 ± 0.05	3.97 ± 0.79	1.79 ± 0.55	9.15 ± 2.95	-4.07 ± 0.87	3.52 ± 1.69
$c_c \to \Lambda \eta$	0.40 ± 0.05	3.97 ± 0.82	1.79 ± 0.54	9.15 ± 3.17	-4.07 ± 0.88	3.52 ± 1.71
$E_c^0 \to \Lambda^0 \eta'$	0.63 ± 0.08	-3.96 ± 0.38	-4.29 ± 1.00	-3.84 ± 0.61	0.32 ± 0.52	-0.51 ± 0.52
$L_c \to \Lambda^* \eta$	0.63 ± 0.08	-3.96 ± 0.38	-4.29 ± 1.01	-3.84 ± 0.62	0.32 ± 0.53	-0.51 ± 0.52
$E_c^0 \rightarrow \Sigma^0 \pi^0$	0.34 ± 0.03	-3.26 ± 0.72	-2.55 ± 0.68	-5.40 ± 2.71	-0.40 ± 0.58	-2.45 ± 2.90
$L_c \rightarrow L^-\pi^-$	0.34 ± 0.03	-3.26 ± 0.74	-2.55 ± 0.69	-5.40 ± 2.85	-0.40 ± 0.59	-2.45 ± 3.07
0 . 50	0.17 ± 0.03	11.58 ± 1.55	5.20 ± 1.37	16.52 ± 4.41	-0.60 ± 2.46	-14.72 ± 37.07
$\Sigma_c^0 \to \Sigma^0 \eta$	0.17 ± 0.03	11.58 ± 1.62	5.20 ± 1.41	16.52 ± 4.58	-0.60 ± 2.64	-14.72 ± 25.20
0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.18 ± 0.03	4.73 ± 0.96	5.56 ± 2.11	4.07 ± 1.86	-1.29 ± 1.72	0.54 ± 0.48
$_{c}^{0}\rightarrow\Sigma^{0}\eta^{\prime}$	0.18 ± 0.03	4.73 ± 0.96	5.56 ± 2.17	4.07 ± 1.98	-1.29 ± 1.79	0.54 ± 0.48
$c \to \Sigma^+ \pi^-$	0.26 ± 0.02	1.61 ± 1.04	-5.19 ± 1.02	5.64 ± 1.44	-41.25 ± 68.74	-1.19 ± 0.62
$c \rightarrow \Sigma \cdot \pi$	0.26 ± 0.02	1.61 ± 1.07	-5.19 ± 1.02	5.64 ± 1.52	-41.26 ± 361.3	-1.19 ± 0.64
0 \ \nabla - \pi - \pi +	1.80 ± 0.05	-1.63 ± 0.46	-1.47 ± 0.39	-1.80 ± 0.68	-1.28 ± 0.34	1.46 ± 0.30
$_{c}^{0}\rightarrow\Sigma^{-}\pi^{+}$	1.80 ± 0.05	-1.63 ± 0.47	-1.47 ± 0.40	-1.80 ± 0.70	-1.28 ± 0.34	1.46 ± 0.30
0 . \pi 0 \nu	0.38 ± 0.01	1.50 ± 0.50	-0.18 ± 1.31	1.81 ± 0.59	-5.86 ± 0.48	4.38 ± 1.48
$E_c^0 o \Xi^0 K_{S/I}$	0.38 ± 0.01	1.50 ± 0.53	-0.18 ± 1.32	1.81 ± 0.62	-5.86 ± 0.48	4.38 ± 1.48
0 . =- v+	1.31 ± 0.04	1.59 ± 0.43	1.47 ± 0.39	1.80 ± 0.68	1.32 ± 0.34	-1.43 ± 0.32
$_{c}^{0}\rightarrow\Xi^{-}K^{+}$	1.31 ± 0.04	1.59 ± 0.44	1.47 ± 0.40	1.80 ± 0.70	1.32 ± 0.34	-1.43 ± 0.32
0 <i>v</i> -	0.31 ± 0.02	-2.61 ± 1.11	5.19 ± 1.02	-5.64 ± 1.44	41.98 ± 67.85	2.19 ± 0.69
$c_c^0 \to pK^-$	0.31 ± 0.02	-2.61 ± 1.16	5.19 ± 1.02	-5.64 ± 1.52	41.98 ± 307.3	2.19 ± 0.71
0	0.83 ± 0.04	-1.67 ± 0.54	0.18 ± 1.31	-1.82 ± 0.59	6.03 ± 0.51	-4.21 ± 1.52
$_{c}^{0} \rightarrow nK_{S/L}$	0.83 ± 0.04	-1.67 ± 0.57	0.18 ± 1.32	-1.81 ± 0.62	6.02 ± 0.51	-4.21 ± 1.52
+0 +	0.21 ± 0.04	3.15 ± 3.95	1.26 ± 0.60	81.20 ± 171.2	62.14 ± 548.6	-53.44 ± 76.39
$E_c^+ \to \Lambda^0 \pi^+$	0.21 ± 0.04	3.15 ± 4.09	1.26 ± 0.59	81.20 ± 91.49	62.15 ± 180.3	-53.44 ± 188.1
± . \pu_+	3.16 ± 0.09	0.16 ± 0.65	-1.32 ± 0.81	0.56 ± 0.73	-3.66 ± 0.46	2.85 ± 0.47
$E_c^+ o \Sigma^0 \pi^+$	3.16 ± 0.09	0.16 ± 0.68	-1.32 ± 0.83	0.56 ± 0.76	-3.66 ± 0.46	2.85 ± 0.47
	2.57 ± 0.11	0.03 ± 0.74	-4.80 ± 2.96	0.65 ± 0.68	-6.20 ± 1.82	
$\Sigma_c^+ \to \Sigma^+ \pi^0$	2.57 ± 0.11	0.03 ± 0.73	-4.80 ± 2.96	0.65 ± 0.68	-6.20 ± 1.94	
4 . 54	1.02 ± 0.17	11.59 ± 1.55	5.20 ± 1.37	16.52 ± 4.41	-0.62 ± 2.45	-14.73 ± 37.07
$\Sigma_c^+ \to \Sigma^+ \eta$	1.02 ± 0.16	11.59 ± 1.62	5.20 ± 1.41	16.52 ± 4.58		-14.73 ± 25.21
	1.09 ± 0.17	4.73 ± 0.96	5.56 ± 2.11	4.07 ± 1.86	-1.29 ± 1.73	
$E_c^+ \to \Sigma^+ \eta^\prime$	1.09 ± 0.18	4.73 ± 0.96	5.56 ± 2.17	4.07 ± 1.98	-1.29 ± 1.79	
-0	1.15 ± 0.10	3.02 ± 0.73	0.65 ± 0.84	17.35 ± 2.48	7.70 ± 3.62	
$\Xi_c^+ \to \Xi^0 K^+$	1.15 ± 0.10	3.02 ± 0.73	0.65 ± 0.86	17.35 ± 2.53	7.70 ± 3.64	
	1.59 ± 0.08		-1.04 ± 0.25	-1.73 ± 0.64	-4.54 ± 1.07	
$\Xi_c^+ \to p K_{S/L}$	1.52 ± 0.08		0.1	-1.73 ± 0.67		

