Phenomenological studies on searching for long-lived particles with displaced vertices and jets at the LHC

Zeren Simon Wang 王泽人 (HFUT)

<u>JHEP 07 (2024) 209</u>: K. Cheung, F.-T. Chung, G. Cottin, **ZSW** <u>Phys. Rev. D 110, 055033</u>: **ZSW** <u>2501.09065</u>: R. Beltrán, G. Cottin, J. Günther, M. Hirsch, A. Titov, **ZSW**

University of Science and Technology of China, Hefei, China May 9th, 2025

Outline

2 Recast and reinterpret an ATLAS search

ъ.

N A B N

Motivation

- SM: basis of modern understanding of particle physics
- Successful predictions: W, Z, h, g, c, t, τ , ...
- Excellent performance in experimental tests (e.g. EW sector)
- Issues: neutrino masses, baryon asymmetry, DM, non-unification of gauge couplings, strong CP problem, charge quantization...
- Hint at GUT & NP \Rightarrow the hierarchy problem
- NP models including SUSY predict new heavy fields
- No new fundamental particles found yet at the LHC
- More stringent limits placed on NP models, e.g. $m_{ ilde{q}, ilde{g}}\gtrsim 1$ TeV
- LHC focus: promptly decaying NP particles

LLPs in the SM

• LLPs: produced, travel a macroscopic distance, and then decay \rightarrow Displaced objects

LLPs in the SM, **B. Shuve's talk**

- Causes of the long lifetime:
 - Feeble couplings
 - Heavy mediators

Similarly applicable to BSM particles

$\ensuremath{\mathsf{LLPs}}$ in the BSM theories

Examples:

- Portal physics: ν_4 , γ' , s, and a
- RPV/compressed SUSY
- Mirror glueballs
- .
- See <u>1903.04497</u> for a review

Motivation:

- Non-vanishing active-neutrino masses
- Dark matter
- ...

⇒ Can we search for LLPs at colliders e.g. at the LHC? Yes!

1.5

Part I: Recast and reinterpret an ATLAS search for DVs and jets

Quark flavor violation and axion-like particles from top-quark decays at the LHC, JHEP 07 (2024) 209; K. Cheung, F.-T. Chung, G. Cottin, **ZSW**

Constraining long-lived particles from Higgs boson decays at the LHC with displaced vertices and jets, Phys. Rev. D 110, 055033; **ZSW**

Recast & Reinterpretation

- Experimentalists have performed multiple (LLP) searches
- These reported searches constrained a limited class of models only
- How to obtain their bounds on *other* models predicting *similar/identical signatures*?

Pheno approach:

- **Q** Recast: follow event selections of experimental searches step by step
- **Validation**: reproduce the published cutflow and/or exclusion limits
- Reinterpretation: apply the same analysis on your favorite NP model to derive the corresponding limits

LHC LLP searches

LLP signatures at colliders and the exponential decay distribution (<u>H. Russell's talk</u>)

- Disappearing track: <u>2309.16823</u>, <u>2201.02472</u>, ...
- DVs and missing transverse momentum: <u>2402.15804</u>, <u>1710.04901</u>, ...
- DV and a lepton: <u>2003.11956</u>, ...
- Displaced leptons: <u>2011.07812</u>, <u>2110.04809</u>, ...
- Delayed or non-pointing photons: <u>2209.01029</u>, ...
- DVs and jets: <u>2301.13866</u>

ヘロマ 不留 マイドマ キャン ひょう

The ATLAS DV+jets search

<u>2301.13866</u>: 13 TeV, 139 fb⁻¹

- Signal regions: High- p_T jet and Trackless jet
- Long-lived electroweakinos with RPV $\lambda'' \bar{U} \bar{D} \bar{D}$ operators: $\tilde{\chi} \rightarrow qqq$
 - Strong channel: $pp \rightarrow \tilde{g}\tilde{g}$ with $\tilde{g} \stackrel{\text{prompt}}{\rightarrow} \tilde{\chi}_1^0 qq$
 - EW channel: $pp \to \tilde{\chi}\tilde{\chi}$ with $\tilde{\chi} = \tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_1^{\pm}$
- Require large jet-p_T at the truth-level (differing between the two SRs)
- Requires at least one DV of quality
- Delicate requirements such as multi-jet trigger and material veto

