



FTCF2025, Huangshan, China

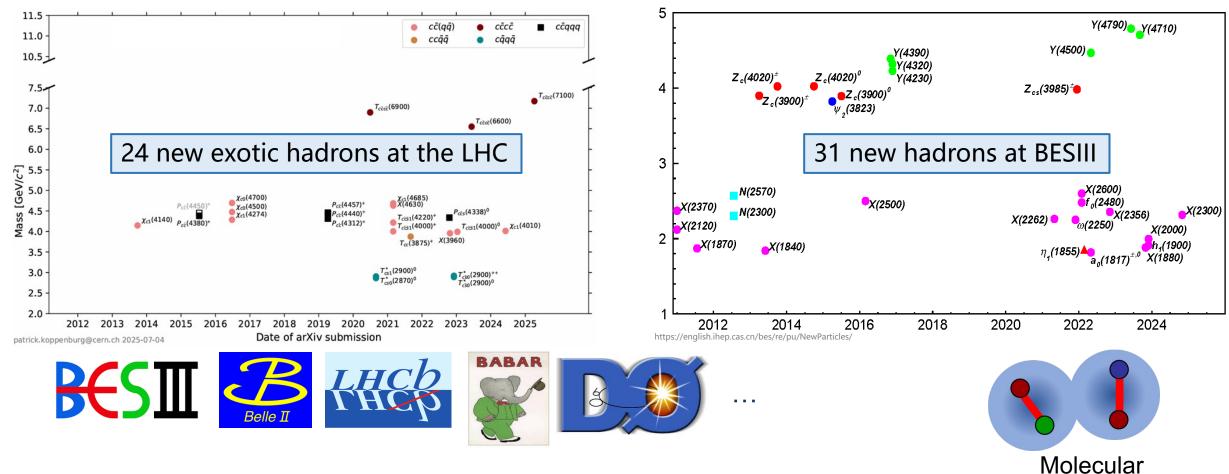
# Opportunities for detecting the P-wave $\overline{D}D^*/D\overline{D}^*$ resonance in STCF

Lu Meng (孟璐)

Southeast University

Nov. 25<sup>th</sup>, 2025

Based on Phys.Rev.Lett. 133 (2024), 241903 Together with Zi-Yang Lin, Jun-Zhang Wang, Jian-Bo Cheng, Shi-Lin Zhu




# **Background**

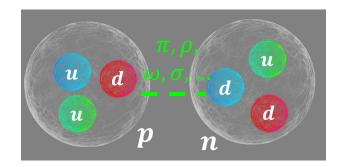


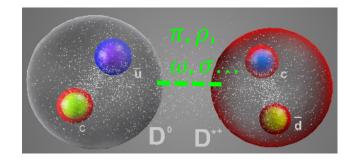
# **Experimental advances**





- More and more states composed of at least 4 or 5 (anti)quarks
- Multiquark states: Compact, or molecular or others?




# Three super "stars"



• Hadonic molecule: deuteron as a typical example

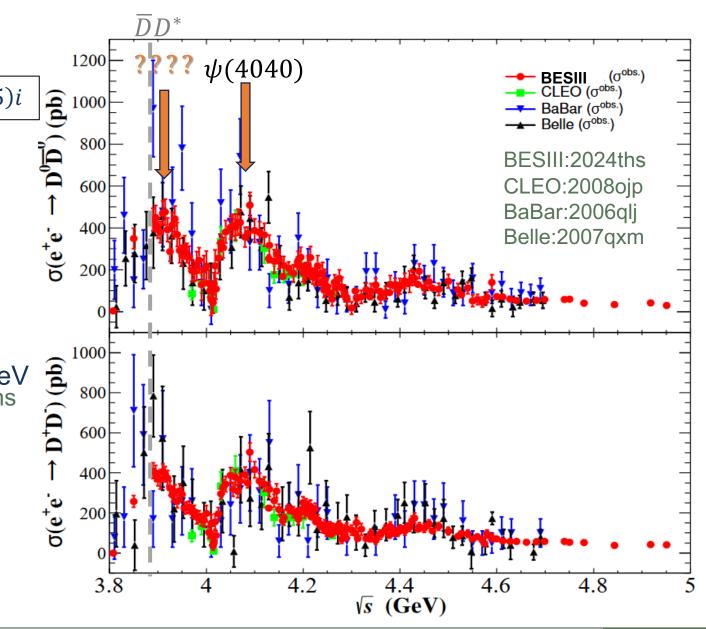




• Great interest in  $DD^*$  and  $\overline{D}D^*/D\overline{D}^*$  molecular states

|                | Quark                                                | $I^G(J^{PC})$ | Threshold                | <b>Δ</b> <i>M</i> [MeV]       | Γ [MeV]                   |  |
|----------------|------------------------------------------------------|---------------|--------------------------|-------------------------------|---------------------------|--|
|                | contents                                             |               |                          |                               |                           |  |
| X(3872)        | qācē/cē                                              | 0+(1++)       | $D^0\overline{D}{}^{0*}$ | $0.0068^{+0.1655}_{-0.17000}$ | $0.380^{+0.412}_{-0.322}$ |  |
|                | The 1st charmonium-like state                        |               |                          | BESIII:2023hml                |                           |  |
| $Z_c(3900)$    | $q\bar{q}c\bar{c}$ 1 <sup>+</sup> (1 <sup>+-</sup> ) |               | $D\overline{D}^*$        | 11.3 <u>±</u> 2.6             | 28.4 ± 2.6                |  |
|                | The 1st man                                          | ke state PDG  |                          |                               |                           |  |
| $T_{cc}(3875)$ | $\bar{q}\bar{q}cc$                                   | ?             | $D^{*+}D^{0}$            | $-0.360^{+0.040}_{-0.040}$    | $0.048^{+0.002}_{-0.014}$ |  |
|                | The 1st oper                                         | n double char | m tetraquark s           | tate LHCb:2021auc             |                           |  |




# **Experimental progress**



- An enhancement close to 3.9 GeV
  - ▶ Breit-Wigner fit:  $M + \Gamma/2$  (MeV)

$$(3872.5 \pm 14.2 \pm 3.0) + (89.9 \pm 7.5 \pm 3.5)i$$

- New  $D^*\overline{D}$  molecular states?
  - ightharpoonup Close to  $D^*\overline{D}$  threshold
  - ▶ Quantum number  $J^{PC} = 1^{--}$ , from virtual photon
  - ▶ P-wave  $D^*\overline{D}$  state?
- Cornell model: enhancement at 3.9 GeV Eichten: 1978tg, Eichten: 1979ms
- Belle and BaBar: G(3900)
  - ► Fit with a Gaussian function
  - ► Not regarded as a resonance BaBar:2006qlj, Belle:2007qxm
- More precise data from BESIII BESIII:2024ths