Large CPV modes: promising to be measured in STCF

$$\mathcal{A}_{CP}(\Lambda_c \to p\pi^0) = -(0.8 \pm 0.3) \times 10^{-3}, \quad \mathcal{A}_{CP}(\Lambda_c \to p\eta') = (1.4 \pm 0.1) \times 10^{-3},$$

 $\mathcal{A}_{CP}(\Xi_c^0 \to \Sigma^0 \eta) = (1.2 \pm 0.2) \times 10^{-3}, \quad \mathcal{A}_{CP}(\Xi_c^+ \to \Sigma^+ \eta) = (1.2 \pm 0.2) \times 10^{-3}.$

H.Y. Cheng, FX, H.L. Zhong, PRD 112 (2025) 5, 054022

STCF is capable of making judgements

$$\mathcal{A}_{CP}(\Xi_c^0 \to \Sigma^+ \pi^-) = (0.71 \pm 0.16) \times 10^{-3}, \quad \mathcal{A}_{CP}(\Xi_c^0 \to pK^-) = -(0.73 \pm 0.19) \times 10^{-3}$$

$$\mathcal{A}_{CP}(\Xi_c^0 \to \Sigma^+ \pi^-) = (1.77 \pm 0.29) \times 10^{-3}, \quad \mathcal{A}_{CP}(\Xi_c^0 \to pK^-) = -(1.48 \pm 0.28) \times 10^{-3}$$

Yang-He-Liu '25

PREDICTION 1: CPV

TABLE III: The predicted CP observables calculated with $\rho_{+} = -21$ and $r_{-} = 2.5$ in both TDA (upper) and IRA (lower).

