



## The 7th International Workshop on Tau Charm Facilities

November, 23-27, 2025 FTCF2025, Huangshan

# Overview of Charm Physics at Belle and Belle II

Murad Yasaveev

Higher School of Economics on behalf of Belle II collaboration



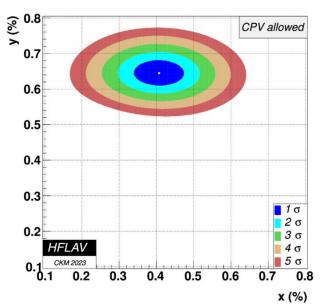


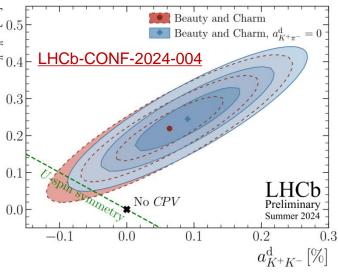
#### Topics for charm physics

•  $\underline{D^0} - \overline{D}^0$  mixing

$$x = \frac{m_1 - m_2}{\Gamma}, \ y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$

World average values:  $x = (4.07 \pm 0.44) \times 10^{-3}$ 


$$y = (6.45^{+0.24}_{-0.23}) \times 10^{-3}$$


PRL 131, 091802 (2023)

CP violation

$$\Delta A(D \to KK, \pi\pi) = (-15.4 \pm 2.9) \times 10^{-4} [5.3\sigma]^{-3}$$
 $\frac{\text{PRL 122, 211803}}{10^{-4}} (2019)^{-3}$ 
3.8 $\sigma$  evidence of direct  $CPV$  in  $D^0 \to \pi^+\pi^-$ 

- Charmed baryons
- Lifetimes of charm hadrons

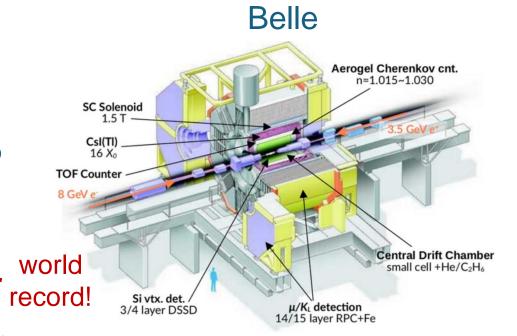




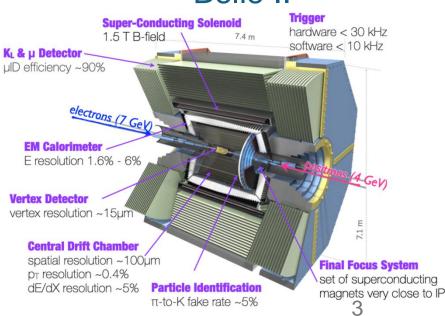
#### Belle and Belle II experiments

Operation at asymmetric  $e^+e^-$  colliders at or near the  $\Upsilon(4S)$ 

- KEKB (1999-2010),  $\mathcal{L}_{peak}$ = 2 × 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>,  $\mathcal{L}_{int}$ = 1/ab
- SuperKEKB,  $\mathcal{L}_{peak} = 5.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$   $\mathcal{L}_{int} = 0.57/\text{ab}$


Two ways to produce the charm hadrons in  $e^+e^-$  at  $\Upsilon(4S)$ :

• 
$$e^+e^- \to c\bar{c} \to X_c$$
,  $\sigma(e^+e^- \to c\bar{c}) \sim 1.3$  nb at  $\sqrt{s} = 10.58$  GeV


• 
$$e^+e^- \rightarrow \Upsilon(4S) \rightarrow X_c$$
,  $\sigma(e^+e^- \rightarrow \Upsilon(4S)) \sim 1.1 \text{ nb}$ 

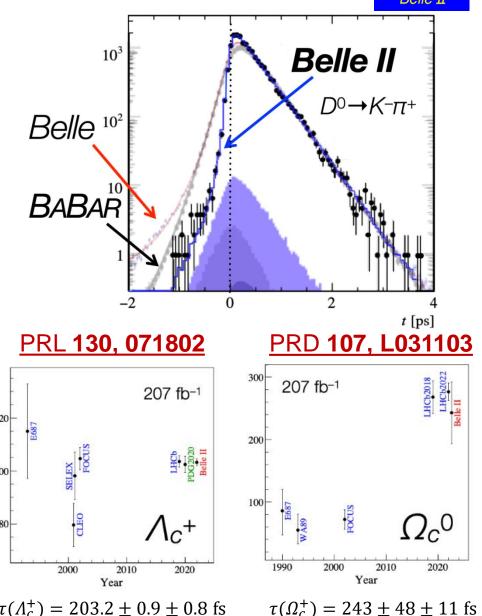
#### Belle and Belle II are synergistic experiments

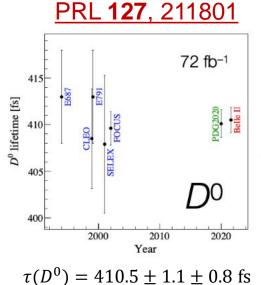
- combined analysis, especially important for charm,
   where large statistics is crucial to improve the precision
- statistical power of Belle II data is larger than that of Belle data:
  - improved detector and reconstruction algorithms
  - improved impact parameter resolution