# **Breit-Wigner fit from BESIII**



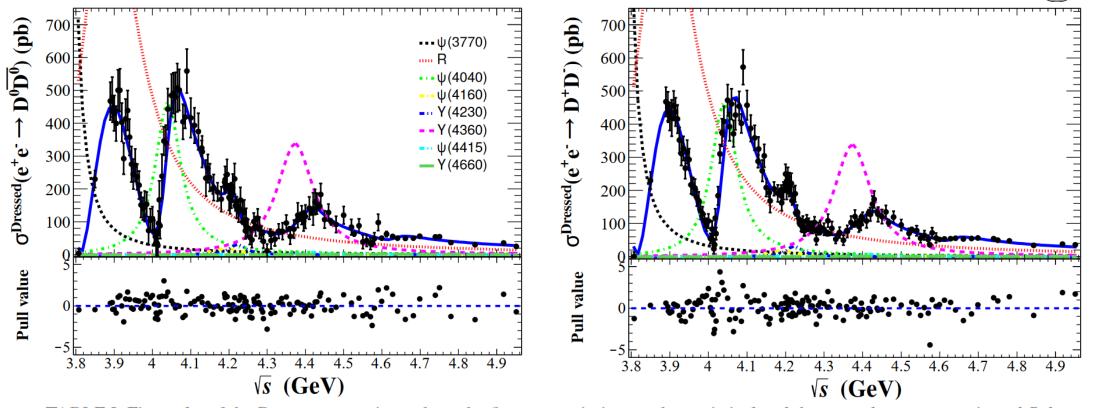


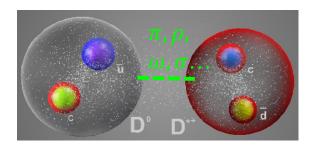

TABLE I. Fit results of the Born cross section, where the first uncertainties are the statistical and the second are systematic and S denotes the significance.

BESIII:2024ths

| $e^+e^- \to D\bar{D}$                            |               |                 |              |              |                |              |              |              |
|--------------------------------------------------|---------------|-----------------|--------------|--------------|----------------|--------------|--------------|--------------|
| Resonance                                        | $\psi(3770)$  | R               | $\psi(4040)$ | $\psi(4160)$ | Y(4230)        | Y(4360)      | $\psi(4415)$ | Y(4660)      |
| Mass (MeV/ $c^2$ )                               | 3773.7 (fixed | 3872.5±14.2±3.0 | 4039 (fixed) | 4191 (fixed) | 4222.5 (fixed) | 4374 (fixed) | 4421 (fixed) | 4630 (fixed) |
| Width (MeV/ $c^2$ )                              | 87.6 (fixed)  | 179.7±14.1±7.0  | 80 (fixed)   | 70 (fixed)   | 48 (fixed)     | 118 (fixed)  | 62 (fixed)   | 72 (fixed)   |
| $\Gamma_{ee}\mathcal{B}\left(\mathrm{eV}\right)$ | 95-106        | 202-292         | 41-44        | 1-2          | 1-2            | 50-144       | 0-2          | 0-1          |
| $\overline{S(\sigma)}$                           | 10            | > 20            | 13           | 7            | 11             | 11           | 4            | 8            |
| $\chi^2/\text{d.o.f} = 346/275$                  |               |                 | p-value :    | = 0.002      |                |              |              |              |



#### **Contents**




■ **Textbook**: Why do P-wave systems favor resonance formation?

**Model:** A unified framework explaining X(3872),  $Z_c(3900)$ ,  $T_{cc}(3875)$  and G(3900)

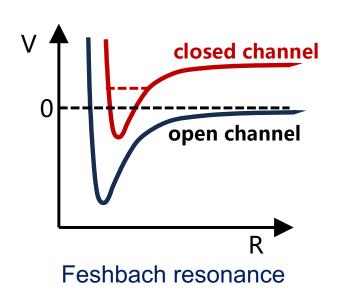
**Data:** Could the current data pin down the existence of G(3900)?

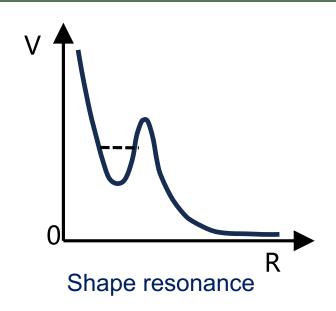
Predictions: Opportunity in STCF



P-wave







# P-wave resonance



#### Resonances







- Resonance: state with finite lifetime
- Feshbach resonance
  - ▶ E.g.  $P_c$  states could be bound states of  $\Sigma_c \overline{D}^{(*)}$
  - ► Considering the  $J/\psi p$  channel: resonance
- Shape resonance
  - ▶ Barrier
  - ► S-wave: ← potential with barrier, usually from nontrivial mechanism
  - ► Higher partial wave: centrifugal barrier
- Feshbach or shape? depending on schemes



#### From bound state to...



- For attractive potential giving bound state
  - $\triangleright V \rightarrow \lambda V$ , with  $\lambda > 0$ , decrease  $\lambda$

Taylor, scattering theory textbook sec. 13-b P245

Physical sheet l = 0Bound state E plane

Bound state

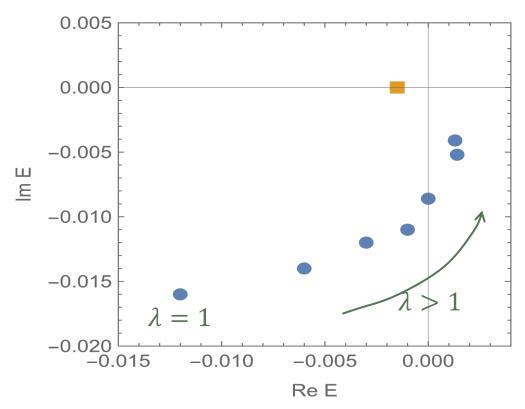
Virtual state

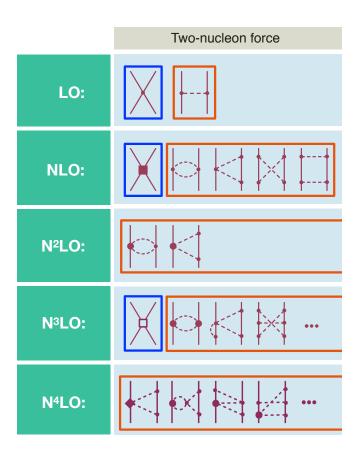
(a) E plane

Bound state

Resonance

Potential barrier: centrifugal barrier for *l*>0


- Resonance: very common in l > 0 system
  - ▶ attractive systems that are not strong enough to form a bound state.