$\Lambda_c^+ o \Lambda^\circ K^+$	$\frac{10^3 \mathcal{B}}{0.64 \pm 0.03}$	$10^4 A_{CP}$ 0.49 ± 0.87	$10^4 A_{CP}^S$	$10^4 A_{CP}^P$	$10^4 A_{\alpha}$	$10^4 R_{\beta}$
$\Lambda_c^+ o \Lambda^\circ K^+$	0.64 ± 0.03	0.49 ± 0.87		0.00 0.00	0.00 1.0.00	W 00 1 4 0W
_	0.04 0.00			-0.30 ± 0.83	6.89 ± 0.82	-7.66 ± 1.67
	0.64 ± 0.03	0.49 ± 0.91	5.07 ± 2.30	-0.30 ± 0.87	6.89 ± 0.82	-7.66 ± 1.68
$(+ \rightarrow)^{\circ}K^{+}$	0.39 ± 0.02	-1.33 ± 0.27	-1.04 ± 0.25	-1.73 ± 0.64	-4.68 ± 0.97	2.93 ± 0.50
	0.39 ± 0.02	-1.33 ± 0.28	-1.04 ± 0.25	-1.73 ± 0.67	-4.68 ± 0.98	2.93 ± 0.50
$(\top \rightarrow \Sigma^{\top} K c)$	0.39 ± 0.02	-1.33 ± 0.27	-1.04 ± 0.25	-1.73 ± 0.64	-4.68 ± 0.97	2.93 ± 0.50
	0.39 ± 0.02	-1.33 ± 0.28		-1.73 ± 0.67	-4.68 ± 0.98	2.93 ± 0.50
$\rightarrow n\pi^{\circ}$	0.19 ± 0.03	-7.88 ± 2.92		-13.13 ± 2.76	6.97 ± 9.17	-0.78 ± 2.09
	0.19 ± 0.03	-7.88 ± 2.95		-13.13 ± 2.75	6.97 ± 9.78	-0.78 ± 2.21
$c_c^+ \to p\eta$	1.63 ± 0.09	2.55 ± 0.23	2.55 ± 0.58	2.54 ± 0.24	0.45 ± 0.31	-0.77 ± 0.44
c Pi	1.63 ± 0.09	2.55 ± 0.22	2.55 ± 0.59	2.54 ± 0.24	0.45 ± 0.31	-0.77 ± 0.44
$a_c^+ o p \eta'$	0.52 ± 0.08	-14.40 ± 1.26	-17.31 ± 4.08	-13.57 ± 1.78	-1.81 ± 2.62	-0.69 ± 2.33
$c \rightarrow p\eta$	0.52 ± 0.08	-14.40 ± 1.26	-17.31 ± 4.06	-13.57 ± 1.78	-1.81 ± 2.76	-0.69 ± 2.35
$\Lambda_c^+ \to n\pi^+$	0.61 ± 0.06	-5.16 ± 0.90	-0.65 ± 0.84	-17.36 ± 2.48	-5.55 ± 3.86	-2.99 ± 1.43
c - mn	0.61 ± 0.06	-5.16 ± 0.90	-0.65 ± 0.86	-17.36 ± 2.54	-5.55 ± 3.89	-2.99 ± 1.47
$\Sigma_c^0 \to \Lambda^0 \pi^0$	0.07 ± 0.01	1.76 ± 2.31	0.92 ± 0.41	29.36 ± 57.57	51.88 ± 308.2	-23.28 ± 31.01
$L_c \to \Lambda^{\circ} \pi^{\circ}$	0.07 ± 0.02	1.76 ± 2.32	0.92 ± 0.41	29.36 ± 57.67	51.88 ± 69.69	-23.28 ± 16.56
0 . 40	0.40 ± 0.05	3.97 ± 0.79	1.79 ± 0.55	9.15 ± 2.95	-4.07 ± 0.87	3.52 ± 1.69
$C_c^0 \to \Lambda^0 \eta$	0.40 ± 0.05	3.97 ± 0.82	1.79 ± 0.54	9.15 ± 3.17	-4.07 ± 0.88	3.52 ± 1.71
0 . 40 /	0.63 ± 0.08	-3.96 ± 0.38	-4.29 ± 1.00	-3.84 ± 0.61	0.32 ± 0.52	-0.51 ± 0.52
$\Sigma^{\circ} \to \Lambda^{\circ} \eta^{\circ}$	0.63 ± 0.08	-3.96 ± 0.38	-4.29 ± 1.01	-3.84 ± 0.62	0.32 ± 0.53	-0.51 ± 0.52
	0.34 ± 0.03	-3.26 ± 0.72	-2.55 ± 0.68	-5.40 ± 2.71	-0.40 ± 0.58	-2.45 ± 2.90
$\Sigma^{0} \rightarrow \Sigma^{0} \pi^{0}$	0.34 ± 0.03	-3.26 ± 0.74	-2.55 ± 0.69	-5.40 ± 2.85	-0.40 ± 0.59	-2.45 ± 3.07
	0.17 ± 0.03	11.58 ± 1.55	5.20 ± 1.37	16.52 ± 4.41		-14.72 ± 37.07
$\sim \rightarrow \sim n$	0.17 ± 0.03	11.58 ± 1.62	5.20 ± 1.41	16.52 ± 4.58		-14.72 ± 25.20
	0.18 ± 0.03	4.73 ± 0.96	5.56 ± 2.11	4.07 ± 1.86	-1.29 ± 1.72	0.54 ± 0.48