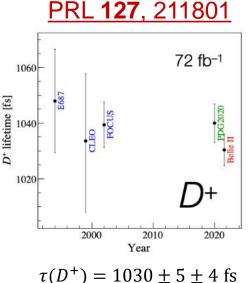


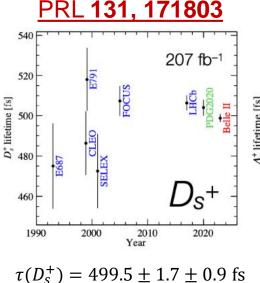
#### Belle II

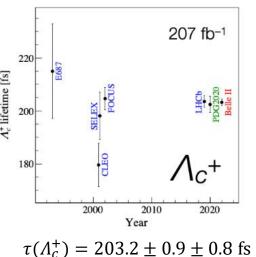



#### Charm lifetimes at Belle II

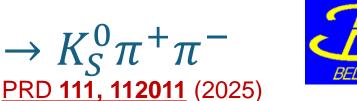




Belle II data allows to precisely measure absolute lifetimes


- not done at Belle/BaBar, ×2 better decay resolution at Belle II
- the world's highest precision in  $D^0$ ,  $D^+$ ,  $D_s^+$  and  $A_c^+$  lifetimes
- confirmation of the longer  $\Omega_c$  lifetime

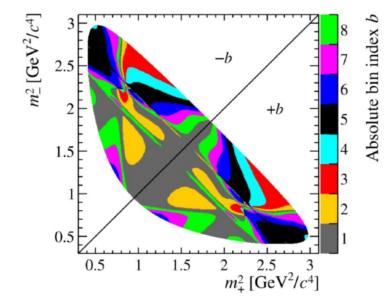

Excellent performance and understanding of the Belle II detector

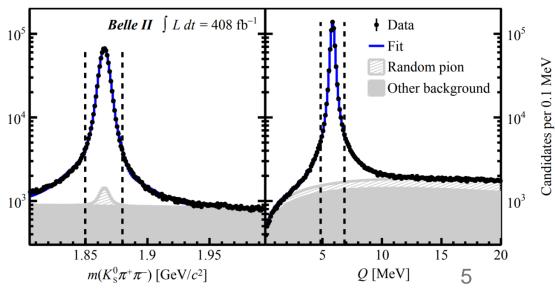










## $D^0 - \overline{D}{}^0$ mixing parameters in $D^0 \to K_S^0 \pi^+ \pi^-$





- Model-independent measurement
- Splitting of the Dalitz plot  $[M^2(K_S^0\pi^+)\ vs.\ M^2(K_S^0\pi^-)]$  into 16 bins with constant  $\delta$  (strong phase between  $D^0$  and  $\overline{D}^0$ ) determined by BESIII [PRL 124, 241802 (2020)]
- Using combined Belle and Belle II datasets, the model-independent measurement of the  $D^0-\overline{D}{}^0$  mixing parameters using  $D^{*+}$ -tagged  $D^0\to K^0_S\pi^+\pi^-$  decay  ${}^{10^5}$
- Fit to distribution in  $D^0$  mass and energy released  $Q^{\frac{5}{1}}$  in the  $D^{*+} \to D^0 \pi^+$





## $D^0 - \overline{D}{}^0$ mixing parameters in $D^0 \to K_S^0 \pi^+ \pi^-$

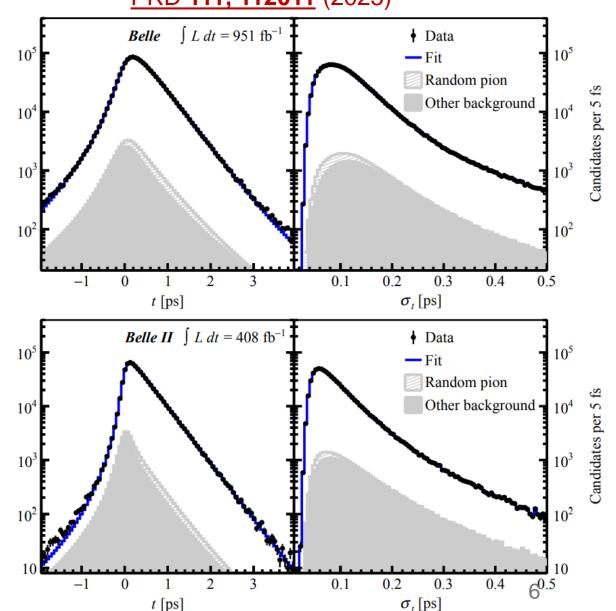
Candidates per 60 fs

Candidates per 60 fs



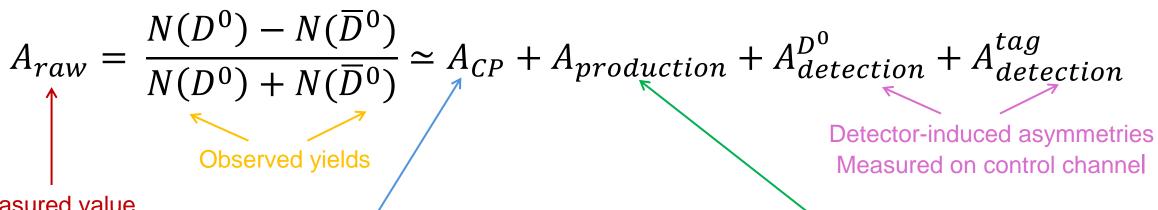


PRD 111, 112011 (2025)