# $^{3}P_{0}$ NN resonance pole



- ${}^{3}P_{0}$  *NN* resonance pole: -0.012 i0.016
  - ► Using high precision chiral nuclear force
  - ► Seldom investigated
  - ► Hard to detect: no lower coupled-channel









# **Dynamical model**



# **Dynamical model**




- Interactions: exchange:  $\pi$ ,  $\eta$ ,  $\rho$ ,  $\omega$ ,  $\sigma$ 
  - ► Success in high precision nuclear force

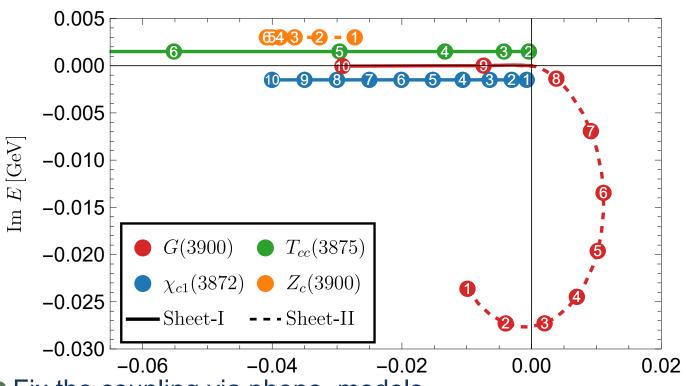
Machleidt:2000ge

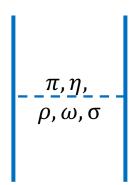
- ► S-wave and P-wave interactions are derived from the same Lagrangians
- ► G-parity rules (particle-particle ⇔ particle-antiparticle)








- ► OBE with Para. produce X(3872) well  $\overline{D}D^* \Rightarrow DD^*$
- ► Results: a *DD*\* bound state with binding energy about 300 keV
- Regulator and cutoff


$$V(p',p) \rightarrow V(p',p) \frac{\Lambda^2}{\Lambda^2 + p^2} \frac{\Lambda^2}{\Lambda^2 + p \prime^2}$$
, or  $V(p',p) \rightarrow V(p',p) \left(\frac{\Lambda^2 - u^2}{\Lambda^2 + q^2}\right)^2$ , or other options

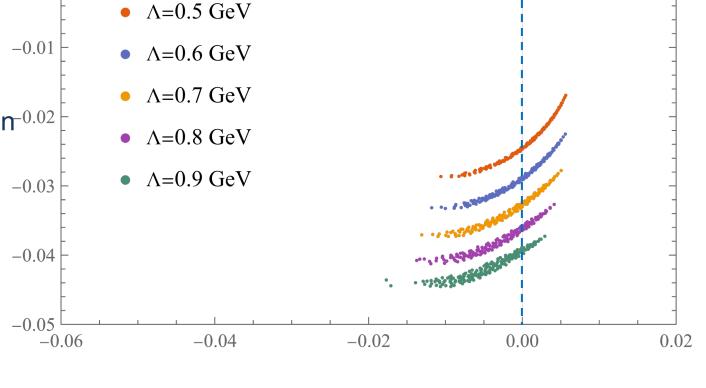


#### Scheme-I








- Fix the coupling via pheno. models
- Vary Λ from 0.4 to 1.3 GeV (①-⑩)
- Constrained by X(3872),  $Z_c(3900)$ , and  $T_{cc}(3875)$
- X(3872) and  $T_{cc}(3875)$ : bound states
- $Z_c(3900)$ : virtual state
- G(3900):  ${}^3P_1 D^* \overline{D} / \overline{D}^* D$  resonance

#### Scheme-II

0.00



- Refit 3 unknown coupling parameters
  - ▶ Bound state X(3872):  $-4\sim0$  MeV
  - ▶ Bound state  $T_{cc}(3875)$ :  $-4\sim0$  MeV
  - ► Virtual state  $Z_c(3900)$ :  $-35 \sim -15$   $^{-0.0}$  MeV
- For each cutoff, random pole positions in -0.02 above ranges
- Numerically obtain three coupling constants
- Calculate the 1<sup>--</sup>,  ${}^3P_1 D^* \overline{D} / \overline{D}^* D$  poles
- Existence of G(3900): robust
  - ► Different regulators
  - ▶ Vector-vector channel
  - ► 3-body effect



 $V_{OBE}$  constrained by X(3872),  $Z_c(3900)$ , and  $T_{cc}(3875)$  give rise to G(3900)





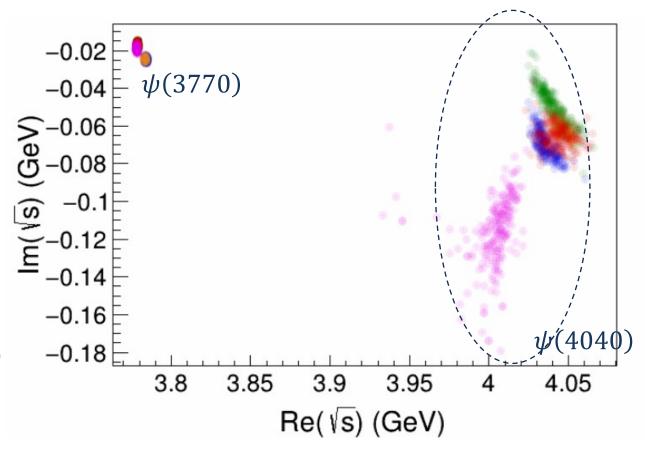
# What can the data tell us?



#### K-matrix formalism fit



- Data:  $e^+e^- \to D\overline{D}$ ,  $\overline{D}D^*$ ,  $D^*\overline{D}^*$  and hadrons
- K-matrix formalism


$$\mathcal{M}^{-1} = K^{-1} + C$$
, Im  $C(s) = -2\rho$ ,

$$C(s) = C(s_0) - \frac{s - s_0}{\pi} \int_{s_0}^{\infty} ds' \frac{\text{Im}C(s)}{(s' - s)(s' - s_0)} = 0.12$$

$$K = g^2$$

$$K = \frac{g^2}{m_R^2 - s} + f,$$

- 5 similar models (different colors in right fig)
- $\bullet$  G(3900) pole is not found



N. Hüsken, R. F. Lebed, R. E. Mitchell, E. S. Swanson, Y.-Q. Wang, and C.-Z. Yuan, Phys. Rev. D 109, 114010 (2024).

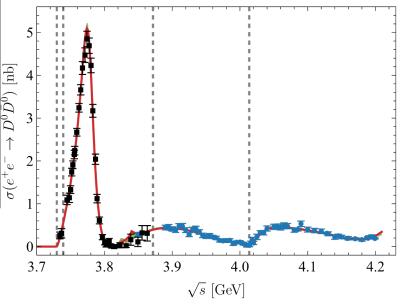
# **Our improvments**

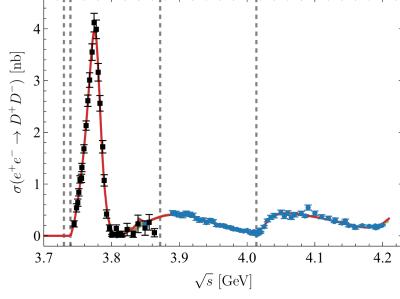


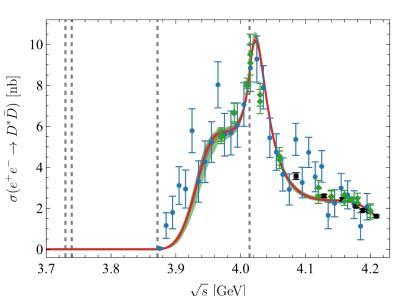
|   |   | Defects in [N. Hüsken et al]                                         | Possible consequence                                      | Our improvments                       |
|---|---|----------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|
|   | 1 | when $k^2 < 0$<br>In fit: Set $k = 0$<br>In searching pole: keep $k$ | Not consistent; @ function prevent analytial continuation | Always keep k                         |
|   | 2 | Using S-wave Chew-Mandelstam func. for P-wave system                 | Subtraction point dependence                              | Substraction-independence             |
| , | 3 | No searching for pole below threshod                                 | Might overlook some near threshold pole                   | Search pole below and above threshold |
| 4 | 4 | Gaussian regulator: $\exp[-z^2]$                                     | Amplification for very negative $k^2$                     | Blatt-Weisskopf: $1/(1+z^2)$          |

