

Bose-Einstein Correlations study A powerful probe to hadron source geometry

第十届 BESIII R 值与 QCD 强子结构 研讨会 2025 年 7 月 26日-7 月 30 日 乌鲁木齐

Tiantian Lei¹, Yijing Wang¹, Dong Liu^{1,2}, Bingxin Zhang³, Frank Maas^{2,4}, Haiming Hu³, and Guangshun Huang¹

¹University of Science and Technology of China, Hefei, China

²Helmholtz Institute Mainz, Germany

³Institute of High Energy Physics, Beijing, China

⁴GSI, Darmstadt, Germany

- ☐ Intensity interferometry (Hanbury-Brown/Twiss effect):
 - Origin in astrophysics, developed by Hanbury-Brown and Twiss in the 1950s, as means of determining the dimension of distant astronomical objects(galaxy or star). Nature 177, 27-29 [1956]
 - In subatomic physics, Bose-Einstein Correlations (BEC) first observed in pion emissions form proton-antiproton reactions by Goldhaber, Goldhaber, Lee and Pais. *Phys. Rev. Lett.* 3, 181-183 (1959) *Phys. Rev. Lett.* 120, 300-312 (1960)
 - ➤ After over a decade, G. Goldhaber and S. Goldhaber develop similar interferometry method to subatomic system. *Yad. Fiz.* 18, 656-666 [1973]
 - ➤ Since then, Significant theoretical development and widespread application in subatomic physics experiments, used to investigate the space-time evolution of elementary-particle and nuclear collisions. *Rept. Prog. Phys.* 66, 481-522 (2003)
 - ➤ In subatomic physics field, it is called BEC study or correlation femtoscopy (飞 镜), as the scale of the hadron source is always determined in femtometer level.

- Expression of boson interferometry:
 - \triangleright Consider a scenario where particles are emitted from multiple discrete sources, each characterized by a probability amplitude $f_i(\vec{x}) = f_i \delta^3(\vec{x} \vec{x}_i)$.
 - Figure 1. If $\psi(\vec{p}, \vec{x}_i)$ is the wave function of a particle emitted with momentum \vec{p} , on the plane wave assumption, $\psi(\vec{p}, \vec{x}_i) \sim e^{i(\vec{p}\vec{x}_i + \phi)}$.
 - Further assuming the incoherent emissions, the initial phase ϕ could set to 0, simplying the wave function $\psi(\vec{p}, \vec{x}_i) \sim e^{i\vec{p}\vec{x}_i}$.
 - \triangleright Accordingly, the probability P of observing a particle with momentum \vec{p} given by:

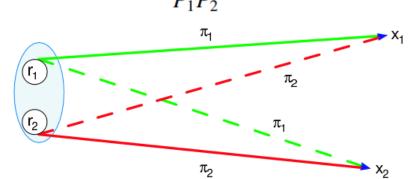
$$P = \sum_{i} |f_i \psi(\vec{p}, \vec{x}_i)|^2.$$

Further more, if the source is assumed continuous in space, the probability expressed as an integral:

$$P = \int d^3\vec{x} |f(\vec{x})|^2.$$

- Expression of boson interferometry:
 - \triangleright Similarly, the joint probability of observing two particles with momenta \vec{p}_1 and \vec{p}_2 from \vec{x}_1 and \vec{x}_2 is given by:

$$P_{12} = \int d^3\vec{x}_1 d^3\vec{x}_2 |\psi_{12}|^2 |f(\vec{x}_1)|^2 |f(\vec{x}_2)|^2,$$


- $\blacktriangleright \psi_{12} = \psi_{12}(\vec{p}_1, \vec{p}_2, \vec{x}_1, \vec{x}_2)$ is the two-particle wave function.
- \triangleright For identical bosons, the symmetrized ψ_{12} takes the form:

$$\psi_{12} = \frac{1}{\sqrt{2}} \left[e^{i(\vec{p}_1 \vec{x}_1 + \vec{p}_2 \vec{x}_2)} + e^{i(\vec{p}_1 \vec{x}_2 + \vec{p}_2 \vec{x}_1)} \right].$$

> Then, we can define the correlation function as:

$$R(\vec{p}_1, \vec{p}_2) = \frac{P_{12}}{P_1 P_2} = 1 + \frac{\int d^3 \vec{x}_1 d^3 \vec{x}_2 \cos \left[\Delta \vec{p} (\vec{x}_1 - \vec{x}_2)\right] |f(\vec{x}_1)|^2 |f(\vec{x}_2)|^2}{P_1 P_2},$$

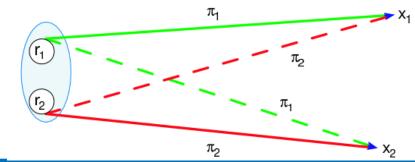
With $\Delta \vec{p} = \vec{p}_1 - \vec{p}_2$.