Mixing parameters obtained from a fit to the  $(t, \sigma_t)$  distributions in each of 16 Dalitz plot bins

Sample average purity 96%

$$x = (4.0 \pm 1.7 \pm 0.4) \times 10^{-3}$$
  
 $y = (2.9 \pm 1.4 \pm 0.3) \times 10^{-3}$ 


These results are about 20% and 14% more precise than the model-dependent Belle measurement!

PRD 89, 091103 (2014)



#### Measurement of CP asymmetry at Belle (II)

- The only evidence for direct CPV in  $D^0 \to \pi^+\pi^-$  by LHCb
- It is essential to continue searching for CPV in charm sector to understand its origin
- Belle and Belle II mainly contribute with decays with neutral particles in the final state



Measured value

Real goal of the measurement Time-integrated asymmetry  $A_{CP} = \frac{\Gamma(D^0) - \Gamma(\overline{D}^0)}{\Gamma(D^0) + \Gamma(\overline{D}^0)}$ 

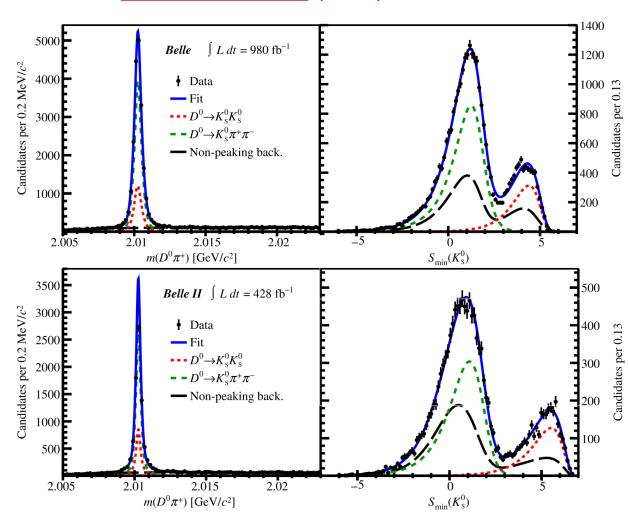
 $\Gamma$  - decay-time integrated rate

Forward-backward  $e^+e^- \to c\bar{c}$  asymmetry due to  $\gamma - Z^0$  interference (odd in  $\cos\theta_{CM}$  of D mesons, independent on the final state) Asymmetry from  $B \to DX$  decays

## $A_{CP}$ in $D^0 \to K_S^0 K_S^0$ with $D^{*+}$ flavor tagging






#### PRD 111, 012015 (2025)

- Main background from  $D^0 o K_S^0 \pi^+ \pi^-$
- $K_S^0$  flight significance to discriminate background:

$$S_{\min} = \log \left( \min \left( \frac{L_1}{\sigma_1}, \frac{L_2}{\sigma_2} \right) \right)$$

- 2D fit to  $M(D^{*+})$  and  $S_{\min}$
- Control channel:  $D^0 \rightarrow K^+K^-$
- About 7 000 tagged  $D^0$

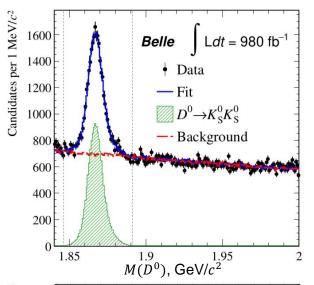
$$A_{CP} = (-1.4 \pm 1.3 \pm 0.1)\%$$

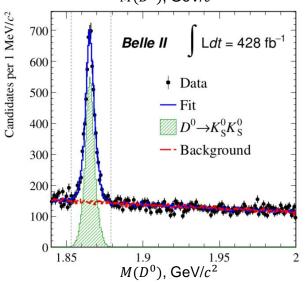


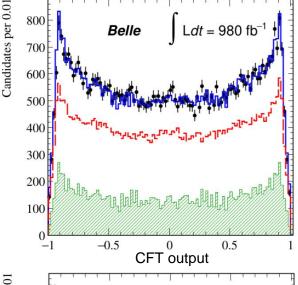
#### $A_{CP}$ in $D^0 \to K_S^0 K_S^0$ with Charm Flavor Tagger

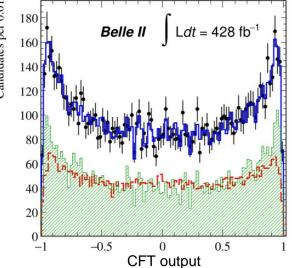





PRD **112, 012017** (2025)