SR	Observed	Expected	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	$\langle \sigma_{vis} \rangle_{obs}^{95}$ [fb]
High- <i>pT</i> -jet SR	1	$0.46^{+0.27}_{-0.30}$	3.8	$3.1^{+1.0}_{-0.1}$	0.027
Trackless-jet SR	0	$0.83^{+0.51}_{-0.53}$	3.0	$3.4^{+1.3}_{-0.3}$	0.022

Recast procedure of the ATLAS DV+jets search

- Follow ATLAS recast instructions for this search; see also HEPData
- Event generation:
 - \bullet Generate signal events in <code>MadGraph5</code> with the SUSY SLHA spectrum files provided by <code>ATLAS</code>
 - CKKW-L jet-merging with up to 2 additional jets in the hard processes
 - Truth jets reconstructed with FastJet; using particles including those from the LLP decays
- Event selections:
 - Event- & Vertex-level acceptances: \mathcal{A}_{event} , \mathcal{A}_{vertex}
 - Event- & Vertex-level efficiencies: ϵ_{event} , ϵ_{vertex}
- Apply parameterized efficiencies to account for delicate requirements; Provided by ATLAS
- Final cutflow efficiency:

$$\epsilon = \mathcal{A}_{\mathsf{event}} \cdot \epsilon_{\mathsf{event}} \cdot \left(1 - \prod_{\mathsf{vertex}} (1 - \mathcal{A}_{\mathsf{vertex}} \cdot \epsilon_{\mathsf{vertex}}) \right)$$

くらく エード・トリー シック

Event- and vertex-level acceptances

• \mathcal{A}_{event} :

SR	High- <i>p_T</i> jet	Trackless jet
Jet selection	$n_{jet}^{250} \ge 4 \text{ or } n_{jet}^{195} \ge 5$ or $n_{jet}^{116} \ge 6 \text{ or } n_{jet}^{90} \ge 7$	$ \begin{array}{c} n_{jet}^{137} \geq 4 \text{ or } n_{jet}^{101} \geq 5 \\ \text{or } n_{jet}^{83} \geq 6 \text{ or } n_{jet}^{55} \geq 7, \\ n_{displaced jet}^{70} \geq 1 \text{ or } n_{displaced jet}^{50} \geq 2 \end{array} $

"displaced jet" defined by matching jets with LLP decay products

• \mathcal{A}_{vertex} : at least one vertex should pass a list of vertex requirements:

- (1) 4 mm $< R_{xy} < 300$ mm and |z| < 300 mm
- 2 At least one track should satisfy $d_0 > 2 \text{ mm}$
- The displaced vertex should have at least 5 decay products of a massive particle satisfying the following requirements:

() It should be a track with a boosted transverse decay length > 520 mm

2 Its p_T and charge q should obey the relation $p_T/|q|>1$ GeV

 m_{DV} > 10 GeV; truth vertex constructed with the decay products passing the requirements above, for which the mass of each decay product is assumed to be m_{π±}

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ■ ● ● ●

Parameterized efficiencies

- Parameterized efficiencies provided by the ATLAS collaboration at both event- and vertex-levels that account for quality requirements such as multi-jet trigger, jet filter, and material effects that are difficult to simulate
- Applied to truth-level objects!

