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Status:

SDHCAL technological prototype
v" Short description
v’ Energy reconstruction method

v" Improvement with PID techniques
v’ Further improvements on energy reconstruction

Future:

v" SDHCAL for ILD@ILC
v SDHCAL for ILD@CEPC&FCCee

Summary



Higgs factory

- Measuring precisely the Higgs coupling constants will allow to compare with
the predictions from the Standard Model and if deviation then
- New physics and scale of the new physics

Decoupling theorem:

If new particles are present beyond the SM with masse M then their impact on the Higgs
coupling will be of the order of

F=am?,/M?
with a of the order of 1.

For instance models with first-order electroweak phase transition predict a mixing
between the Higgs and a heavy scalar particle S. The model predicts

g(HWW) =2m?,/v (1-1/2 m?;/m?)
Since the new particles are not seen at LHC in the mass range up to 1 TeV

Fis of a few % at most. Testing the SM requires measuring the Higgs coupling constants
with a precision of the order of 1% to test the BSM.



Why we need to have excellent calorimeters

Future calorimeters should achieve o¢/E = 30%/\/E

to reach Jet Energy Resolution (JER)of 2-4%

since for Higgs factories >70% of events have >2 jets

So having excellent JER will help study particles and their interactions
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PFA-based granular calorimeters

PFA: Construction of individual particles and estimation of
their energy/momentum in the most appropriate sub-detector.
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PFA requires the different sub-detectors including
calorimeters to be highly granular.

PFA uses the granularity to separate neutral from charged

contributions and exploits the tracking system to measure 5 ol
with precision the energy/momentum of charged particles £ 0~




SDHCAL

The SDHCAL concept is based on exploiting Gaseous Detectors high granularity potential
9 G.D are eqmpped with seml digital, power-pulsed electronics readout and placed

The structure proposed for the SDHCAL :

e is very compact with negligible dead zones

e Eliminates projective cracks

e Minimizes barrel / endcap separation
(services leaving from the outer radius)

SDHCAL Technological Prototype should

be as much as possible similar to the ILD module
and able to study hadronic showers

Challenges

-Homogeneity for large surfaces
-Thickness of only few mms

-Lateral segmentation of 1 cm X 1 cm
-Services from one side

-Embedded power-cycled electronics
-Self-supporting mechanical structure



SDHCAL prototype construction

v 10500 64-ch ASIC were tested and calibrated using a
dedicated (ASICs layout : 93% ).

v 310 PCBs were produced, cabled and tested.
They were assembled by sets of six to make 1m2 ASUs

v 170 DIF, 20 DCC were built and tested.

v 50 detectors were built and assembled with
their electronics into cassettes.

v Self-supporting mechanical structure.

v'DAQ system using both USB and HTML protocol
was developed and used.

v Full assembly took place at CERN.
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Completed in 2011 and tested in 2012
___ .

> 48 Iyers (-6A;)

"Wl > 1cm X 1cm granularity
3-threshold, 500000 channels
» Power-Pulsed
| > Triggerless DAQ system
» Self-supporting mechanical structure
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SDHCAL performance = «F
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Event selection

Electron rejection

Shower start > 5 or Njgyer > 30

Muon rejection

i > 2.2

Radiative muon rejection

Nlayer
> 20%

N, layer

Neutral rejection

Nigyer \RMS>5cm
NhitEF irst 5 layers > 4

* No containment
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# reconstructed events
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selection.

* No Cerenkov
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SDHCAL prototype was exposed to beam particles |
at CERN PS, SPS in 2012, 2015, 2017 and 2018
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CALICE SDHCAL CALICE SDHCAL
Pion 50GeV : Electron 50GeV
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Electron rejection: shower starting after the fourth layer (6 radiation length)
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CALICE SDHCAL
Pion 50GeV




Challenge: GEANT4 produces steps with deposited energy but RPC are
gaseous detector that measures charges = translate the steps into charge

S Charge avalanche i
-—> Step filtering —» simulation —» Charge splitting “

1) Steps are filtered out :

— G4 artifacts are eliminated

—Steps are kept following efficiency maps from
data.

- if two are close (dcut) only the one with
large charge is kept

2) Replace dE/dx of each step by a charge
According to a polya distribution

3) Distribute the charge on the pads following a
sum of two Gaussian distributions

4) Apply threshold cuts ( 3 in the SDHCAL case)
and compare with data



Polya function parameters are tuned by comparing muon efficiency versus
threshold between data and simulation.