$\sim \rightarrow \sim \sim$	0.18 ± 0.03	4.73 ± 0.96	5.56 ± 2.17	4.07 ± 1.98	-1.29 ± 1.79	0.54 ± 0.48
	0.26 ± 0.02	1.61 ± 1.04	-5.19 ± 1.02		-41.25 ± 68.74	-1.19 ± 0.62
$\rightarrow \rightarrow \uparrow \uparrow \pi$	0.26 ± 0.02	1.61 ± 1.07	-5.19 ± 1.02		-41.26 ± 361.3	-1.19 ± 0.64
	1.80 ± 0.05	-1.63 ± 0.46	-1.47 ± 0.39	-1.80 ± 0.68		1.46 ± 0.30
$^{\circ} \rightarrow \Sigma^{-}\pi^{+}$					-1.28 ± 0.34	1.46 ± 0.30
		1.50 ± 0.50		1.81 ± 0.59	-5.86 ± 0.48	4.38 ± 1.48
$_{c}^{0} ightarrow\Xi^{0}K_{S/L}$	0.38 ± 0.01	1.50 ± 0.53	-0.18 ± 1.32	1.81 ± 0.62	-5.86 ± 0.48	4.38 ± 1.48
	1.31 ± 0.04	1.59 ± 0.43	1.47 ± 0.39	1.80 ± 0.68	1.32 ± 0.34	-1.43 ± 0.32
$^{\circ} \rightarrow ^{\times} K$	1.31 ± 0.04 1.31 ± 0.04	1.59 ± 0.43 1.59 ± 0.44	1.47 ± 0.33 1.47 ± 0.40	1.80 ± 0.00 1.80 ± 0.70	1.32 ± 0.34 1.32 ± 0.34	-1.43 ± 0.32 -1.43 ± 0.32
	0.31 ± 0.04 0.31 ± 0.02	-2.61 ± 1.11	5.19 ± 1.02	-5.64 ± 1.44	41.98 ± 67.85	-1.43 ± 0.62 2.19 ± 0.69
$^{\circ} \rightarrow nK^{-}$						
	0.31 ± 0.02	-2.61 ± 1.16 -1.67 ± 0.54	5.19 ± 1.02	-5.64 ± 1.52	41.98 ± 307.3	2.19 ± 0.71
nK_{GII}	0.83 ± 0.04		0.18 ± 1.31	-1.82 ± 0.59	6.03 ± 0.51	-4.21 ± 1.52
	0.83 ± 0.04	-1.67 ± 0.57	0.18 ± 1.32	-1.81 ± 0.62	6.02 ± 0.51	-4.21 ± 1.52
$C^{+} \rightarrow \Lambda^{\circ} \pi^{+}$	0.21 ± 0.04	3.15 ± 3.95		81.20 ± 171.2		-53.44 ± 76.39
	0.21 ± 0.04	3.15 ± 4.09		81.20 ± 91.49		-53.44 ± 188.1
$(T \rightarrow \Sigma)^{\alpha}\pi^{+}$	3.16 ± 0.09	0.16 ± 0.65	-1.32 ± 0.81	0.56 ± 0.73	-3.66 ± 0.46	2.85 ± 0.47
	3.16 ± 0.09	0.16 ± 0.68	-1.32 ± 0.83	0.56 ± 0.76	-3.66 ± 0.46	2.85 ± 0.47
$(\pm \rightarrow)(\pm \pi^{\circ})$	2.57 ± 0.11	0.03 ± 0.74	-4.80 ± 2.96	0.65 ± 0.68	-6.20 ± 1.82	
	2.57 ± 0.11	0.03 ± 0.73	-4.80 ± 2.96	0.65 ± 0.68	-6.20 ± 1.94	6.64 ± 4.66
$r \rightarrow r \rightarrow r$	1.02 ± 0.17	11.59 ± 1.55	5.20 ± 1.37	16.52 ± 4.41		-14.73 ± 37.07
	1.02 ± 0.16	11.59 ± 1.62	5.20 ± 1.41	16.52 ± 4.58		-14.73 ± 25.21
$(\top \rightarrow)(\top n)$	1.09 ± 0.17	4.73 ± 0.96	5.56 ± 2.11	4.07 ± 1.86	-1.29 ± 1.73	0.54 ± 0.48
	1.09 ± 0.18	4.73 ± 0.96	5.56 ± 2.17	4.07 ± 1.98	-1.29 ± 1.79	0.54 ± 0.48
$\Xi^{\circ}K^{\pm}$	1.15 ± 0.10	3.02 ± 0.73	0.65 ± 0.84	17.35 ± 2.48	7.70 ± 3.62	5.12 ± 1.62
c / L A	1.15 ± 0.10	3.02 ± 0.73	0.65 ± 0.86	17.35 ± 2.53	7.70 ± 3.64	5.12 ± 1.69
$\uparrow^{+} \rightarrow n K \alpha \alpha$	1.52 ± 0.08	-1.47 ± 0.39	-1.04 ± 0.25	-1.73 ± 0.64	-4.54 ± 1.07	3.07 ± 0.59
$-c \rightarrow p_{IS/L}$	1.52 ± 0.08	-1.47 ± 0.40	-1.04210.25	-1.73 ± 0.67	-4.54 ± 1.09	3.07 ± 0.59