 ϵ_{event} : functions of the truth-jet scalar p_T sum and R_{xy} of the furthest LLP decay ϵ_{vertex} : for reconstructing the DVs; functions of R_{xy} , m_{DV} , and the LLP decay-product multiplicity n_{trk}

Validation results:

High- p_T -jet SR acceptance and final cutflow efficiency

- Strong channel, $\tilde{\chi}_1^0$ decaying to light-flavor quarks

	Acceptance [%]								
$m(\tilde{g})$ [GeV]		2000		2000		2400		2000	
$m(ilde{\chi}_1^0)$ [GeV]		850		50		200	1250		
$ au(ilde{\chi}_1^0)$ [ns]	0.01		0.1		1		10		
Selection	Exp.	This work	Exp.	This work	Exp.	This work	Exp.	This work	
Jet selection	99.9	99.8	96.6	96.9	97.2	98.2	96.1	99.9	
Event has ≥ 1 DV passing:									
$R_{xy}, z < 300 \text{ mm}$	99.9	99.8	78.7	79.7	44.7	45.5	31.7	31.2	
$R_{xy} > 4 \text{ mm}$	29.6	29.7	77.0	78.3	43.8	44.7	30.9	30.5	
≥ 1 track with $ d_0 > 2$ mm	29.6	29.7	75.6	77.6	43.7	44.7	30.9	30.5	
$n_{ m selected\ decay\ products} \geq 5$	29.6	29.7	75.5	77.3	43.7	44.7	30.9	30.5	
Invariant mass $> 10 \text{ GeV}$	29.6	29.7	74.7	75.8	43.7	44.7	30.9	30.5	

$m(\widetilde{g}), m(\widetilde{\chi}^0_1), au(\widetilde{\chi}^0_1)$	Full Sim.	Param. Exp.	Param. Ours	Non-closure
2000 GeV, 850 GeV, 0.01 ns	27.8%	26.0%	26.6%	-4.3%
2000 GeV, 50 GeV, 0.1 ns	14.4%	13.8%	21.6%	50.0%
2400 GeV, 200 GeV, 1 ns	11.5%	11.5%	14.4%	25.2%
2000 GeV, 1250 GeV, 10 ns	9.2%	8.6%	8.4%	-8.7%

□ ▶ 《圖 ▶ 《 圖 ▶ 《 圖 ▶ 《 圖 ■ ' の Q (

Validation results:

Trackless-jet SR acceptance and final cutflow efficiency

- EW-channel, electroweakinos decaying to light-flavor quarks

	Acceptance [%]							
$m(ilde{\chi}_1^0)$ [GeV]		500		500		1300	1300	
$ au(ilde{\chi}_1^0)$ [ns]		0.1	1		0.1		1	
Selection	Exp.	This work	Exp.	This work	Exp.	This work	Exp.	This work
Jet selection	49.5	51.0	50.1	51.0	96.8	98.5	98.5	98.5
Event has ≥ 1 DV passing:								
$R_{xy}, z < 300 \text{ mm}$	49.5	51.0	41.0	41.5	96.8	98.5	92.1	92.4
$R_{xy} > 4 \text{ mm}$	46.5	47.6	39.8	40.4	85.9	86.9	89.9	90.5
≥ 1 track with $ d_0 > 2$ mm	46.5	47.6	39.8	40.4	85.9	86.9	89.9	90.5
$n_{\text{selected decay products}} \ge 5$	46.5	47.6	39.8	40.4	85.9	86.9	89.9	90.5
Invariant mass $> 10 \text{ GeV}$	46.5	47.6	39.8	40.4	85.9	86.9	89.9	90.5

$m(ilde{\chi}^0_1), au(ilde{\chi}^0_1)$	Full Sim.	Param. Exp.	Param. Ours	Non-closure
500 GeV, 0.1 ns	31.1%	28.1%	34.6%	11.3%
500 GeV, 1 ns	14.3%	14.3%	24.9%	74.1%
1300 GeV, 0.1 ns	12.2%	11.7%	11.1%	-9.0%
1300 GeV, 1 ns	8.3%	7.9%	11.7%	41.0%

Discussions on the validation

- Generally excellent validation results with the acceptance requirements only \Rightarrow we should have selected the correct set of events from the whole event samples
- Inputs of the event-level and vertex-level efficiencies determine also the acceptance-level cutflows
- Cannot find issues within coding itself either
- Cannot explain the discrepancies, and urge for further collaboration between the theorists and experimentalists
- Uploaded our code to the public LLP Recasting Repository
- Assign an uncertainty of 50% in numerical studies