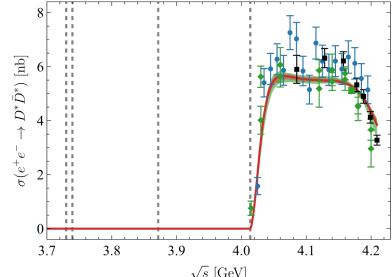


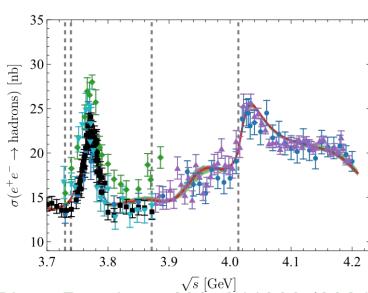
#### More details:


Supplemental Materials of Z.-Y. Lin, J.-Z. Wang, J.-B. Cheng, L. M, and S.-L. Zhu, Phys. Rev. Lett. **133**, 241903 (2024).





# Our fit in the K-matrix formalism

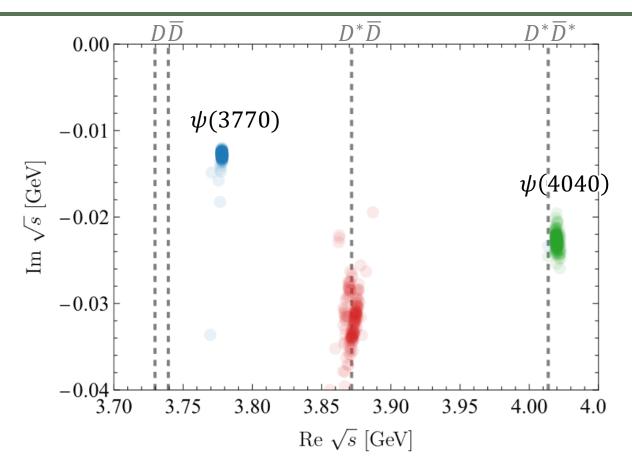




- Repair the three defects
- Fit the same data
- Our refit results
  - $\chi^2 / dof = 2.07$












 $\sqrt{s}$  [GeV] SMs of Z.-Y. Lin, J.-Z. Wang, J.-B. Cheng, L. M, and S.-L. Zhu, Phys. Rev. Lett. **133**, 241903 (2024).

### Our fit in the K-matrix formalism





Pole [MeV] 3869.2(67) - i29.0(52)



#### **LSE formalism**



- Lippmann-Schwinger equation formalism
- Heavy quark spin symmetry
- SU(3) flavor symmetry
- New data

$$\triangleright e^+e^- \rightarrow D\overline{D}, D\overline{D}^*, D^*\overline{D}^*, D_S\overline{D}_S, D_S\overline{D}_S^*, D_S^*\overline{D}_S^*$$

# Two solutions [MeV]

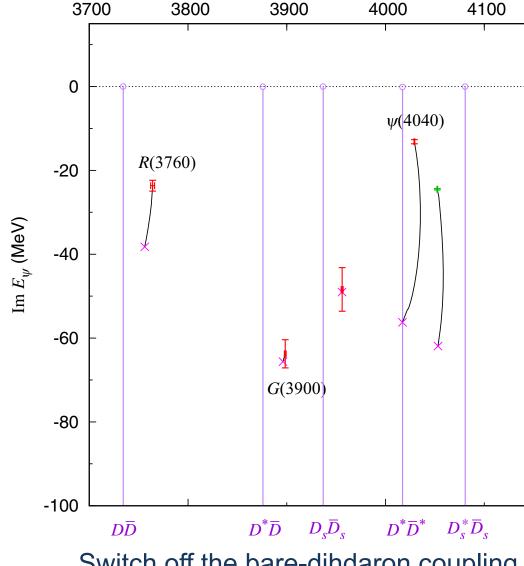
I 
$$3832.6^{+0.9}_{-0.8} - 74.5^{+0.7}_{-2.2}i$$

II 
$$3883.9^{+0.4}_{-0.5} - 46.5^{+1.2}_{-1.2}i$$



- Set  $g_{bare-dihadron} = 0$ 
  - ightharpoonup G(3900): dynamically generated state

Q. Ye, Z. Zhang, M.-L. Du, U.-G. Meißner, P.-Y. Niu, and Q. Wang, The resonance parameters of the vector charmonium-like state G(3900), Phys. Rev. D **112**, 016015 (2025).

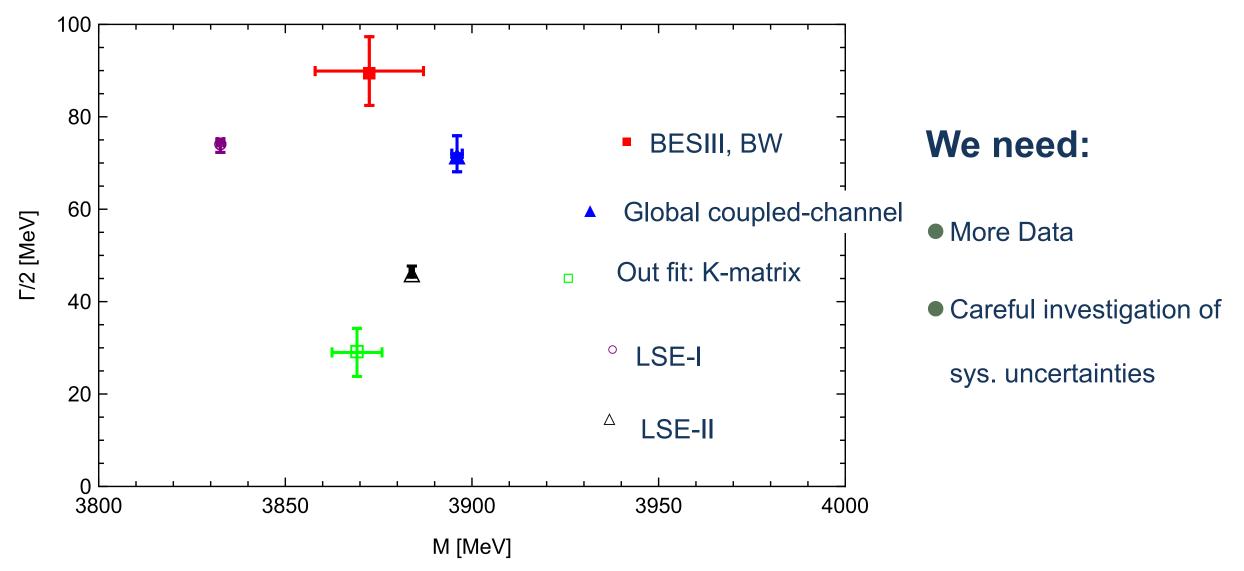



# Global fit of $e^+e^- \rightarrow c\bar{c}$ processes



- $e^+e^- \rightarrow c\bar{c}$  processes in  $\sqrt{s}$ =3.75-4.7 GeV
- Coupled-channel global fit
- G(3900):  $DD^*$  molecular state