- Tagging method based on rest-of-event
- BDT+ $S_{\min}$  to suppress background from  $D^0 \to K_S^0 \ \pi^+ \ \pi^-$
- 2D fit to  $M(D^0)$  and CFT output
- Independent sample: events from  $D^{*+}$ -tagged analysis are removed
- About 20 000 tagged  $D^0$


$$A_{CP} = (1.3 \pm 2.0 \pm 0.2)\%$$


Combined result:

$$A_{CP} = (-0.6 \pm 1.1 \pm 0.1)\%$$









#### $A_{CP}$ in $D \to \pi \pi$

- CP violation in Cabibbo-suppressed decays arises from tree-level and  $\Delta I = 1/2$  penguin amplitudes interference
- Measurement of  $A_{CP}$  in  $D^+ \to \pi^+ \pi^0$  and  $D^0 \to \pi^0 \pi^0$  can help to identify the reason for large CP violation in  $D^0 \to \pi^+ \pi^-$
- Isospin sum rule R:

$$R = \frac{A_{CP}^{dir}(D^{0} \to \pi^{+}\pi^{-})}{1 + \frac{\tau_{D^{0}}}{\mathcal{B}_{+-}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^{0}}} - \frac{2}{3}\frac{\mathcal{B}_{+0}}{\tau_{D^{+}}}\right)} + \frac{A_{CP}^{dir}(D^{0} \to \pi^{0}\pi^{0})}{1 + \frac{\tau_{D^{0}}}{\mathcal{B}_{00}} \left(\frac{\mathcal{B}_{+-}}{\tau_{D^{0}}} - \frac{2}{3}\frac{\mathcal{B}_{+0}}{\tau_{D^{+}}}\right)} + \frac{A_{CP}^{dir}(D^{+} \to \pi^{+}\pi^{0})}{1 - \frac{3}{2}\frac{\tau_{D^{+}}}{\mathcal{B}_{+0}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^{0}}} + \frac{\mathcal{B}_{+-}}{\tau_{D^{0}}}\right)}$$

HFLAV: 
$$R = (0.9 \pm 3.1) \times 10^{-3}$$

$$\bar{u} \xrightarrow{+ \to \pi^{+}\pi^{0}}$$

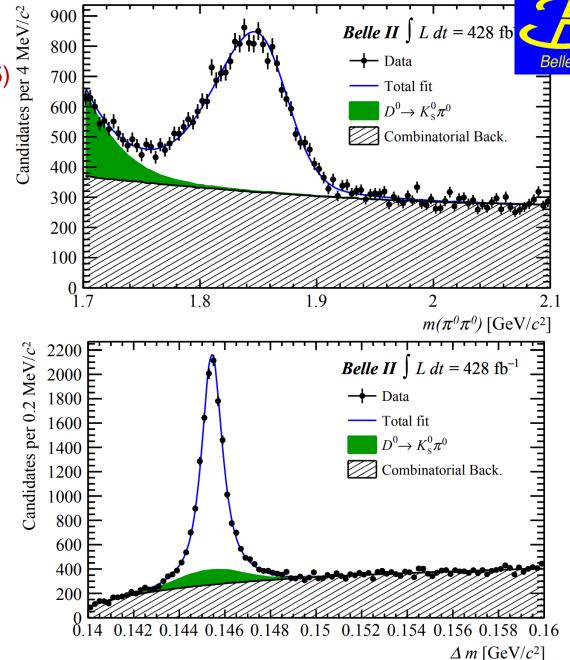
$$\frac{(B_{00} + B_{+-})}{(\tau_{D^{0}} + \tau_{D^{0}})}$$

$$\tau - \text{lifetime}$$

 $\mathcal{B}$  – branching fraction

$$A_{CP}$$
 in  $D^0 \to \pi^0 \pi^0$ 

PRD 112, 012006 (2025)


- Flavor tagging by  $D^{*+} \rightarrow D^0 \pi^+$
- Fit to  $M(D^0)$  and  $\Delta M = M(D^{*+}) M(D^0)$
- Production asymmetry :  $A_{raw}$  is measured for forward ( $\cos\theta_{CM} > 0$ ) and backward decays
- Detection asymmetry:  $D^0 \to K^-\pi^+ \left(A_{detection}^{tag \pi}\right)$

tagged 
$$D^0$$
:  $A_{production} + \frac{A_{detection}^{tag \pi}}{A_{detection}} + A_{detection}^{D^0 \to K\pi}$ 

untagged 
$$D^0$$
:  $A_{production} + A_{detection}^{D^0 \to K\pi}$ 

$$A_{detection}^{tag\,\pi} = A_{tagged} - A_{untagged}$$

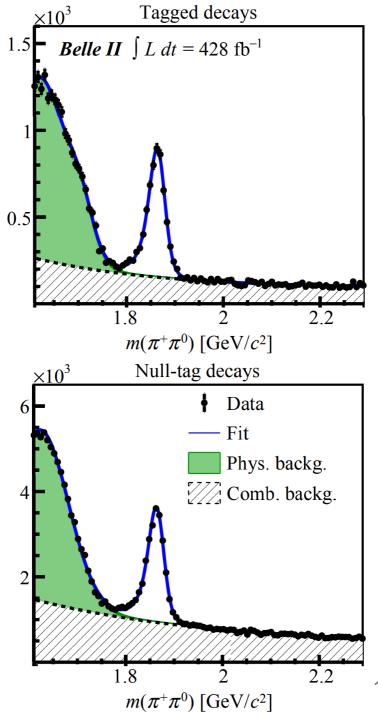
$$A_{CP} = (0.30 \pm 0.72 \pm 0.20)\%$$



#### $A_{CP}$ in $D^+ \to \pi^+ \pi^0$

PRD 112, L031101 (2025)