Efficiency
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Cosmic muons are used to account for the higher multiplicity at large angles
a correction dependant of the angle
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Proton contamination?
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SDHCAL high granularity is conceived for PFA

It helps to optimize the connection of hits belonging to the same shower by using first the
topology and then the energy information

ArborPFA, April algorithms:
They connect hits and then
their clusters using distance
and orientation information
then correct using tracker
information (momentum)
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Energy reconstruction

= Nb. of pads with <signal < second threshold
Eec = @ (Nyoo) Ny + B (Niot) N5 + v (Nyoe) N3 | N, = Nb. of pads with second threshold <signal < third thresholc

N; = Nb. of pads with signal> third threshold

a, B,y are quadratic functions of N =N+ Ny + N;

They are computed by minimizing : | X*= (Eyeam=Erec)?/Ebeam

Only a few energy points with small amount of data were used for this minimisation
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Using GNN to reconstruct the energy

Predicted vs True Energy
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Energy reconstruction

Hough-Transform

Track segments reconstruction using 3D-Hough Transform helps to apply different treatment to the hits
of these segments.
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SDHCAL High-granularity impact
Hough Transform is an example to extract tracks within hadronic showers and to
use them to control the calorimeter in situ
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Particle Identification

Due to the absence of Cerenkov detectors in front of the SDHCAL, the use of an electron selection
(shower starting > d= 6 X|) was rather powerful but led to an important loss of hadrons (d=1 A,).

To reject electrons and muons without losing hadrons we use the excellent granularity of SDHCAL to
discriminate the three species. Several discriminatory variables were selected:

1- First layer of the shower (begin)
2- Number of tracks in the shower (trackMultiplicity)
3- Ratio of shower layers over total fired layers (hSHowerLayer/Nlayers)

4- Shower density (density)

5- Shower radius (radius)

6- Maximum shower position (length)
7- Ratio of N3/N;.;

8- Average number of clusters

» BDT technique was used.
» Simulated events of electrons, muons and pions were used for training/validation

before to apply to data.
» To avoid a possible bias due to discrepancy between data/simulation of electrons

showers in the SDHCAL, pure electrons and muons data events were also used
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# of showers normalized

# of showers normalized
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Particle Identification & Energy reconstruction

The BDT-based PID technique was also applied to the PS (3-80 GeV) samples
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Further improvements on the energy reconstruction

Detector homogeneity

The homogeneity of the detector response is important to achieve better energy reconstruction
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Further improvements on the energy reconstruction

Detector homogeneity

The homogeneity of the detector response is important to achieve better energy reconstruction
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A new calibration method based on varying the thresholds rather than the electronic gain was found to be powerful.
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measured for each value. The values of the three thresholds of each ASIC were fixed to obtain same multiplicity (first
threshold) and the same efficiency for thr2 and thr3.
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Further improvements on the energy reconstruction

Detector homogeneity

The homogeneity of the detector response is important to achieve better energy reconstruction
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Further improvements on the energy reconstruction

Detector homogeneity

The homogeneity of the detector response is important to achieve better energy reconstruction
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Further improvements on the energy reconstruction

Multi-Variate Techniques

Several MVT methods (NN and BDT) were used to exploit, in addition to N;, N, and N3, the
hadronic shower shape information related to its energy thanks to the high granularity of the
SDHCAL

Input Variables Description
nHitl The number of hits only exceeding the threshold 1
nHit2 The number of hits exceeding the threshold 2 but not threshold 3
nHit3 The number of hits exceeding the threshold 3
nHit nHit = nHit1 + nHit2 + nHit3
nHough Number of hits used to do Hough Transformation
nCluster Number of clusters
nTrack Number of tracks
nLayer Number of layers fired
Density The density of hits
meanRadius Mean of distance between tracks and hits
InterLayer Number of layers when meanRadius > 5cm
begin The number of the layer where the shower starts




Further improvements on the energy reconstruction

Several MVT methods were used to exploit in addition to N;, N, and N5 the shape
information that is related to the shower energy thanks to the high granularity of
SDHCAL. Simulated pion events within SDHCAL were used for this study.