Large CPV modes: promising to be measured in STCF

$$\mathcal{A}_{CP}(\Lambda_c \to p\pi^0) = -(0.8 \pm 0.3) \times 10^{-3}, \quad \mathcal{A}_{CP}(\Lambda_c \to p\eta') = (1.4 \pm 0.1) \times 10^{-3},$$

 $\mathcal{A}_{CP}(\Xi_c^0 \to \Sigma^0 \eta) = (1.2 \pm 0.2) \times 10^{-3}, \quad \mathcal{A}_{CP}(\Xi_c^+ \to \Sigma^+ \eta) = (1.2 \pm 0.2) \times 10^{-3}.$

- ► The large CPV modes containing one of the neutral pseudo- scalar, π^0 , η , η' , some of which indicate a significant role of hairpin diagram E_h .
- U-spin symmetry relation also observed as:

$$\mathcal{A}_{CP}(\Lambda_c^+ \to n\pi^+) = -\mathcal{A}_{CP}(\Xi_c^+ \to \Xi^0 K^+),$$

$$\mathcal{A}_{CP}(\Lambda_c^+ \to \Sigma^+ K_{S,L}) = -\mathcal{A}_{CP}(\Xi_c^+ \to p K_{S,L}),$$

$$\mathcal{A}_{CP}(\Xi_c^0 \to \Xi^0 K_{S,L}) = -\mathcal{A}_{CP}(\Xi_c^0 \to n K_{S,L}),$$

$$\mathcal{A}_{CP}(\Xi_c^0 \to \Sigma^- \pi^+) = -\mathcal{A}_{CP}(\Xi_c^0 \to \Xi^- K^+),$$

$$\mathcal{A}_{CP}(\Xi_c^0 \to \Sigma^+ \pi^-) = -\mathcal{A}_{CP}(\Xi_c^0 \to p K^-),$$