Candidates per 7 MeV/ $c^2$ 


Candidates per 7 MeV/ $c^2$ 

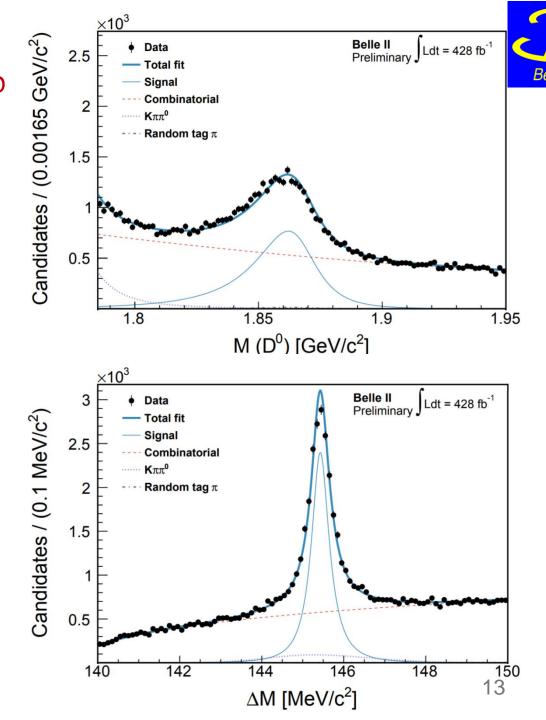
- No CPV is expected in SM:  $\Delta I = 3/2$  transition
- Fit to  $M(D^+)$  is performed to measure asymmetry
- Fit to  $D^+$  from  $D^{*+}$  separately (different backgrounds and purity)
- Production and detection asymmetries  $D^+ \to \pi^+ K_S^0$  (with  $K^0 \overline{K}^0$  mixing and regeneration effects correction)

$$A_{CP} = (-1.8 \pm 0.9 \pm 0.1)\%$$

30% improvement in statistics and 50% in systematics wrt Belle:  $A_{CP} = (2.31 \pm 1.24 \pm 0.23)\%$  PRD 97, 011101 (2018) more precise than LHCb (9/fb):  $A_{CP} = (-1.3 \pm 0.9 \pm 0.6)\%$  JHEP 06, 019 (2021)

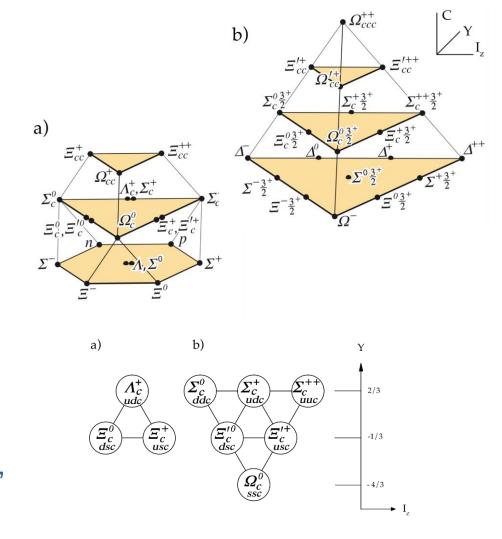
$$R = (3.1 \pm 2.3) \times 10^{-3}$$
, precision improved by 25%




$$A_{CP}$$
 in  $D^0 \to \pi^+\pi^-\pi^0$ 

Submitted to PRD

- SCS three-body decay, interference of several amplitudes:  $\rho^0\pi^0$ ,  $\rho^\pm\pi^\mp$
- Flavor of  $D^0$  is tagged by  $D^{*+} \rightarrow D^0 \pi^+$
- Fit to  $M(D^0)$  and  $\Delta M = M(D^{*+}) M(D^0)$
- Production asymmetry:  $A_{raw}$  is averaged over 8 bins in  $\cos \theta_{\mathit{CM}}$
- Tag detection asymmetry: with tagged and untagged  $D^0 \to K^-\pi^+$


$$A_{CP} = (0.29 \pm 0.27 \pm 0.13)\%$$

34% more precise than BABAR with just 10% more statistics PRD **78**, **051102** (2008)



#### Charmed baryons

- Baryon physics is rich and provides complementary information to that of meson physics
- A lot of topics to improve our knowledge:
  - branching ratios: difficult for theoretical predictions due
     to W-exchange and internal W-emission interference
  - Dalitz structure of multi-body decays, hadronic form factors
  - important for experimental study of CPV, search for NP,
     search for rare or forbidden processes
- Recent LHCb observation [Nature 643, 8074 (2025)] of CPV in  $\Lambda_b \to pK^-\pi^+\pi^-$  represents a milestone for flavor physics, need to search for CP violations in charm.