くゆ エヨト イヨト ヨヨ ろくつ

Reinterpretation: axion-like particles

- Axion-like particles (ALPs): pseudoscalar particles; predicted in string compactifications, supersymmetry models, Froggat-Nielsen models of favor, ...
- Do not necessarily solve the strong CP problem in the SM as the QCD axions do
- A rich phenomenology at various terrestrial experiments

Quark flavor violation

• Consider a scenario with a Lagrangian where the ALPs couple at tree level to quarks only, both diagonally and off-diagonally

$$\mathcal{L}_{a, \text{ eff}} = \frac{\partial^{\mu} a}{2\Lambda} \Big(\sum_{i=1,2,3} \mathbf{g}_{ii} \ \bar{q}_i \gamma_{\mu} \gamma_5 q_i + \sum_{i,j=1,2,3}^{i \neq j} \mathbf{g}_{ij} \ \bar{u}_i \gamma_{\mu} \gamma_5 u_j \Big) \\ + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) - \frac{1}{2} m_a^2 a^2$$

- g's: real and positive
- Quark-flavor off-diagonal couplings motivated in UV-complete models
- Off-diagonal: focus on t u a and t c a
- Diagonal: all quarks
- Remain agnostic on a UV-completion origin for exactly this particular flavor structure and treat the ALP-quark couplings as independent parameters in this phenomenological work

(日本)

Signal process

$$pp \xrightarrow{SM} t\bar{t}, (t \to W^+ b, W^+ \to jj), (\bar{t} \to \bar{u}_i a, a \xrightarrow{\text{disp.}} jj), \text{ with } i = 1, 2$$

and its charge-conjugated channel

- jj denotes two jets including the b-quarks
- a: long-lived and decays to jj with a displacement from the IP
- Assume g_{ii} with i = 1, 2, 3 ('decay couplings') are non-vanishing and universal, and $g_{31} = g_{13} = g_{32} = g_{23}$ ('production couplings')

$$\Gamma(t \to au_i) = \frac{N_c}{384\pi} \frac{g_{3i}^2}{\Lambda^2} \frac{m_a^2}{m_t} \left(\frac{(m_t^2 - m_{u_i}^2)^2}{m_a^2} - (m_t^2 + m_{u_i}^2) \right) \\ \times \sqrt{\left(1 - \frac{(m_a + m_{u_i})^2}{m_t^2} \right) \left(1 - \frac{(m_a - m_{u_i})^2}{m_t^2} \right)}$$

▲□ ▲ □ ▲ ■ ▲ ■ ■ ■ ● ● ●

ALP decays via diagonal couplings

• The main channel:

$$\Gamma(\mathbf{a} \to \mathbf{q}_i \bar{\mathbf{q}}_i) = \frac{N_c m_a m_{q_i}^2}{8\pi} \frac{\mathbf{g}_{ii}^2}{\Lambda^2} \sqrt{1 - 4m_{q_i}^2/m_a^2}$$

• Applicable for $m_a\gtrsim 1$ GeV (perturbative QCD)

Other channels:

- $a \rightarrow gg$ via g_{ii} : Br can be up to about 40% for $m_a \lesssim 100$ GeV; leads to the same signatures and could only enhance the bounds on the production couplings mildly; ignored for simplicity
- $a \to \gamma \gamma$: for $m_a \sim \mathcal{O}(10)$ GeV, suppressed by more than two orders of magnitude; ignored
- $a \rightarrow q_i q_j$ at loop level: suppressed and ignored

(日) (四) (日) (日) (日) (日) (日)

ALP decays via off-diagonal couplings

• $g_{3i} \Rightarrow$ 3-body or 4-body ALP decays; important if $g_{3i} \gg g_{jj}$:

$$a \stackrel{g_{3i}}{\longrightarrow} \bar{u}_i t^* \to \bar{u}_i \, b \, W^{+(*)} \to \bar{u}_i \, b \, (jj \text{ or } l^+ \, \nu), \text{ with } i = 1, 2$$