| This work                   |                 | $PDG(\psi)$ [4], BESIII [16,38,88] |                  |                                                                                |
|-----------------------------|-----------------|------------------------------------|------------------|--------------------------------------------------------------------------------|
| M (MeV)                     | Γ (MeV)         | M (MeV)                            | Γ (MeV)          |                                                                                |
| $\overline{3764.2 \pm 2.0}$ | $47.3 \pm 2.6$  | $3751.9 \pm 3.8$                   | $32.8 \pm 5.8$   | $^{\mathrm{r}}Dar{D}$                                                          |
| $3780.2 \pm 1.2$            | $29.9 \pm 2.3$  | $3778.1 \pm 0.7$                   | $27.5 \pm 0.9$   | $\psi(3770)$                                                                   |
| $3898.4 \pm 0.9$            | $127.5 \pm 6.7$ | $3872.5 \pm 14.2$                  | $179.7 \pm 14.1$ | ${}^{\mathrm{r}}\!D^{st}ar{D}$                                                 |
| $3956.1 \pm 1.0$            | $96.8 \pm 10.4$ | • • •                              | • • •            | ${}^{\mathrm{r}}\!D_sar{D}_s$                                                  |
| $4029.2 \pm 0.4$            | $26.3 \pm 1.0$  | $4039 \pm 1$                       | $80 \pm 10$      | $\psi(4040)$                                                                   |
| $4052.4 \pm 0.4$            | $49.0 \pm 0.3$  | • • •                              | • • •            | ${}^{	ext{v}}\!D_{s}^{*}ar{D}_{s}$                                             |
| $4192.2 \pm 2.2$            | $129.3 \pm 4.2$ | $4191 \pm 5$                       | $70 \pm 10$      | $\psi(4160)$                                                                   |
| $4216.2 \pm 0.5$            | $40.3 \pm 1.0$  | • • •                              | • • •            | ${}^{	ext{v}}\!D_{\scriptscriptstyle S}^{st}ar{D}_{\scriptscriptstyle S}^{st}$ |
| $4229.9 \pm 0.9$            | $46.4 \pm 2.6$  | $4222.5 \pm 2.4$                   | $48 \pm 8$       | $\psi(4230)$                                                                   |
| $4308.1 \pm 2.2$            | $138.2 \pm 4.4$ | $4298\pm12$                        | $127\pm17$       | <i>Y</i> (4320)                                                                |
| $4346.2 \pm 3.8$            | $122.8 \pm 6.7$ | $4374\pm7$                         | $118\pm12$       | $\psi(4360)$                                                                   |




Switch off the bare-dihdaron coupling



# **Comparisions**







Q. Ye, Z. Zhang, M.-L. Du, U.-G. Meißner, P.-Y. Niu, and Q. Wang,, Phys. Rev. D 112, 016015 (2025).



# **Predictions**



# **Predictions of meson-exchange model**

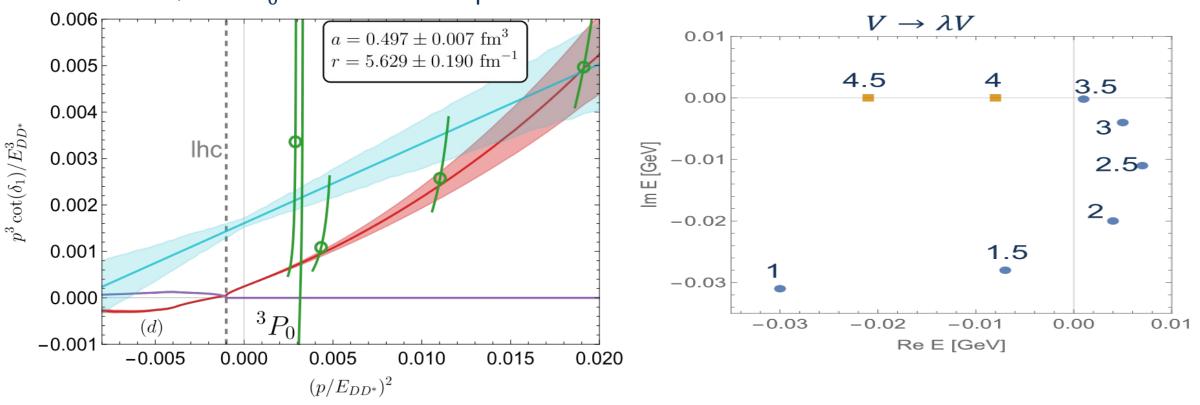


$$D\bar{D}^*, C = + D\bar{D}^*, C = - DD^*$$

$$I = 0 \qquad I = 1 \qquad I = 0 \qquad I = 1$$

$$1^+(^3S_1) \qquad -3.1^B, \chi_{c1}(3872) \qquad - 1.60^B \qquad \boxed{2} \qquad -35.6^V, Z_c(3900) \qquad -0.41^B, T_{cc}(3875) \qquad - 1.5 - 14.5i \qquad \boxed{3} \qquad - \qquad - \qquad - 9.6 - 9.7i \qquad \boxed{4} - 1.5 - 14.5i \qquad \boxed{3} \qquad - \qquad - \qquad - 31.7 - 70.6i \qquad - 1.5 - 14.5i \qquad - 2^-(^3P_2) \qquad -42.6 - 39.4i \qquad - \qquad -21.3 - 50.7i \qquad - \qquad -37.8 - 40.9i \qquad - 37.8 - 40.9i \qquad - 37.8$$

B: bound state, V: virtual state


- ① Precision measurement of  $e^+e^- \rightarrow \overline{D}D^*$  close to threshold
- ② Hidden charm final state:  $\eta_c \omega$ ,  $J/\psi \eta$ ,  $J/\psi \pi \pi$
- ③ Hidden charm final state:  $J/\psi\omega$ ,  $\eta_c\pi\pi$ ,  $\chi_{c1}\pi\pi$
- 4 Final state  $DD\pi$



## **Hints from LQCD data**



• Lattice QCD:  ${}^{3}P_{0}$   $DD^{*}$  resonance pole: -0.030 - i0.031



L. Meng, V. Baru, E. Epelbaum, A. A. Filin, and A. M. Gasparyan, PRD109, L071506 (2024). M. Padmanath and S. Prelovsek, Phys. Rev. Lett. 129, 032002 (2022).