## Observations $\Xi_c^+ \to p K_S^0$ , $\Lambda \pi^+$ , and $\Sigma^0 \pi^+$

BELLE Belle

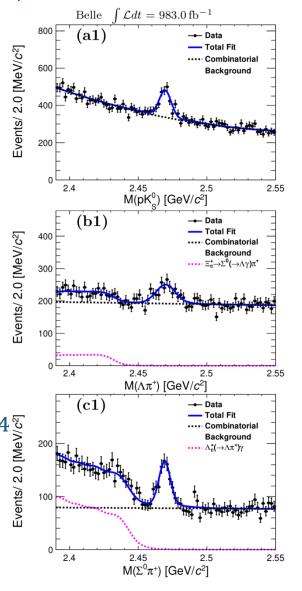
JHEP **03, 061** (2025)

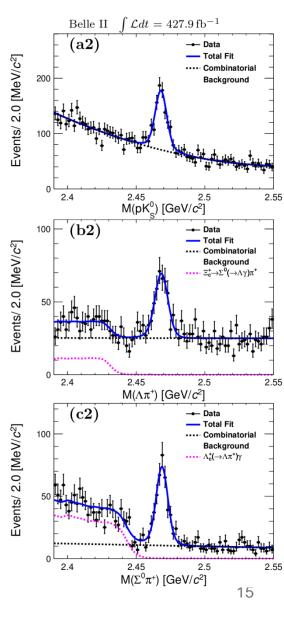
- Singly Cabibbo-suppressed decays
- Intermediate states reconstructed in

$$\Sigma^0 \to \Lambda \gamma$$
,  $\Xi^- \to \Lambda \pi^-$ ,  $\Lambda \to p \pi^-$ 

• Normalization mode:  $\Xi_c^+ \to \Xi^- \pi^+ \pi^+$ ,

$$\mathcal{B} = (2.9 \pm 1.3)\% [PDG]$$


Significant signals observed


$$\mathcal{B}(\Xi_c^+ \to pK_S^0) = (7.2 \pm 0.5 \pm 0.2 \pm 3.2) \times 10^{-4}$$

$$\mathcal{B}(\Xi_c^+ \to \Lambda \pi^+) = (4.5 \pm 0.4 \pm 0.3 \pm 2.0) \times 10^{-4}$$

$$\mathcal{B}(\Xi_c^+ \to \Sigma^0 \pi^+) = (12.0 \pm 0.2 \pm 0.4 \pm 5.4) \times 10^{-4}$$

first observations of these decays (each one >  $10\sigma$ )





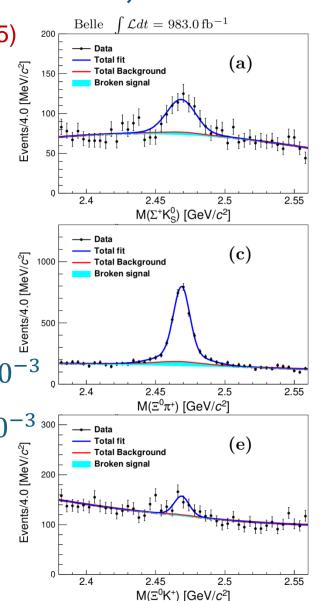
### Measurements of $\Xi_c^+ \to \Sigma^+ K_S^0$ , $\Xi^0 \pi^+$ , and $\Xi^0 K^+$

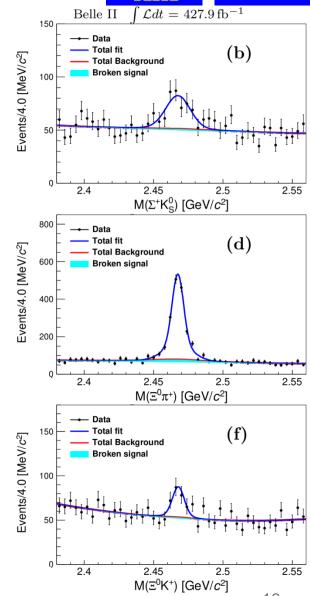


JHEP **08**, **195** (2025)

- Cabibbo-favored and SCS decays
- Intermediate states reconstructed in

$$\Sigma^+ \to p\pi^0$$
,  $\Xi^{0/-} \to \Lambda\pi^{0/-}$ ,  $\Lambda \to p\pi^-$ 


- Normalization mode:  $\Xi_c^+ \to \Xi^- \pi^+ \pi^+$
- Significant signals observed


$$\mathcal{B}(\Xi_c^+ \to \Sigma^+ K_S^0) = (1.94 \pm 0.21 \pm 0.09 \pm 0.87) \times 10^{-3}$$

$$\mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+) = (7.19 \pm 0.14 \pm 0.24 \pm 3.22) \times 10^{-6}$$

$$\mathcal{B}(\Xi_c^+ \to \Xi^0 K^+) = (4.9 \pm 0.7 \pm 0.2 \pm 2.2) \times 10^{-4}$$

first measurements of  $\Sigma^+ K^0_S$  and  $\Xi^0 K^+$ , most precise  $\Xi^0 \pi^+$ 