- Expression of boson interferometry:
 - ➤ After integration (Fourier transformation), we obtain:

$$R(\Delta \vec{p}) = 1 + |F(\Delta \vec{p})|^2.$$

 \triangleright Using the Lorentz-invariant parameter $Q^2 = -(q_1 - q_2)^2 = M^2 - 4m^2$, we obtain:

$$R(Q^2) = 1 + |F(Q^2)|^2$$
.


> Assuming a spherically symmetric Gaussian distribution for the emitting source,

$$f(r) = f(0)e^{-\frac{r^2}{2r_0^2}},$$

> The BEC function takes the form:

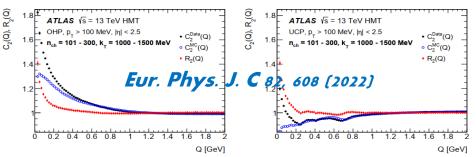
$$R(Q^2) = 1 + e^{-r^2 Q^2}.$$

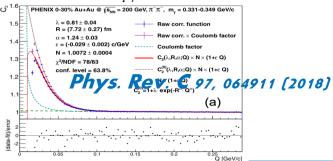
Above derivation under the ideal case of a fully incoherent source, due to the complexities of experiments, the expression of $R(Q^2)$ more complex too.

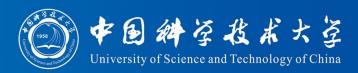
- Two particle correlation function:
 - Experimentally, BEC effect examined by measuring the two-particle correlation function:

$$C(Q^2) = \frac{\rho(Q^2)}{\rho_0(Q^2)},$$

- $\triangleright \rho(Q^2)$ is the distribution formed from the sample of all same-sign charged particle (SCP) pairs.
- $ho_0(Q^2)$ is the distribution of a reference sample, designed to exclude the BEC but include all other correlations.
- \triangleright Both ρ and ρ_0 are normalized to unity, i.e. they are probability density distributions.
- To remove the bias due to the choice of reference sample, the $C^{data}(Q^2)$ corrected by dividing it by the corresponding distributions of MC $C^{MC}(Q^2)$, obtaining the double ratio:

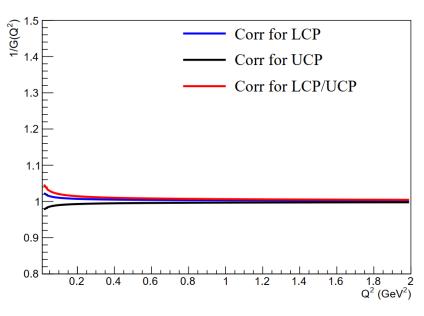

$$R(Q^{2}) = \frac{C^{\text{data}}(Q^{2})}{C^{\text{MC}}(Q^{2})} = \frac{\rho^{\text{data}}(Q^{2})}{\rho_{0}^{\text{data}}(Q^{2})} / \frac{\rho^{\text{MC}}(Q^{2})}{\rho_{0}^{\text{MC}}(Q^{2})},$$

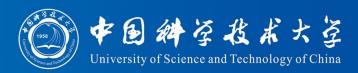

where the superscripts "MC" and "data" denote the distributions of MC and data.



☐ Reference sample:

- ➤ A well-chosen reference sample is crucial for an unbiased BEC signal.
- \triangleright Ideally, the $\rho_0(Q^2)$ should include all correlations present in $\rho(Q^2)$ except those arising form BEC.
- > To this end, several methods designed:
 - OCP sample: Formed with opposite-sign charged particles (OCP) from the same events.
 - OHP sample: Formed with SCP pairs from the same events, but inverts momentum of one particle.
 - ROTA sample: Formed with SCP pairs from the same events, but inverts transverse momentum of one particle.
 - OCPOHP sample: Formed with OCP pairs from the same events, and inverts momentum of one particle.
 - MIX sample: Form with the "event-mixing" method, particle pairs from different events.
- ➤ No one preferred in prior, usually chose according different situations of different experiment.
- LHC prefer OCP samples, nuclear collisions prefer event mixing method.