ullet Hadron Spectrum Collaboration: attractive interaction in  ${}^3P_0$   $DD^*$  channel

T. Whyte, D. J. Wilson, and C. E. Thomas, Phys. Rev. D 111, 034511 (2025).



# **Summary**



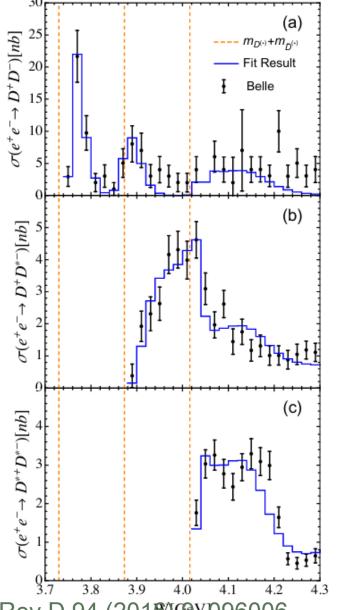
- **Exp.**: An enhancement close to 3.9 GeV, G(3900)
- Textbook: P-wave system
  - ► Centrifugal barrier
  - ▶ Resonance: attractive systems that are not strong enough to form a bound state.
- Model: the meson-exchange model,  $\overline{D}D^*/D\overline{D}^{*-3}P_1$  resonance
  - ▶ Unified framework: X(3872),  $Z_c(3900)$ ,  $T_{cc}(3875)$  and G(3900)
  - ► Same Lagrangians for S-wave and P-wave and for particle and antiparticle
- Predictions:
  - $ightharpoonup [\overline{D}D^*]_{c=-1}^{I=0}, \ ^3S_1; \ [\overline{D}D^*]_{c=+1}^{I=0}, \ ^3P_0; \ [DD^*]^{I=0}, \ ^3P_0$
  - ► Some lattice QCD hints
- Data:
  - ▶ 3 independent fittings favor the existence of G(3900) pole
  - ► Inconsistent pole positions
- STCF: opportunities for detecting the G(3900) and its partners

# Thanks for your attentions!





# **Backup**




### **LSE formalism**



- Lippmann-Schwinger equation formalism
- Coupled channel effect
- S-matrix unitarity and analyticity
- Belle data
- A resonance close to  $\overline{D}D^*$  threshold

| Sheet | Poles (GeV)        | $ g_{Dar{D}} $ | $ g_{D\bar{D}^*} $ | $ g_{D^*\bar{D}_{s=0}^*} $ | $ g_{D^*\bar{D}_{s=2}^*} $ |
|-------|--------------------|----------------|--------------------|----------------------------|----------------------------|
|       | $3.764 \pm i0.006$ |                |                    | 5.88                       | 16.78                      |
| III   | $3.879 \pm i0.035$ | 4.40           | 10.96              | 7.63                       | 18.15                      |
| IV    | $4.034 \pm i0.014$ | 2.90           | 2.23               | 12.52                      | 12.85                      |





## **Recent progresses**



#### P-wave double charm di-mesons

- ▶ J.-L. Lu, M. Song, P. Wang, J.-Y. Guo, G. Li, and X. Luo, Eur. Phys. J. C 85, 920 (2025).
- ► S.-D. Liu, Q. Wu, and G. Li, Phys. Rev. D **112**, 074002 (2025).
- ► X.-X. Chen, Z.-M. Ding, and J. He, Phys. Rev. D 111, 114008 (2025).
- ► Z.-P. Wang, F.-L. Wang, G.-J. Wang, and X. Liu, Phys. Rev. D **110**, L051501 (2024).

#### D-wave double charm di-mesons

► K. Chen and J.-Z. Wang, arXiv:2508.11127 [hep-ph] (2025).

#### P-wave double bottom

- ► Z.-P. Wang, F.-L. Wang, G.-J. Wang, and X. Liu, arXiv:2505.03647 [hep-ph] (2025).
- ► J.-Z. Wang, Z.-Y. Lin, J.-B. Cheng, LM, and S.-L. Zhu, arXiv:2505.02742 [hep-ph] (2025).

#### Dibaryon

► Y.-Y. Cui, X.-M. Tang, Q. Huang, and R. Chen, arXiv:2507.12958 [hep-ph] (2025).

#### • P-wave $\overline{D}K^*$

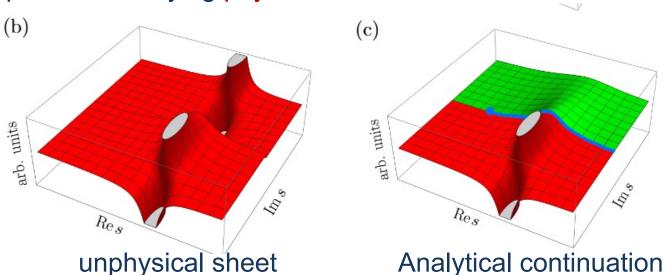
► J.-Z. Wang, Z.-Y. Lin, B. Wang, L. Meng, and S.-L. Zhu, Phys. Rev. D **110**, 114003 (2024).

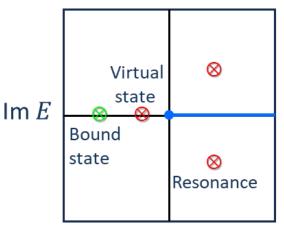
• ...



## **Bound state, Virtual state and Resonance**




- Single channel scattering as an example
- T-matrix: Unitary cut ⇒ multivalued function ⇒ Riemann sheets
- "States" ⇔ T-matrix poles


(a)

- ► Bound state: real axis of physical sheet
- ► Virtual state: real axis of unphysical sheet
- ► Resonance: lower unphysical sheet

Physical sheet

- Line shapes vary with processes, however, pole positions keeps the same
- Observables: bound state,  $|T|^2$  with E > 0 in physical sheet
- Exact pole positions: general amplitudes satisfying physical constraints





Re E

Mizera:2023tfe; PDG

# Status of $Z_c(3900)$



#### Refit Ex. data using amplitudes with exact unitarity.

| $M_{Z_c}$ (MeV)          | $\Gamma_{Z_c}/2 \text{ (MeV)}$ | Ref.                        | Final state                     |
|--------------------------|--------------------------------|-----------------------------|---------------------------------|
| $3899 \pm 6$             | $23 \pm 11$                    | [1] (BESIII)                | $J/\psi \ \pi$                  |
| $3895 \pm 8$             | $32 \pm 18$                    | [2] (Belle)                 | $J/\psi \ \pi$                  |
| $3886 \pm 5$             | $19 \pm 5$                     | [3] (CLEO-c)                | $J/\psi~\pi$                    |
| $3884 \pm 5$             | $12 \pm 6$                     | [4] (BESIII)                | $\bar{D}^*D$                    |
| $3882 \pm 3$             | $13 \pm 5$                     | [5] (BESIII)                | $ar{D}^*D$                      |
| $3894 \pm 6 \pm 1$       | $30\pm12\pm6$                  | $\Lambda = 1.0 \text{ GeV}$ | $J/\psi \ \pi, ar{D}^*D$        |
| $3886 \pm 4 \pm 1$       | $22 \pm 6 \pm 4$               | $\Lambda = 0.5 \text{ GeV}$ | $J/\psi \ \pi, ar{D}^*D$        |
| $3831 \pm 26^{+7}_{-28}$ | virtual state                  | $\Lambda = 1.0 \text{ GeV}$ | $J/\psi \ \pi, \overline{D^*D}$ |