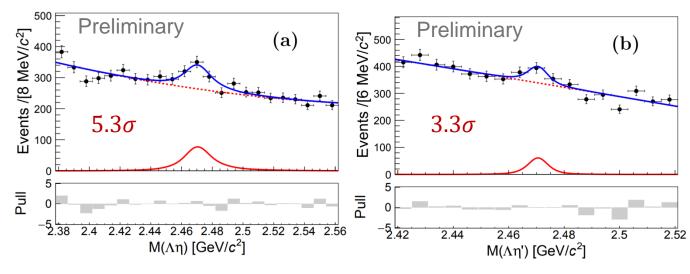


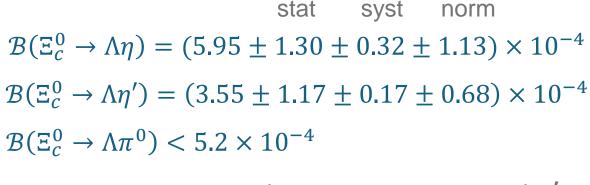


#### Measurements of $\Xi_c^0 \to \Lambda \eta$ , $\Lambda \eta'$ , and $\Lambda \pi^0$

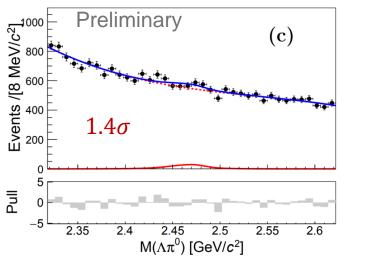





#### Submitted to PRD


- Cabibbo-suppressed decays
- Intermediate states reconstructed in

$$\eta' \to \pi^+\pi^- \eta/\gamma$$
 ,  $\eta \to \pi^+\pi^-\pi^0$  ,  $\eta \to \gamma\gamma$ 

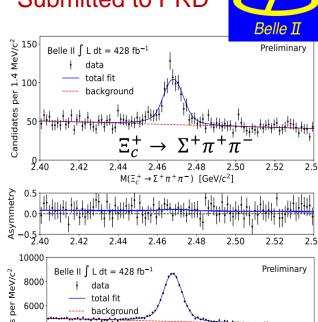

• Normalization mode:  $\Xi_c^0 \to \Xi^-(\to \Lambda \pi^-)\pi^+$ 

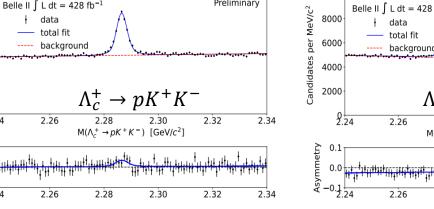
$$\mathcal{B} = (1.43 \pm 0.27)\% [PDG]$$





first observation of  $\Lambda\eta$ , first evidence for  $\Lambda\eta'$ 





#### $A_{CP}$ in baryon decays

- $\Xi_c^+ \to \Sigma^+ h^+ h^-, \Lambda_c^+ \to p h^+ h^-, h = K, \pi$
- Intermediate state  $\Sigma^+ \to p\pi^0$
- Production asymmetry:  $A_{raw}$  averaged for forward ( $\cos\theta_{CM} > 0$ ) and backward
- Detection asymmetry: Cabibbo-favored decays

$$A_{CP}^{\Xi_c^+ \to \Sigma^+ h^+ h^-} = A_{raw}^{\Xi_c^+ \to \Sigma^+ h^+ h^-} - A_{detection}^{\Lambda_c^+ \to \Sigma^+ h^+ h^-}$$

#### Submitted to PRD



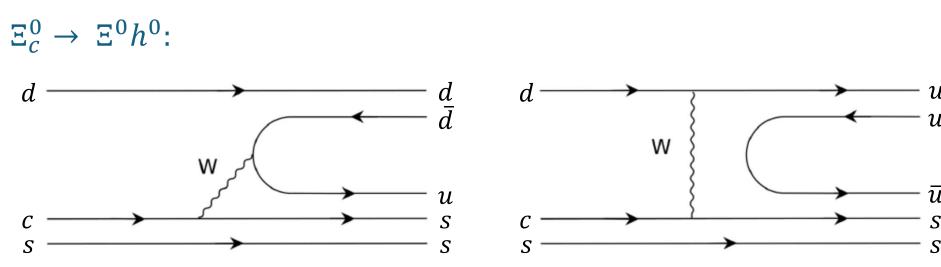


$$A_{CP}^{\Lambda_c^+ \to \boldsymbol{p}h^+h^-} = A_{raw}^{\Lambda_c^+ \to \boldsymbol{p}h^+h^-} - A_{detection}^{\Lambda_c^+ \to \boldsymbol{p}\pi^+K^-} + A_{detection}^{D^0 \to \pi^+K^-\pi^+\pi^-}$$

$$A_{CP}(\Xi_c^+ \to \Sigma^+ K^+ K^-) = (3.7 \pm 6.6 \pm 0.6)\%$$

$$A_{CP}(\Xi_c^+ \to \Sigma^+ \pi^+ \pi^-) = (9.5 \pm 6.8 \pm 0.5)\%$$

$$A_{CP}(\Lambda_c^+ \to pK^+K^-) = (3.9 \pm 1.7 \pm 0.7)\%$$


$$A_{CP}(\Lambda_c^+ \to p\pi^+\pi^-) = (0.3 \pm 1.0 \pm 0.2)\%$$

#### Summary and conclusions

- Belle and Belle II provide a unique environment and unique sensitivity for SM
  measurements as well as for the search for physics beyond the SM in the charm
  sector both in meson and baryon decays
- $A_{CP}$  measurements of  $D^0 \to K_S^0 K_S^0$  and  $D^0 \to \pi^+ \pi^- \pi^0$  with world's best precisions
- Measurements of CP asymmetries and related sum rules of  $D \to \pi\pi$  have been presented, no evidence of CPV was observed
- First observations and measurements of branching ratios for baryon decays and search for CP asymmetries in baryon decays have been shown
- New data taking started in November 2025