- □ Corrections due to the Coulomb interactions (Gamow factor):
 - \triangleright Coulomb interactions between charged particles modify the relative momentum distribution, and thus distort the Q^2 distributions.
 - > The effects, therefore, should be corrected, usually with the Gamow factors:


$$G(Q^2) = 2\pi \zeta / (\exp(2\pi \zeta) - 1)$$
, *Phys. Rev. C* 20, 2267 (1979)

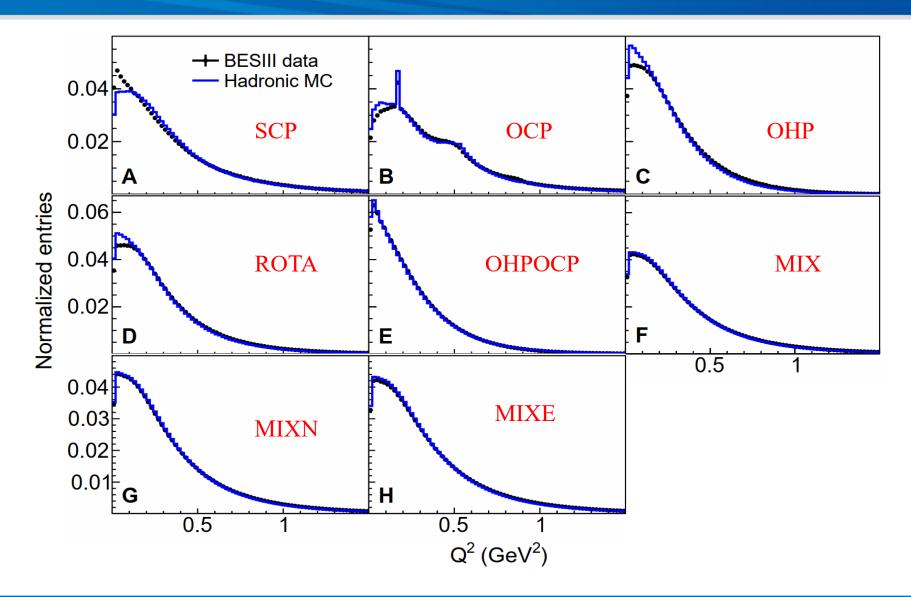
with $\zeta = \pm \alpha m_{\pi}/\sqrt{Q^2}$, positive sign for SCP and negative sign for OCP.

> Only need apply to data, do not need to MC since no Coulomb interactions simulated in

current MC samples.

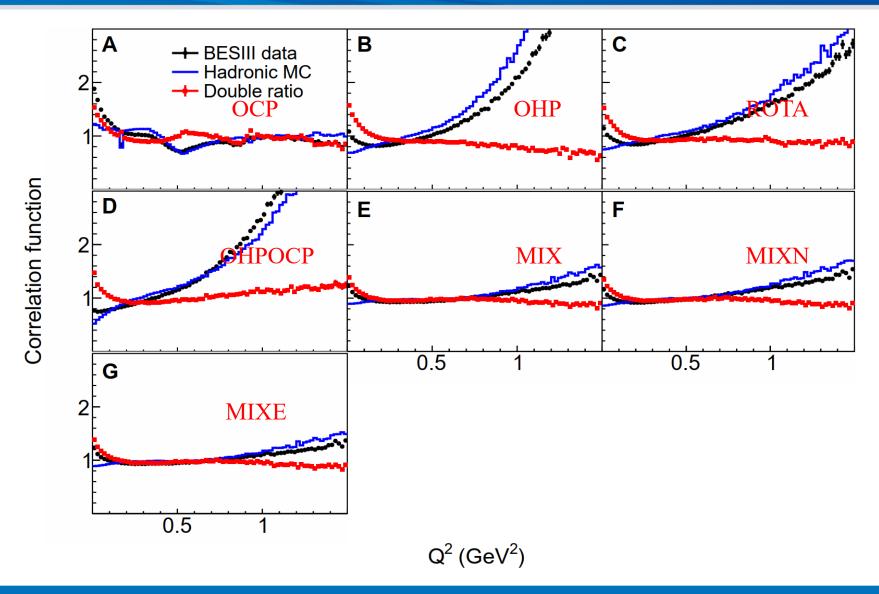
- Efficiency correction:
 - > Specialized selection criteria used to obtain the $\pi^{\pm}\pi^{\pm} + X$ final states for BEC study.
 - ➤ Possible bias may induced by the selection criteria, and these effect could be correct using the efficiency curve:

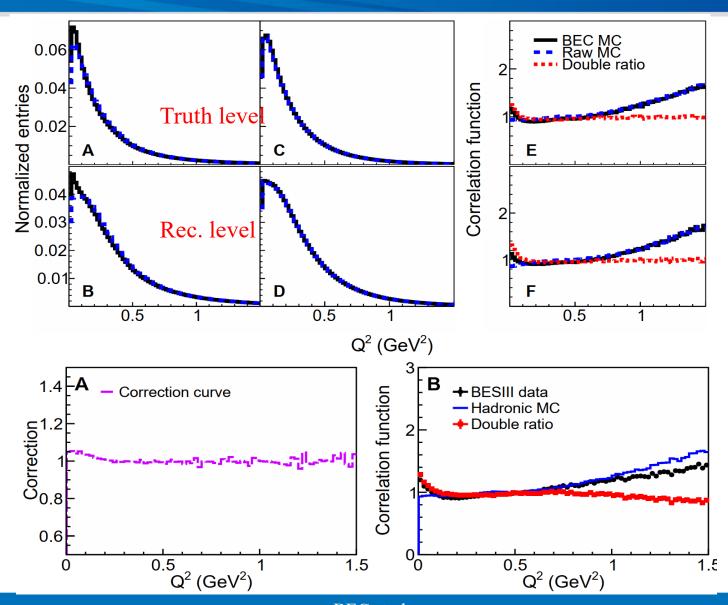
$$\frac{\rho_{\text{Rec}}^{\text{data}}/\rho_{0,\text{Rec}}^{\text{data}}}{\rho_{\text{Rec}}^{\text{MC}}/\rho_{0,\text{Rec}}^{\text{MC}}} \rightarrow \frac{(\rho_{\text{Rec}}^{\text{data}}/\varepsilon^{\text{BEC MC}})/(\rho_{0,\text{Rec}}^{\text{data}}/\varepsilon_{0}^{\text{BEC MC}})}{(\rho_{\text{Rec}}^{\text{MC}}/\varepsilon^{\text{MC}})/(\rho_{0,\text{Rec}}^{\text{MC}}/\varepsilon_{0}^{\text{MC}})} = \frac{\rho_{\text{Rec}}^{\text{data}}/\rho_{0,\text{Rec}}^{\text{data}}}{\rho_{\text{Rec}}^{\text{MC}}/\rho_{0,\text{Rec}}^{\text{MC}}} / \frac{\varepsilon^{\text{BEC MC}}/\varepsilon_{0}^{\text{BEC MC}}}{\varepsilon^{\text{MC}}/\varepsilon_{0}^{\text{MC}}},$$

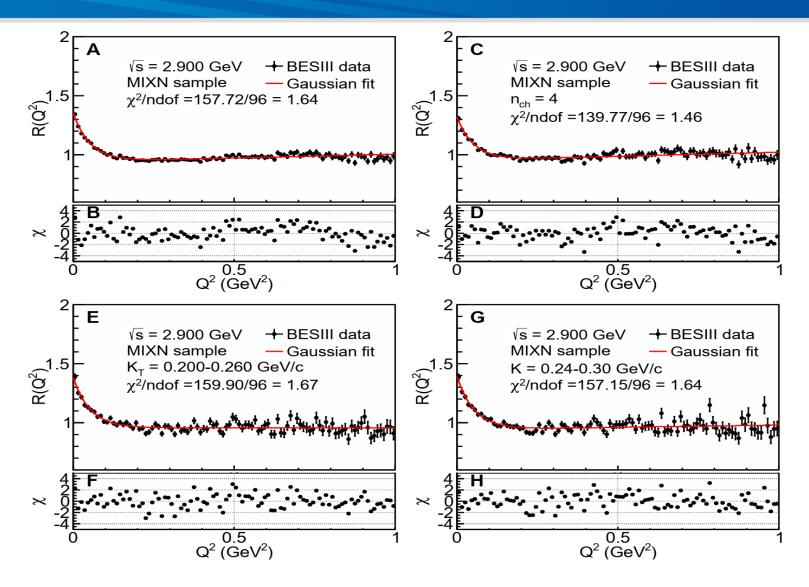

$$\frac{\varepsilon^{\text{MC}}/\varepsilon_{0}^{\text{MC}}}{\varepsilon^{\text{MC}}/\varepsilon_{0}^{\text{MC}}} / \varepsilon_{0}^{\text{MC}}$$
Efficiency curve