- *W*-boson off-shell (4-body decays) or on-shell (3-body decays), depending on *m*_a
- For $m_a \lesssim m_W + m_b \sim 85$ GeV, g_{3i} 's can induce ALP 4-body decays which can be the dominant decay modes if the production coupling is larger than the decay coupling by at least around 4 orders of magnitude (checked numerically with MadGraph5)
- Automatic calculation of the decay widths of these 4-body decay modes within MadGraph5 too much time-consuming ⇒ Not including them in our computation and restrict ourselves to the parameter space where such contributions are unimportant
- For $m_t \gtrsim m_a \gtrsim m_W + m_b$, the off-diagonal couplings can result in ALP 3-body decays and these modes are included in our computation

Present bounds on ALP-quark couplings

- Low-energy precision measurements: rare decays of kaons, *D* and *B*-mesons, and J/Ψ ; relevant only to the ALPs lighter than the *B*-mesons
- Collider searches: dominant bounds for $m_a \gtrsim 10$ GeV
- We focus on $m_a \gtrsim 10$ GeV because of $m_{\rm DV} > 10$ GeV required
- Relevant existing bounds:

Ref.	Method	Couplings bounded	Our finding
JHEP 09 (2023) 063	Recast an ATLAS search	g_{tt}/Λ	Orders of magnitude weaker than our bounds
Phys.Rev.Lett. 133, 161803	Performed an ATLAS DV search	$g_{3,1}/\Lambda \& g_{3,2}/\Lambda$	1+ order of magnitude weaker than our bounds
JHEP 07 (2022) 122	Recast CMS & ATLAS searches	$g_{3,1}/\Lambda$ & $g_{3,2}/\Lambda$	We recast&reinterpret the searches

- <u>CMS search</u>: top + jets
 <u>ATLAS search</u>: top + MET
- Following JHEP 07 (2022) 122 for recasting these searches
- Not giving detail here

<<p>◆日本

Simulation & Computation

- UFO model of the ALP: FeynRules
- Signal-event generation: MadGraph5, 10^6 events simulated at each parameter point in a grid scan over prod. coup., decay coup., and m_a
- Γ_a : auto-computed within MadGraph5
- Showering, hadronization, and completing the truth-level decay chains of the produced particles: Pythia8
- Estimate of ϵ : our recasting code

$$N_{S} = 2 \cdot \mathcal{L} \cdot \sigma(pp \to t\bar{t})_{SM} \cdot \mathcal{B}(t \to W^{+}b) \cdot \mathcal{B}(W^{+} \to jj)$$
$$\cdot \mathcal{B}(\bar{t} \to ja) \cdot \mathcal{B}(a \to jj) \cdot \epsilon$$

- \mathcal{L} : integrated luminosity j = u, d, s, c, b
- $\mathcal{B}(t \to W^+ b) = 99.7\%$ $\mathcal{B}(W^+ \to ij) = 67.41\%$
- $\sigma(pp \rightarrow t\bar{t})_{SM} = 833.9$ pb computed at NNLO+NNLL with the Top++2.0 program for $\sqrt{s} = 13$ TeV

Reinterpretation results -g vs. g

- Assume the same S_{obs}^{95} values for both 139 fb⁻¹ and 3000 fb⁻¹

Reinterpretation results -g vs. m_a

Searching for LLPs w/ DV & jets at the LHC

-

Long-lived scalars from Higgs-boson decays at the LHC

- New scalars: models of singlet-scalar-extended SM, neutral-naturalness, 2HDM, SUSY, ...
- Benchmark scenarios: $h \rightarrow \phi \phi$, $\Phi \rightarrow ss$
- Simulation:
 - Monte-Carlo simulation with Pythia8
 - Scan over mass and lifetime of the LLPs
 - Use the module HiggsSM:gg2H for simulating the gluon-fusion process with $\sqrt{s}=13~{\rm TeV}$

$$N_{S} = \sigma(\mathsf{LLP}) \cdot \mathcal{L} \cdot \epsilon \cdot (\mathsf{Br}(\mathsf{sig.}))^{2}$$