S = 10 .
3 80" v E ? 9= =
g - e MLP e - S E
§ 70— = BDTG N = 8 - = BDTG i
U g0 v Classical s = © 7’5 v Classica = E
50 " = i3 ' 0 E
- ] 5 >
40— ) — = ¥ =
- - 4= —
30 ’,l = 35_ @ E
20 ."" = = 8 =
E Simulation 3 2B ‘ Simulation 5
10 & N e E
. T T B F T S P = o SO T T T T T
8 = - o o - =
uf| 50041 ' g - Gt 02F .
1 o) - v - B N
Lugl.u 0.021- o .« o I i 2-12_ ]
i | ] 7 ; — 7
[ e eantiRsmiithe L e S i 014 N
-0.02 - L — 0.12; _
-0.04 = 01F N
o b b b b b b b by - B

10 20 30 40 50 60 70 80 90 0.08

Ol
o

pogoiy puvlon sufonn ofounn Funys Fovuul vy d®i o
10 20 30 40 50 60 70 80

Ebeam [GeV] Ebeam [GeV]

MLP seems to perform better JINST 14, 2019, P10033



#entries normalized

Hadron identification Foo U T T
goossf .’)_OpCiieV
The energy reconstruction method was applied to hadron events. Lo
No distinction was made between pions and protons or others. Tooms|
Hadronic showers of pions and protons are not identical. ooz~ Simulation
0.015;
0.01—
This needs to be validated in beam test @ CERN o
Ozmmuqug Tl bbb i e o)
0 01 02 03 04 05 06 07 08 09 1

Further improvements on PID energy reconstruction

emFraction(MC info)

Better construction can be made if one can identify the nature f the hadron.

R LR R N R RRRR R T
T T T §0'1 T T I L B B B R E T [
005~ 1% T 1 %004 . 1
50 GeV Simulation £ Simulation 50 Gev E £ 005 s0Gev Simulation|
—pi —p! —pi -
— ::Iroton 5' — ﬁroton * 50 035 - 5' — ﬁroton
0.04— - £ 4 2 £
< £ F 4 o004 —
8 8 0.03¢ 8
— 0.025 -
0.03 0.03— =
0.02F —
002 7 F r .
0.015[ - 0.02
] 0.01- —
0.01— — E 0.01— n
r 0.005]- =
e 2 P Lol ] T PR P P TR P el ] o T T P B L
0 20 40 60 80 100 120 140 160 0 5 10 15 20 25 30 35 40 45. 0 0.02 0.04 006 0.08 0.1 0.12 0.14 0.16 0.18 0.2 1 2 3 4 5 6
meanRadius begin %nHit3 density

Future beam tests will be dedicated to study pion vs proton and kaon showers using
Cerenkov detectors. Then BDT technique will be used to develop hadron PID and then
energy construction algorithm with different (o, 3, Y) parameters could be used.



SDHCAL-ILD@ILC



SDHCAL R&D towards ILD

GRPC

. Glass Resistive Plate Chambers
(1 Detectors as large as 3m X 1m need to be built

Sensitive
O Electronic readout should be the most robust with “ss¢t*¢_gg /

minimal intervention during operation. SDHCAL
ILD Module

_ Stainless-steel
structure
(absorbers)

O DAQ system should be robust and efficient
[ Mechanical structure to be similar to the final one ?9019

L Envisage new features such timing, etc..

Goal: to build new prototype with few but large GRPC with the new components

- ILD Module0




Detector conception

Construction and operation of large GRPC necessitate some improvements with respect to the

present scenario.

Gas distribution : new scheme is proposed

}  Prototype circulation system
i _inlet

New circulation system _

outlet

—d

F




New electronics

Electronics readout for the 1m3 prototipo

(ASIC)

HADROC chip 1m?2 board =» 6 ASUs hosting 24 ASICs

v.L‘i i -;l‘l

iﬁi}j 33cm

1 DIF (detector InterFace) for 2 ASU (Active Sensor Unit.- PCB+ASICs) =» 3 DIFs for ONE 1m2 GRPC detector

Electronics readout for the final detector

36 columns of HR———

Onl F per GRPC (any size) with small dimensions to
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it in the small space available at the ILD detector

DIF dimensions
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(Top view)

— - - -
ASU Side




New electronics: ASIC

HARDROCR3 main features:

— Independent channels :
— Zero suppress

— Extended dynamic range (up to 50 pC)

— 12C link with triple voting for slow control parameters
— packaging in QFP208, die size ~30 mm?