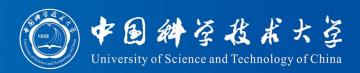
- Extraction of the 1-d BEC parameters, fitting the corrected $R(Q^2)$ with different source assumption:
 - Figure Gaussian source: $R(Q^2) = N(1 + \delta Q^2)(1 + \lambda e^{-r^2Q^2})$
 - ightharpoonup Exponential source: $R(Q^2) = N(1 + \delta Q^2)(1 + \lambda e^{-rQ})$
 - ightharpoonup Lévy-type source: $R(Q^2) = N(1 + \delta Q^2)(1 + \lambda e^{-(rQ)^{\alpha}})$

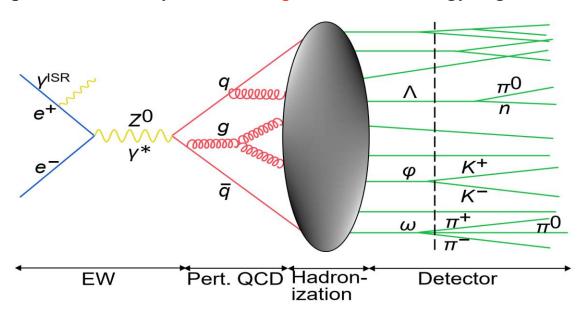
Here N is the normalized constant, λ is the incoherent parameter, r is the source size, and $(1 + \delta Q^2)$ accounts the residual nonBEC correlations not removed by reference sample and double ratio method.


Q^2 distributions


Correlation function




BEC MC distribution



- Experimental approaches in hadron physics:
 - ➤ Probing the internal structures of hadrons through precise measurements of cross sections and electromagnetic form factors.
 - ➤ Investigating hadron source structures by analyzing production processes, including fragmentation function measurements, BEC studies, and etc.
 - Comparing with the former, works related to the later are very rare, most of which performed in high-energy region.
 - ➤ However, experimental study in the non-perturbative energy region are very important.

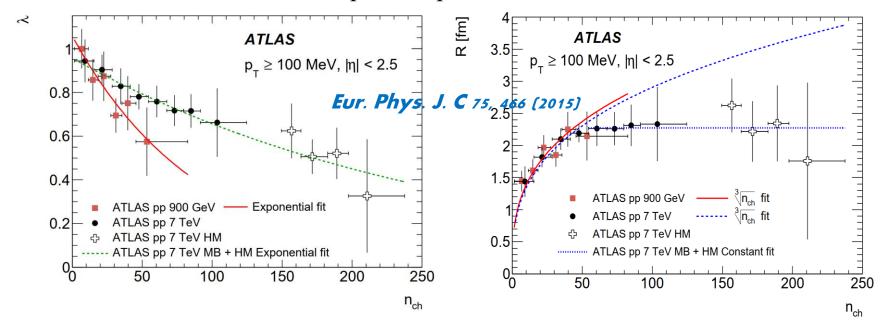
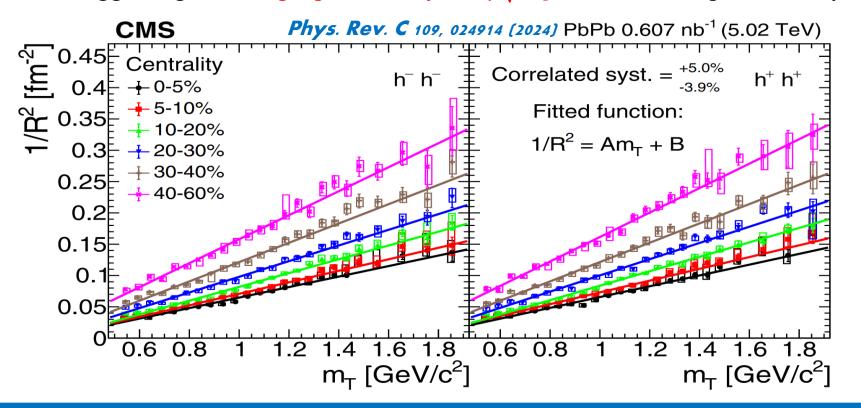

- □ 1-d BEC parameters were extracted by a lot of experiments, in different reactions, with most of the energies from dozens of GeV to TeV.
- Incoherent parameter λ , always determined to be less than 1, indicating a partially coherent emissions.
- Hydrodynamic-based theoretical studies attribute this to the mutual coherence of closely located emitters due to the uncertainty principle, residual nonfemtoscopic correlations (such as minijets and initial-state fluctuations), and etc.
- \square The effective source size r is found to be in on the femtometer scale.