- ϵ : the final cutflow efficiencies of the ATLAS DV+jets search
- Br(sig.): signature final states
- Power of 2: *both* LLPs \xrightarrow{decay} the specified signature final states

<<p>◆日本

$h \rightarrow \phi \phi$

• A light singlet scalar from SM-like Higgs-boson decays

• mass range:
$$m_{\phi} \sim [10 \text{ GeV}, 62 \text{ GeV}]$$

- 10 GeV: $m_{\rm DV} > 10$ GeV
- 62 GeV: phase-space requirement

• Signal process:
$$pp \xrightarrow{g.t.} h \to \phi\phi, (\phi \to b\bar{b}, \phi \to b\bar{b})$$

• ${\rm Br}(\phi
ightarrow b ar{b})$ computed with HDECAY

•
$$\sigma(pp \xrightarrow{\text{g.f.}} h) = 48.5 \text{ pb at } \sqrt{s} = 13 \text{ TeV}$$

Reinterpretation results

$\Phi \to \textit{ss}$

- A heavy Higgs boson and a long-lived light scalar
- Benchmark scenarios following ATLAS searches:
 - $\frac{1911.12575}{\bullet (m_{\Phi}, m_s)} = (600 \text{ GeV}, 150 \text{ GeV})$ • $(m_{\Phi}, m_s) = (1000 \text{ GeV}, 275 \text{ GeV})$
 - $(m_{\Phi}, m_s) = (1000 \text{ GeV}, 400 \text{ GeV})$

Signal process: $pp \xrightarrow{g.f.} \Phi \to ss, (s \to x\bar{x}, s \to x\bar{x})$, with $x = b, c, \tau$

•
$$Br(s \to b\bar{b}) = 85\%, Br(s \to c\bar{c}) = 5\%, Br(s \to \tau\bar{\tau}) = 8\%$$

(日本)

Reinterpretation results

1902.03094 & 2203.01009: ATLAS searches for displaced hadronic jets

Searching for LLPs w/ DV & jets at the LHC

(日)

Part II: Propose an LHC search for DVs and jets

Heavy neutral leptons and top quarks in effective field theory, <u>2501.09065</u>; R. Beltrán, G. Cottin, J. Günther, M. Hirsch, A. Titov, **ZSW**

JHEP accepted

An additional theoretical scenario

- N_RSMEFT
- Long-lived HNLs and d = 6 operators with top quarks
- HNLs produced from
 - pp collisions in association with a single top
 - On-standard decays of top quarks
- Experiments and Signature:
 - ATLAS; DV+jets
 - LHC far detectors; DV
- Motivations: non-zero m_{ν} , dark matter, baryon asymmetry, ...

*N_R*SMEFT

- Minimal scenario: m_N and $|V|^2$
- UV-completions beyond the SM: Z', U(1)_{B-L}, leptoquarks, ...
- No new resonances at the LHC \Rightarrow Effective Field Theory
- Separation of scales: $m_N \lesssim v$ and $\Lambda \gg v$; v, Higgs VEV
- *N_R*SMEFT: EFT that describes the SM with additional light fermionic singlets
- Multiple pheno studies using N_RSMEFT exist
- We focus on operators with top quarks
- Long-lived HNL⇒ displaced signals in the LHC main detectors or far detectors
- Pair- N_R and Single- N_R operators

Model scenario

- $\mathcal{L}_{Yuk} = Y_{\ell}^{\nu} \overline{L_{\ell}} \tilde{H} N_R + h.c. \Rightarrow \nu N \text{ mixing } V_{\ell N}$ after EWSB
- Assume only one N kinematically relevant
- Assume a Dirac HNL
- 1st-gen leptons, 1st- and 3rd-gen quarks
- $V_{\ell N}$ treated as a free parameter
- Focus on LNC and BNC 4-fermion operators
- We do not use second-generation quark indices