— Consumption increase (internal PLL, 12C)

H3B TESTED : 786, Yield:83.3 %

S_CurveDACO_Gcor[228.50;238.50;218.50;6.20] |-H|
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HARDROCS3: Analog linearity
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ASU (Active Sensor Unit)

An important challenge is to build a PCB up to 1m length with good planarity to have a
homogeneous contact of pads with RPCs in order to guarantee an uniform response along all
the detector.

A company was found and 1x0.33 m2 with 13 layer ASUs have been built.

The ASU-ASU (= ASU-DIF) connections also produced




New electronics : DIF

DIF sends DAQ commands (config, clock, trigger) to front-end and transfer their signal
data to DAQ. It controls also the ASIC power pulsing

POWER IN
POWER

* Only one DIF per plane (instead of three)

CU' | N Z | o DIF handle up to 432 HR3 chips (vs 48 HR2 in previous DIF)
===% POWER — = HR3 slow control through 12C bus (12 IC2 buses).
I 1 = Keeps also 2 of the old slow control buses as backup &
spi redundancy.
] N Tare R e Data transmission to/from DAQ by Ethernet

Interrupt

e Clock and synchronization by TTC (already used in LHC)
* 93W Peak power supply with super-capacitors
(vs 8.6 W in previous DIF)
e Spare /O connectors to the FPGA (i.e. for GBT links)
e Upgrade USB 1.1 to USB 2.0

4/X1

075N Xy¥/X1

B
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AL A 55
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New readout electronics is being tested
All functionalities seem ok




New electronics : DCC

To synchronize several DIFs, a new DAQ board was developed. It contains:

-1 FPGA (cyclonelOLP) with 12x5 LVDS links

-Microprocessor (PIC32MZ) interfaced with TCP/IP and with the FPGA for
high level operations ( calibrations..etc)




Summary of activities related to ILC

» SDHCAL is a powerful PFA tool that fulfills all the requirements for
ILD@ILC.

» All the pieces of a module0 have been developed and
successfully tested. If a decision to go for ILC, the construction of
moduleO is straightforward and will take a short time to be built.

» Full construction of SDHCAL for ILC could be achieved easily with
the help of industry.



SDHCAL-ILD@CEPC/FCCee



Strategy followed by the SDHCAL groups

From the beginning the SDHCAL groups were part of the ILD@CEPC and now
for FCCee proposal.

SDHCAL was proposed as on of the HCAL baselines and the simulation of
physics performance of CEPC is based on SDHCAL performance.

Four important aspects were studied to cope with the constraint of CEPC:
1) SDHCAL depth

2) SDHCAL power consumption and active cooling

3) SDHCAL timing

4) Rate capabilities



SDHCAL depth

Due to L* constraint from CEPC the detector radius is smaller than the one for ILC.
This leads to that fact that the depth of the HCAL is smaller than that of ILD@ILC.

The option to reduce the number of SDHCAL layers by 4 and 8 and 12 layers was
studied on the simulation and on the data collected at TB@CERN.

Reducing by 4 layers seem to have small effects but one can still be efficient with
40 layers
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SDHCAL power consumption and cooling

The duty cycle of CEPC is different from that of ILC and no power pulsing is
possible.

The power consumption is therefore increased by a factor of 100-200 with
respect to ILC and active cooling is needed.

Lyon and Shanghai groups worked on a simple cooling system for SDHCAL
based on using water circulating into copper pipes

0.8 mW/chips with power pulsing, 80 mW/chips without power pulsing

108 chips

Rectangular section tubes : 2x1 mm

Flow out

symmetry

7

Flow in

>
PCB plate under: 1.4 mm



SDHCAL power consumption and cooling

The duty cycle of CEPC is different from that of ILC and no power pulsing is

possible.
The power consumption is therefore increased by a factor of 100-200 with

respect to ILC and active cooling is needed.
Lyon and Shanghai groups worked on a simple cooling system for SDHCAL
based on using water circulating into copper pipes

0.8 mW/chips with power pulsing, 80 mW/chips without power pulsing

C: sans power pulsing
Température

Type: Température
Unité: °C

Temps: 1

31/07/2015 11:28
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SDHCAL power consumption and cooling