Table: Summary of part previous measurement results of BEC parameters.

Experiment	\sqrt{s} (GeV)	r (fm)	λ	Exp. type
MARK II	29	0.97 ± 0.11	0.27 ± 0.04	e^+e^-
AMY	58	0.58 ± 0.06	0.39 ± 0.05	e^+e^-
OPAL	91	0.79 ± 0.02	0.85 ± 0.01	e^+e^-
NA22	21.7	0.83 ± 0.06	0.33 ± 0.02	$\pi^+ p$
ZEUS	10.5	0.67 ± 0.04	0.43 ± 0.09	ep
CMS	900	0.90 ± 0.03	0.63 ± 0.02	pp
CMS	2360	1.12 ± 0.10	$0.66 {\pm} 0.07$	pp
ATLAS	13000	2.12 ± 0.08	1.00 ± 0.08	_pp



- The dependence of BEC parameters on charged particle multiplicity (n_{ch}) widely studied.
- \square Revealing a decreasing trend for λ and an increasing trend for r with rising n_{ch} .
- A direct proportionality to $\sqrt[3]{n_{ch}}$ and the onset of saturation in r at high multiplicities have also been observed.
- ☐ These trends are successfully reproduced by hydrodynamic/hydrokinetic and Pomeron-based models of multiparticle production.



- The dependence of BEC parameters on pair average transverse momentum $(K_T = (p_{T,1} + p_{T,2})/2)$ widely investigated.
- \square Both λ and r show a decreasing trend with rising K_T .
- This behavior for r is predicted by hydrodynamic-based theoretical work, with some studies suggesting a direct proportionality to $1/\sqrt{m_T}$, confirmed experimentally.

Reference

- □ Review:
 - Rev. Mod. Phys. 62, 553 (1990)
 - ➤ Rept. Prog. Phys. 66, 481–522 (2003)
- Experimental work:
 - > Phys. Rev. C 109, 024914 (2024)
 - > JHEP 09, 172 (2023)
 - Eur. Phys. J. C 82, 608 (2022)
 - > Phys. Rev. Lett. 105, 032001 (2010)
 - > Phys. Rev. C 110, 064909 (2024)
- ☐ Theoretical work:
 - > Phys. Lett. B 725, 139–147 (2013)
 - > Phys. Rev. D 87 (9), 094024 (2013)
 - Adv. High Energy Phys. 2013, 198928 (2013)
 - > Phys. Rev. C 83, 044915 (2011)
 - Phys. Lett. B 720, 250–253 (2013)
 - > Phys. Rev. Lett. 113, 102301 (2014)
 - > Phys. Lett. B 703, 288–291 (2011)
 - > Phys. Rev. Lett. 53, 1219–1221 (1984)

Summary

- ☐ Intensity interferometry (Hanbury-Brown/Twiss effect), originating from astrophysics, developed by Hanbury-Brown and Twiss in the 1950s, has widely used in subatomic physics field as a powerful probe to hadron source geometry.
- However, most of previous work mainly focus on the high-energy scenario, leaving a critical gap in low-energy region, where experiment works play a more important roles.
- BESIII accumulate large data samples in the energy range 1.94~4.96 GeV, offering unique opportunities to perform this kind of work.
- ☐ The first BEC study for charged pions at BESIII has been internal reviewed in BESIII Collaboration.
- In the future, more BEC analysis could be performed at BESIII, such as $\pi^0\pi^0$, $K\overline{K}$, and BEC in three particles, in 3-d source assumption, time-evolution source assumption, etc.

Summary

- ☐ Intensity interferometry (Hanbury-Brown/Twiss effect), originating from astrophysics, developed by Hanbury-Brown and Twiss in the 1950s, has widely used in subatomic physics field as a powerful probe to hadron source geometry.
- However, most of previous work mainly focus on the high-energy scenario, leaving a critical gap in low-energy region, where experiment works play a more important roles.
- BESIII accumulate large data samples in the energy range 1.94~4.96 GeV, offering unique opportunities to perform this kind of work.
- ☐ The first BEC study for charged pions at BESIII has been internal reviewed in BESIII Collaboration.
- In the future, more BEC analysis could be performed at BESIII, such as $\pi^0\pi^0$, $K\overline{K}$, and BEC in three particles, in 3-d source assumption, time-evolution source assumption, etc.

Thanks for your attention!