EFT operators

	Name	Structure (+ h.c. when needed)
	\mathcal{O}_{uN}^{13}	$\left(\overline{u_R}\gamma^{\mu}t_R\right)\left(\overline{N_R}\gamma_{\mu}N_R\right)$
r-N _F	\mathcal{O}_{uN}^{33}	$(\overline{t_R}\gamma^{\mu}t_R)\left(\overline{N_R}\gamma_{\mu}N_R\right)$
Pai	${\cal O}_{QN}^{13}$	$\left(\overline{Q_{1}}\gamma^{\mu}Q_{3}\right)\left(\overline{N_{R}}\gamma_{\mu}N_{R}\right) = \left(\overline{u_{L}}\gamma^{\mu}t_{L}\right)\left(\overline{N_{R}}\gamma_{\mu}N_{R}\right) + \left(\overline{d_{L}}\gamma^{\mu}b_{L}\right)\left(\overline{N_{R}}\gamma_{\mu}N_{R}\right)$
	${\cal O}_{QN}^{33}$	$\left(\overline{Q_3}\gamma^{\mu}Q_3\right)\left(\overline{N_R}\gamma_{\mu}N_R\right) = \left(\overline{t_L}\gamma^{\mu}t_L\right)\left(\overline{N_R}\gamma_{\mu}N_R\right) + \left(\overline{b_L}\gamma^{\mu}b_L\right)\left(\overline{N_R}\gamma_{\mu}N_R\right)$
	$\mathcal{O}_{\textit{duNe}}^{13}$	$\left(\overline{d_{R}}\gamma^{\mu}t_{R} ight)\left(\overline{N_{R}}\gamma_{\mu}e_{R} ight)$
	$\mathcal{O}_{\textit{duNe}}^{33}$	$\left(\overline{m{b}_{R}}\gamma^{\mu}m{t}_{R} ight)\left(\overline{m{N}_{R}}\gamma_{\mu}m{e}_{R} ight)$
	$\mathcal{O}_{\textit{LNQd}}^{31}$	$\left(\overline{L}N_{R}\right)\epsilon\left(\overline{Q_{3}}^{T}d_{R}\right)=\left(\overline{\nu_{L}}N_{R}\right)\left(\overline{b_{L}}d_{R}\right)-\left(\overline{e_{L}}N_{R}\right)\left(\overline{t_{L}}d_{R}\right)$
e-N _R	\mathcal{O}_{LNQd}^{33}	$\left(\overline{L}N_{R}\right)\epsilon\left(\overline{Q_{3}}^{T}b_{R}\right)=\left(\overline{\nu_{L}}N_{R}\right)\left(\overline{b_{L}}b_{R}\right)-\left(\overline{e_{L}}N_{R}\right)\left(\overline{t_{L}}b_{R}\right)$
ingle	\mathcal{O}_{LdQN}^{13}	$\left(\overline{L}d_{R}\right)\epsilon\left(\overline{Q_{3}}^{T}N_{R}\right)=\left(\overline{\nu_{L}}d_{R}\right)\left(\overline{b_{L}}N_{R}\right)-\left(\overline{e_{L}}d_{R}\right)\left(\overline{t_{L}}N_{R}\right)$
S	\mathcal{O}_{LdQN}^{33}	$\left(\overline{L}b_{R}\right)\epsilon\left(\overline{Q_{3}}^{T}N_{R}\right)=\left(\overline{\nu_{L}}b_{R}\right)\left(\overline{b_{L}}N_{R}\right)-\left(\overline{e_{L}}b_{R}\right)\left(\overline{t_{L}}N_{R}\right)$
	${\cal O}_{\it QuNL}^{13}$	$\left(\overline{Q_1}t_R\right)\left(\overline{N_R}L\right) = \left(\overline{u_L}t_R\right)\left(\overline{N_R}\nu_L\right) + \left(\overline{d_L}t_R\right)\left(\overline{N_R}e_L\right)$
	\mathcal{O}_{QuNL}^{31}	$\left(\overline{Q_3}u_R\right)\left(\overline{N_R}L\right) = \left(\overline{t_L}u_R\right)\left(\overline{N_R}\nu_L\right) + \left(\overline{b_L}u_R\right)\left(\overline{N_R}e_L\right)$
	\mathcal{O}_{QuNL}^{33}	$\left(\overline{Q_3}t_R\right)\left(\overline{N_R}L\right) = \left(\overline{t_L}t_R\right)\left(\overline{N_R}\nu_L\right) + \left(\overline{b_L}t_R\right)\left(\overline{N_R}e_L\right)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

HNL production – pair- N_R op.