Timing is an important factor to identify delayed neutrons and better reconstruct their energy

Distance from shower axis (w/o neutrons)

Distance from shower s

histoNK
Entiies 1.872879¢407 )°

70 |
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Timing can help to separate close-by showers and reduce the confusion for a better PFA application. Example:
pi-(20 GeV), K-(10 GeV) separated by 15 cm.
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Including time information to separate hadronic showers ( 10 GeV neutral
particle from 30 GeV charged particle) using techniques similar to ARBOR’s ones.

purity for neutral particle efficiency for neutral particle
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Predicted vs True Energy
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SDHCAL power consumption and cooling

How to achieve an excellent time resolution:

An ASIC with a fast preamplifier, precise discriminator and excellent TDC
1s needed
=2 PETIROC 32-channel, high bandwidth preamp (GBWP> 10 GHz), <3

mW/ch, dual time and charge measurement (Q>50 fC)

jitter <20 ps rms @ Q>0.3 pC e _
= TDC ecither internal or external (delay-line, Vernier,.etc on FPt °°:
iRPC CMS upgrade project) §

A fast-time DETECTOR wf | R R
— MultiGAP RPC is an excellent candidate. B 7 e o e e
4-5 gaps of 250 um each can provide 100 ps tim resolution
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First step towards transforming SDHCAL into T-SDHCAL

== N g Ethernet
PETIROC2A PETIROC2A ‘ s -

ZCU102
FEE C:D '"éi’;:ge C:D Evaluation

board

* Front-End Electronics for MRPC readout with
high timing resolution

PETIROC2A  PETIROC2A * The system includes a front-end board (FEB), a
detector interface card (DIF) and a data

acquisition system(DAQ) based on ZCU102.

Test System and Setup

Petiroc2A Evaluation Board

Some noise was observed because of external power lines



New version of PETIROC front-end board

< © 1. Improving power rail
_ 5, design
e & | 2. Better isolation between
e EE sensitive analog signals

and digital signals

Its power rails have been tested
and verified.

Si5345 — used to generate

clocks for Petiroc Output clocks have been
successfully tested

Time resolution of about 40 ps measured
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First step towards transforming SDHCAL into T-SDHCAL

New and easy way of construction MRPC
Using thin spacers made of mylar+double face

Large timing PCB
Board with 8 (could be extended to 12) Petircoc2B ASICs

e Pads 2cm x 2cm, 256 channels
Local FPGA (Xilinx Spartan-6 TQFP) embedded on board

Power

Supply - |
connectons | | | | | | | /L]

m

FPGA

FPGA
£33 K3 K

33cm _ .
g Top view

50cm

33cm

Bttom view




SDHCAL rate capability

GRPC have low rate detection capability (a few hundreds of Hz/cm?2)
This is ok for ILC.

For CEPC with 1.5 MHz cycle duty (Higgs factory) this is still ok since the
probability to have the same pad fired in one BC (0.7 ps) is about 10
and the probability to be fired once again before the electric field of the
GRPC has reached its full value after a depletion is still small.

In case of Z-run the rate may be a problem, in particular at high eta.
Several scenarios are proposed:

Replace glass by other low resistivity electrodes leading to higher rate
(a factor of 100-1000 higer)—> PEEK doped with nanoparticle but also
Tsinghua glass

Chamber # Krefine 1
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SDHCAL rate capability

GRPC have low rate detection capability (a few hundreds of Hz/cm?2)
This is ok for ILC.

For CEPC with 1.5 MHz cycle duty (Higgs factory) this is still ok since the
probability to have the same pad fired in one BC (0.7 ps) is about 10
and the probability to be fired once again before the electric field of the
GRPC has reached its full value after a depletion is still small.

In case of Z-run the rate may be a problem, in particular at high eta.
Another possible scenario is to use resistive MPGD such as GEM,
MICROMEGAS or pWell in the forward region and RPC in the barrel
region.

Tests using MM in the SDHCAL along the RPC has already been
successfully done.



Summary of activities related to CEPC/FCCee

SDHCAL fulfills also the requirements for ILD@CEPC as a Higgs
factory but necessitates probably some accommodations for Z
factory



Summary

» SDHCAL concept with its high granularity provides an excellent tool not

only to apply PFA by separating nearby showers but also to measure their
energy.