 $3844 \pm 19^{+12}_{-21}$  virtual state  $\Lambda = 0.5 \text{ GeV } J/\psi \pi, \bar{D}^*D$ 

solution I: resonance

Solution II: virtual state

Below thresh. 30-40 MeV

M. Albaladejo, F. K. Guo, C. Hidalgo-Duque and J. Nieves, PLB755 (2016), 337-342

#### Three-coupled-channel analysis: $D\overline{D}^*$ , $J/\psi \pi$ , and $\rho \eta_c$

|           | Pole Position                                                                               | Type    | $ \mathrm{Scheme}(\Lambda_{\pi J/\psi}) $                     |
|-----------|---------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------|
| This work | 3798.72 - 1.10i<br>3798.46 - 1.71i<br>3798.12 - 2.26i<br>3798.27 - 2.02i<br>3797.80 - 2.64i | Virtual | 1(1.3GeV)<br>1(1.5GeV)<br>1(1.7GeV)<br>2(1.5GeV)<br>2(1.7GeV) |

Virtual state Pole below threshod 80 MeV

K.Yu, G.J.Wang, J.J.Wu and Z.Yang, PRD110 (2024), 114029

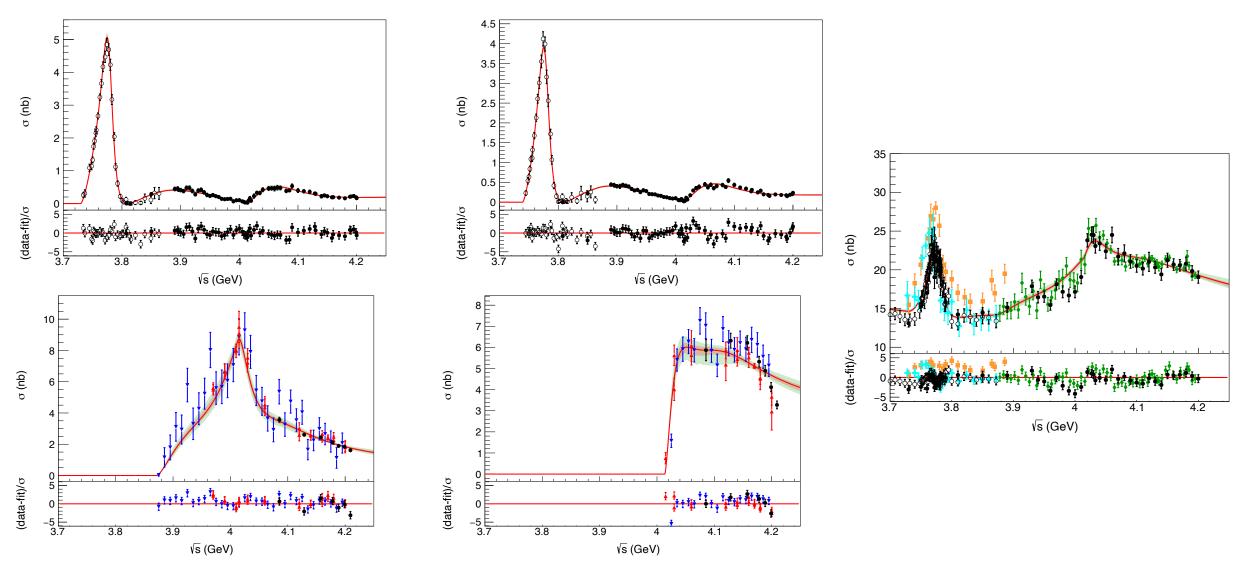
#### Global coupled-channel analysis of $e^+e^- \rightarrow c\bar{c}$

TABLE VI.  $IJ^{PC} = 11^{+-} D^* \bar{D} - D^* \bar{D}^* - J/\psi \pi - \psi' \pi - h_c \pi - \eta_c \rho$  coupled-channel scattering amplitude poles (unit:MeV).  $Z_c(3900)$  and  $Z_c(4020)$  are  $D^* \bar{D}$  and  $D^* \bar{D}^*$  virtual (resonance) poles in this work (PDG [4]).

| $E_{Z_c}^{ m Thiswork}$        | $M_{Z_c}^{ m PDG}$ | $\Gamma_{Z_c}^{	ext{PDG}}$ |             |
|--------------------------------|--------------------|----------------------------|-------------|
| $(3837.7\pm7.4)+(19.4\pm1.6)i$ | $3887.1 \pm 2.6$   | $28.4 \pm 2.6$             | $Z_c(3900)$ |
| $(3989.9\pm5.6)+(26.1\pm4.3)i$ | $4024.1 \pm 1.9$   | $13 \pm 5$                 | $Z_c(4020)$ |

Virtual state: below thresh. 30-40 MeV

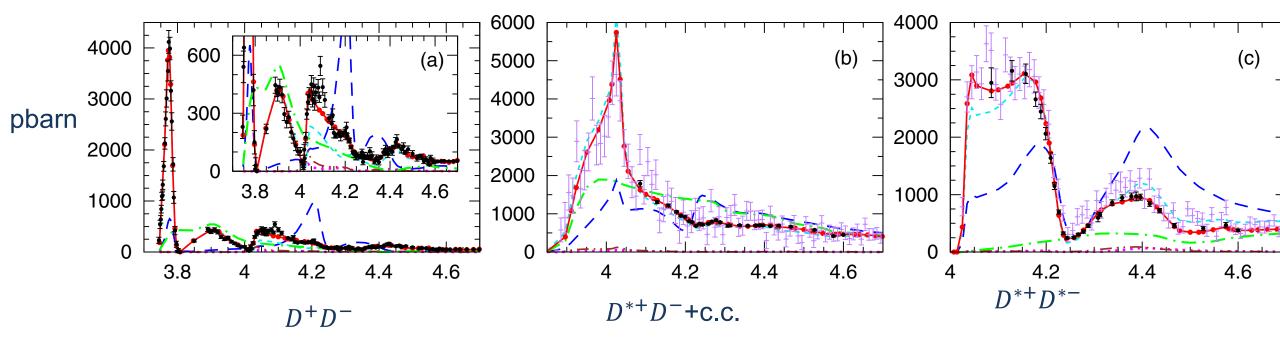
S. X. Nakamura, X. H.Li, H.P.Peng, Z.T.Sun and X.R.Zhou, PRD112 (2025), 054027


 $\pi^+\pi^-$  and  $J/\psi\pi^\pm$  mass spectra @  $e^+e^- \to J/\psi\pi^+\pi^ D^*D^{*-}$  mass spectrum @  $e^+e^- \to D^*D^{*-}\pi^+$ 