X.G. He, Y.J. Shi, W. Wang, EPJC 80 (2020), 359

D. Wang, EPJC 79 (2020), 429

PREDICTION II: STRONG PHASE

(1) two sets for amplitudes

BESIII, PRL 132 (2024), 031801 2309.02744

I.
$$\begin{cases} |A| = 1.6^{+1.9}_{-1.6} \pm 0.4, \\ |B| = 18.3 \pm 2.8 \pm 0.7, \end{cases}$$
 II.
$$\begin{cases} |A| = 4.3^{+0.7}_{-0.2} \pm 0.4, \\ |B| = 6.7^{+8.3}_{-6.7} \pm 1.6, \end{cases}$$

(2) ambiguity in sign of phase-shift

$$(\delta_S^{X_i}, \delta_P^{X_i}) o (-\delta_S^{X_i}, -\delta_P^{X_i})$$

$$\delta_P - \delta_S = -1.55 \pm 0.25 \pm 0.05$$
 or $1.59 \pm 0.25 \pm 0.05$ rad.

$$\Gamma = \frac{p_c}{8\pi} \frac{(m_i + m_f)^2 - m_P^2}{m_i^2} \left(|A|^2 + \kappa^2 |B|^2 \right)$$

$$\alpha = \frac{2\kappa |A^*B|\cos(\delta_P - \delta_S)}{|A|^2 + \kappa^2 |B|^2},$$

$$\gamma = \frac{|A|^2 - \kappa^2 |B|^2}{|A|^2 + \kappa^2 |B|^2},$$

 γ : relative size of partial waves

$$\beta = \frac{2\kappa |A^*B| \sin(\delta_P - \delta_S)}{|A|^2 + \kappa^2 |B|^2},$$

 β : relative sign of phase-shift

only had BF and lpha in 2024/01, could not solve the problems!

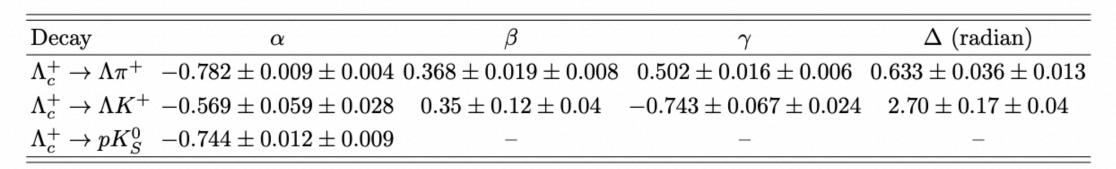
H. L. Zhong, FX, H.Y. Cheng, PRD 109 (2024), 114027; 2401.15926

PREDICTION II: STRONG PHASE

(1) two sets for amplitudes

I.
$$\begin{cases} |A| = 1.6^{+1.9}_{-1.6} \pm 0.4, \\ |B| = 18.3 \pm 2.8 \pm 0.7, \end{cases}$$

II.
$$\begin{cases} |A| = 4.3^{+0.7}_{-0.2} \pm 0.4, \\ |B| = 6.7^{+8.3}_{-6.7} \pm 1.6, \end{cases}$$


(2) sign ambiguity of phase-shift

$$(\delta_S^{X_i}, \delta_P^{X_i}) \rightarrow (-\delta_S^{X_i}, -\delta_P^{X_i})$$

$$\delta_P - \delta_S = -1.55 \pm 0.25 \pm 0.05$$
 or $1.59 \pm 0.25 \pm 0.05$ rad.