» Different techniques were used to measure hadronic shower energy
excellent linearity and very good resolution are obtained

» The exploitation of the hadronic shower shape thanks to the high
granularity is an excellent asset to identify particles and then better
measure their energy.

» In the future SDHCAL will exploit precise time information using MRPC.
The time information will improve on energy reconstruction by separating
delayed neutrons contribution and better estimating it.
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Time correction
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SDHCAL High-granularity impact
Hough Transform is an example to extract tracks within hadronic showers and to
use them to control the calorimeter in situ
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For single particle: How many hits are associated to the
main PFO? How many PFOs?
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Two hadronic shower separation
10 GeV neutral and 10 (30 GeV) charged pion.
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Timing could be an important factor to identify delayed neutrons and better reconstruct their
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Gas system

Gas recycling is necessary to reduce cost :

-Goal: reduce the gas consumption to reduce the cost.
-Gas renewal of 5-10% rather than 100%

-Conceived by the CERN gas group and successfully used in
B
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Cassette R&D

Cassettes were conceived
v To provide a robust structure.

v To maintain good contact 144 ASICs= 9216 chanels/lm
between the readout electroniCcs = mmemm——
and the GRPC.

v To be part of the absorber.

VIt allows to replace detectors
and electronics boards easily.

) + 5mm(steel) =
11 mm thickness

The cassettes are built of no-magnetic stainless steel walls 2.5 mm thick each
—> Total cassette thickness = 6mm (active layer)+5 mm (steel) = 11 mm



Reconstructed energy (GeV)

SDHCAL S

imulation

Quadratic formula

rrrrprrna

[<e]
o

80

70

30

20

10

“‘.

-.IlllIlllllllllllllllllllllllllllllllllllllll

llllllll

o

e 0.114pC,5pC, 15pC
e 0.114pC,1pC,50pC

llll]llllllll-lllll|‘llllllwllll_

[lllllllllIlll‘llllll‘llllll‘lll

]

1Il|l|ll

IIIlllllllllll'llllll'IIIIIIXIll

o
llllllllllllllll
L 4

C1 i1

—111111111 llllllllr "lllllllllllllllllllllllllllllllllllllllllll

[11[lll*llllll'llllll'llllll‘[ll

0 10

20 30 40 50 60 70 80
Energy (GeV)

P21
Quadratic formula
: 025 | X B3 K [ T 0l [ LA ] | S5 F T I | B 58 ¥ | l B §H D) ] r.i-1:0 I | B3 B2 %R | I L
o i .
=
= - af
8 ¥ * 0.114pC,5pC, 15pC
]
o e 0.114pC,1pC,50pC |
0.2 -
2
B . -
0.15— -
= a —4
= o —9
L 5 -
0.1 ° ° —t
- . —
L]
@
- ° ® n
= L] B
L]
0.05— -
| . l 1111 l | I . I L1 1 1 | | . I 11 11 l | . I 111 1 I 11
0 10 20 30 40 50 60 70 80
Energy (GeV)

Up to 20% improvment is expected



SDHCAL power consumption and cooling

Another solution is to use the new scheme developed by Lyon group (woven strips) to
read out RPC for which a reduction of a factor higher than 30 can be obtained.

Caveat: This is ok for muon detectors and tail catchers. For SDHCAL a simulation is
needed to validate
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SDHCAL power consumption and cooling

Other solution is to use the new scheme developed by Lyon group (woven strips) to
read out RPC for which a reduction of a factor higher than 30 can be obtained.

Caveat: This is ok for muon detectors and tail catchers. However to be used in SDHCAL
a simulation is needed to validate the concept.
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4 units of SDHCAL-MM

1m x 1m each were produced, tested in a

muon beam

| Hit position distribution - time cut |
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The 4 units of SDHCAL-MM were then inserted in the SDHCAL-RPC
prototype replacing the RPC units #10, 20, 35 and 50

Shower profile - 150 GeV pions - 370 V
N 2500

0 10 20 30 40 50 60 70 80 90
y (cm)

Additional development with Resistive Micromegas has started to render the

SDHCAL-Micromegas more robust against discharges that may happen in the core of
the shower.

Similar activities with Thick GEM replacing MM were also initiated.



Re-clustering should improve JER
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Confirmed in Pandora. Still some work to be done for April