#### Branching fractions of charmed baryons

• Nonfactorizable amplitudes arising from internal W-emission and W-exchange lead to difficulties for theoretical predictions



- Measurements of branching fractions will help to clarify the theoretical picture
- Data analysis is pretty much similar among different decay modes:
  - momentum cut to suppress background (mostly from B decays)
  - particle identification
  - vertex fits (mass constrained for intermediate states, IP constrained for final state)
  - best candidate selection (usually based on vertex fit quality)

#### Measurements of the BF of $\Xi_c^0 \to \Xi^0 \pi^0$ ,

### $\Xi^0\eta$ , and $\Xi^0\eta'$

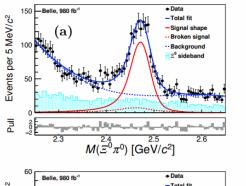
JHEP 10 (2024) 045

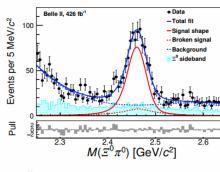
Intermediate states reconstructed in

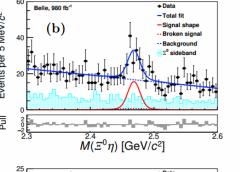
$$\Xi^{0/-} \rightarrow \Lambda \pi^{0/-}, \ \Lambda \rightarrow p \pi^-, \ \eta' \rightarrow \pi^+ \pi^- \eta, \ \eta/\pi^0 \rightarrow \gamma \gamma$$

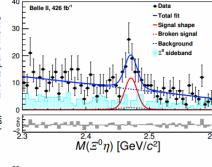
- Normalization mode:  $\Xi_c^0 \to \Xi^- \pi^+$ ,
  - $\mathcal{B} = (1.43 \pm 0.27)\%$  [PDG2024]
- Significant signals observed
- Branching fractions

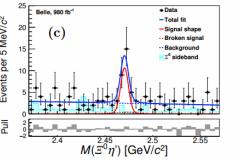
$$\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0) = (6.9 \pm 0.3 \pm 0.5 \pm 1.3) \times 10^{-3}$$

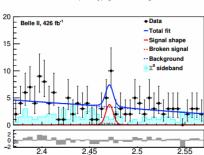

$$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta) = (1.6 \pm 0.2 \pm 0.2 \pm 0.3) \times 10^{-3}$$


$$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta') = (1.2 \pm 0.3 \pm 0.1 \pm 0.2) \times 10^{-3}$$


first measurement of these decays

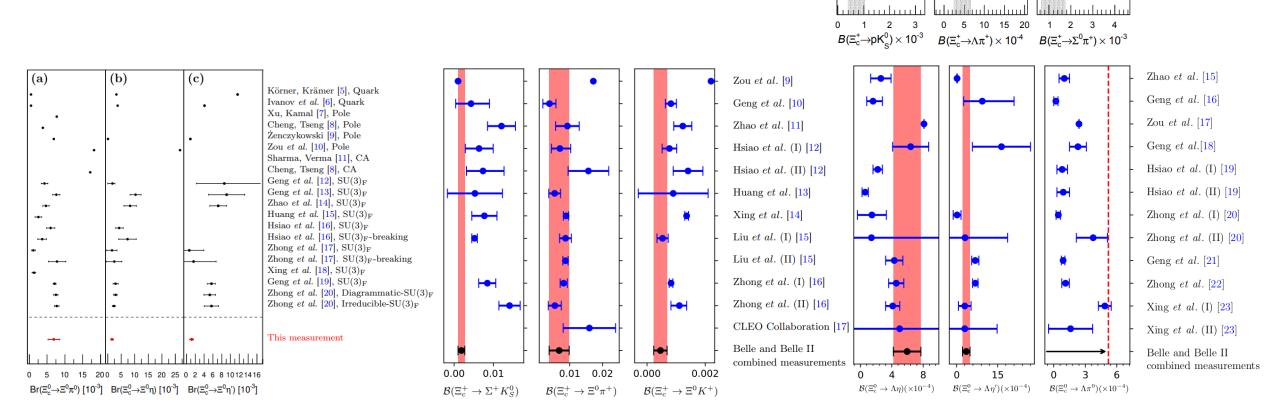











#### Comparison with theory predictions

- Theory predictions mostly not far from measurements
- The obtained results cannot rule-out any models



Zou *et.al* [12]

Liu [19]

Zhong et.al (I) [20] Zhong et.al (II) [20]

Zhao et.al [21] Hsiao et.al (I) [22] Hsiao et.al (II) [22]

Belle and Belle II combined measurement

Geng et.al [13] Geng et.al [14] Huang et.al [15] Zhong et.al (I) [16] Zhong et.al (II) [16] Xing et.al [17] Geng et.al [18]