solution selected

LHCb, PRL 133 (2024), 261804 2409.02759

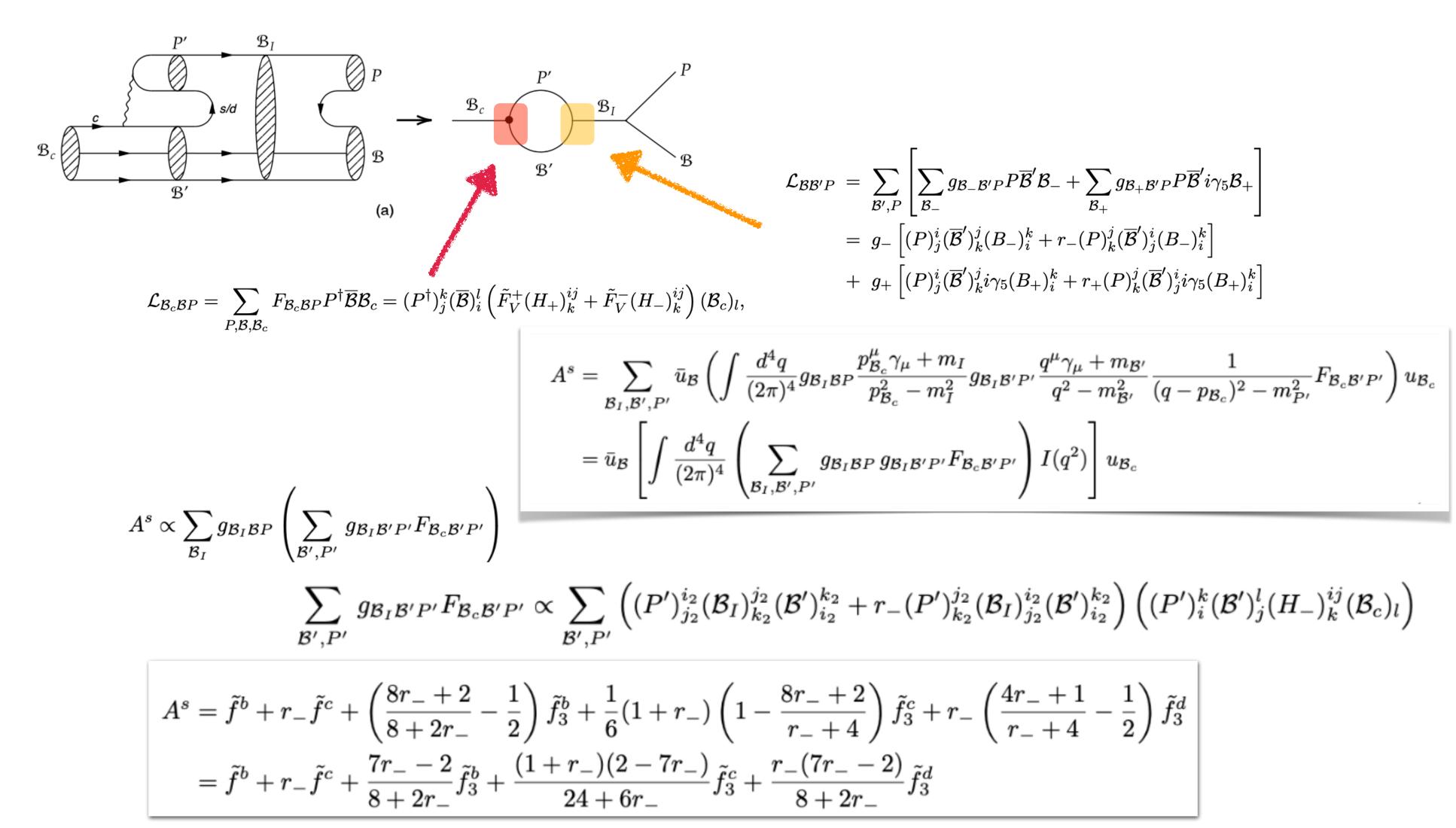
Fit 10/2024

$$|A| = 2.76 \pm 0.18, |B| = 9.71 \pm 0.47,$$

$$\alpha_{\Xi^0K^+} = -0.04 \pm 0.12,$$

$$\beta_{\Xi^0K^+} = -0.98 \pm 0.02$$

$$\delta_P - \delta_S = -1.61 \pm 0.12 \text{ rad}$$


H.Y. Cheng, FX, H. L. Zhong, PRD 111 (2025), 034011

SUMMARY

- TDA & IRA both work for CPV of charmed baryons.
- FSR u, s, t channels are calculated.
- FSR plays a role to connect tree and penguin parameters in TDA.
- CPV of about 30 channels are calculated, 4 of them found to have large CPV of $\mathcal{O}(10^{-3})$: $\Lambda_c \to p\pi^0, \Lambda_c \to p\eta, \Xi_c^0 \to \Sigma^0\eta, \Xi_c^+ \to \Sigma^+\eta$.
- The sign ambiguity of β , γ reported in BESIII has been clarified by recent precise measurement provided by LHCb.

Backup

AN EXAMPLE: S-CHANNEL CALCULATION