#### resonance:

$$(3880.7 \pm 1.7 \pm 22.4) - i(17.9 \pm 0.7 \pm 7.7) \text{ MeV}.$$

Y.H.Chen, M.L.Du and F.K.Guo, , Sci.China Phys.Mech.Astron. 67 (2024) 9, 291011






N. Hüsken, R. F. Lebed, R. E. Mitchell, E. S. Swanson, Y.-Q. Wang, and C.-Z. Yuan, Phys. Rev. D **109**, 114010 (2024).

# **Global fit**







S. X. Nakamura, X.-H. Li, H.-P. Peng, Z.-T. Sun, and X.-R. Zhou, Phys. Rev. D 112, 054027 (2025).

### LSE fit



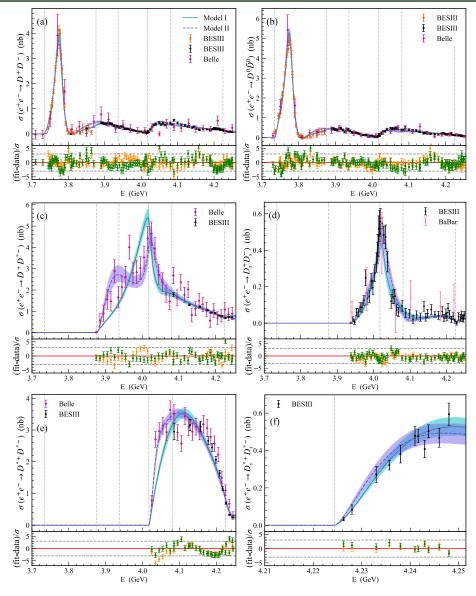



FIG. 2. The line shapes of model I (solid curve) and model II (dashed curve) in comparison with the experimental data. The  $D\bar{D}$  data is from both BESIII [4,36] and Belle [1] collaborations. Panels (a)–(f) show the line shapes of the channels  $e^+e^ D^+D^ D^0\bar{D}^0$ ,  $D^+D^{*-}$ ,  $D^*_sD^-$ ,  $D^*$ 

Q. Ye, Z. Zhang, M.-L. Du, U.-G. Meißner, P.-Y. Niu, and Q. Wang, Phys. Rev. D **112**, 016015 (2025).

#### K-matrix formalism



• In principle, K-matrix formalism could meet the requirement of the analyticity and unitarity

Im
$$\mathcal{M}^{-1} = -2\rho$$
,  $k = \frac{\sqrt{[s - (m_1 - m_2)^2][s - (m_1 + m_2)^2]}}{2\sqrt{s}}$ ,  $\rho(s) = \frac{k}{8\pi\sqrt{s}}$ 

$$\mathcal{M}^{-1} = K^{-1} + C$$
, Im  $C(s) = -2\rho$ ,

$$K = \frac{g^2}{m_R^2 - s} + f, \quad C(s) = C(s_0) - \frac{s - s_0}{\pi} \int_{s_0}^{\infty} ds' \frac{\operatorname{Im}C(s)}{(s' - s)(s' - s_0)}$$

● Three defects of K-matrix formalism in [arXiv: 2404.03896]

Different with that in PDG

- ► Analyticity is not kept:  $\mathcal{M}(s) = \mathcal{M}(k_1, k_2, ...)$ , e.g. For  $M_{th1}^2 < s < M_{th2}^2$ ,  $k_2$  is set to zero
- ► Subtraction dependence / regularization dependence for P-wave
- ▶ Did not search the pole in the unphysical sheets below the thresholds

$$k_1 > 0$$
  $k_2 > 0$ 
Thresh. 1 Thresh. 2



### **K-matrix formalism**



• The unitarity: 
$$Im \mathcal{M}^{-1} = -2\rho$$

$$k = \frac{\sqrt{[s - (m_1 - m_2)^2][s - (m_1 + m_2)^2]}}{2\sqrt{s}}, \quad \rho(s) = \frac{k}{8\pi\sqrt{s}}$$

- K-matrix parameterization  $\mathcal{M}^{-1} = K^{-1} + C$ , Im C(s) = -2ρ K is real, e.g.  $K = \frac{g^2}{m_P^2 s} + f$ 

  - $\triangleright$  C(s) determined by once-subtracted dispersion relation

$$C(s) = C(s_0) - \frac{s - s_0}{\pi} \int_{s_0}^{\infty} ds' \frac{\text{Im}C(s)}{(s' - s)(s' - s_0)}$$

- ▶ The subtraction-dependence is absorbed by the *K*
- ullet P-wave and higher partial wave: threshold effect  $\mathcal{M} \to p^{2l}$ 
  - ▶ PDG:

$$p^{l} \mathcal{M}_{l}^{-1} p^{l} = K^{-1} + C_{l}, \quad \text{Im} C_{l} \to -2\rho p^{2l}$$

► Swanson et al:

$$\mathcal{M}^{-1} = K^{-1}p^{-2l} + C_0(s)$$

- CM function VS one-loop diagram
- $C_0(s) \sim G(s) = \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 m_1^2 + i\epsilon} \frac{1}{(P-q)^2 m_2^2 + i\epsilon},$
- ► Subtraction ⇔ regularization
- ▶ In BSE, absorbed by the Kernal or coupling constant



#### K-matrix formalism



• The unitarity: 
$$Im \mathcal{M}^{-1} = -2\rho$$

$$k = \frac{\sqrt{[s - (m_1 - m_2)^2][s - (m_1 + m_2)^2]}}{2\sqrt{s}}, \quad \rho(s) = \frac{k}{8\pi\sqrt{s}}$$

$$\mathcal{M}^{-1} = K^{-1} + C$$
, Im  $C(s) = -2\rho$ 

- S-wave: K-matrix  $\mathcal{M}^{-1} = K^{-1} + C, \quad \text{Im } C(s) = -2\rho$  ▶ K is real, e.g.  $K = \frac{g^2}{m_P^2 s} + f$ 
  - $\triangleright$  C(s) determined by once-subtracted dispersion relation

$$C(s) = C(s_0) - \frac{s - s_0}{\pi} \int_{s_0}^{\infty} ds' \frac{\text{Im}C(s)}{(s' - s)(s' - s_0)}$$

▶ The subtraction-dependence is absorbed by the *K* 

Set 
$$g = 0$$
,  $C(s_0)$  can be absorbed by  $f$ 

- lacktriangle P-wave and higher partial wave: threshold effect  $\mathcal{M} 
  ightarrow p^{2l}$ 
  - ▶ PDG:

$$p^{l}\mathcal{M}_{l}^{-1}p^{l} = K^{-1} + C_{l}, \quad \text{Im}C_{l} \to -2\rho p^{2l}$$

for P-wave, the  $C_l(s_0)$  can be absorbed by f

Note: introducing the regulator, the once subtract. Is enough

Swanson et al:  $\mathcal{M}^{-1} = K^{-1}p^{-2l} + C_0(s)$ Set g = 0,  $C_0(s_0)$  cannot be absorbed by  $fp^{-2l}$ 