• \mathcal{O}_{uN}^{13} and \mathcal{O}_{QN}^{13}

• $pp \rightarrow t\bar{t}$ followed by rare top-quark decays

$$\Gamma(t \to uN\bar{N}) = \frac{m_t^5 g(x)}{1536\pi^3 \Lambda^4} \left[\left(c_{uN}^{13} \right)^2 + \left(c_{QN}^{13} \right)^2 \right]$$

where

$$g(x) = \left(1 - 14x - 2x^2 - 12x^3\right)\sqrt{1 - 4x} \\ - 12x^2\left(1 - x^2\right)\left[\ln\frac{1 - \sqrt{1 - 4x}}{1 + \sqrt{1 - 4x}} - \ln\frac{1 + \sqrt{1 - 4x} - 2x}{2x}\right]$$

HNL production – single- N_R op.

 $\ \, {\color{black} 0} \ \, pp \rightarrow t \bar{t} \ \, {\color{black} followed} \ \, {\color{black} by} \ \, {\color{black} rare} \ \, {\color{black} top-quark} \ \, {\color{black} decays} \ \, \\$

2

Production cross sections

Z.S. Wang

HNL decays

- Pair- N_R operators: the HNLs decay essentially only via $V_{\ell N}$
- Single- N_R operators: induce HNL decays
 - All induce HNL 5-body decays via an off-shell t and an off-shell W-boson; can become 4-body or 3-body decays if m_N large enough
 - Operators containing two terms, one of which does not involve the top quark, trigger 3-body decays (*m_N* assumed to be heavy enough to ensure on-shell *b*-quark): *O*³¹_{LNQd}, *O*³³_{LNQd}, *O*¹³_{LdQN}, *O*³³_{LdQN}, and *O*³¹_{QuNL}
 - At the one-loop level, the operators leading to 5-body tree-level decays will also trigger 3-body decays:

One-loop diagrams (in the unitary gauge) for the 3-body decay $N \to \nu bd$ by the operator \mathcal{O}_{QuNL}^{13}

- ▲母 ▶ ▲目 ▶ ▲目 ▲ ● ▲ ● ●

Partial decay widths of N

 $N \rightarrow \nu b \bar{b}$

green: $N \rightarrow \nu b \bar{d}$ one-loop blue: 5-body decays

< 日 > < 同 > < 三 > < 三 >

三日 のへの

Summary of tree-level HNL production and decay modes

Орен	rator	HNL produ	ction modes	HNL decay cl	nannels
Name	Flavor	Top decay	pp collision	5-body	3-body
\mathcal{O}_{uN}	13	$t ightarrow u N ar{N}$	$pp ightarrow t N ar{N}$	×	×
\mathcal{O}_{QN}	13	$t ightarrow u N ar{N}$	$pp ightarrow t N ar{N} / b N ar{N}$	×	×
	13	$t ightarrow u ar{ u} N/de^+ N$	$pp ightarrow t u ar{N}/t e^- ar{N}$	$N ightarrow u t^* \bar{u}/e^- t^* \bar{d}$	×
\mathcal{O}_{QuNL}	31	$t ightarrow u u ar{N}$	$pp ightarrow t ar{ u} N/be^+ N$	$N ightarrow u \overline{t}^*$	$N ightarrow e^- u ar b$
	33	$t ightarrow be^+ N$	×	$N ightarrow e^- t^* \bar{b} / u t^* \bar{t}^*$	×
0	13	$t ightarrow de^+ N$	$pp ightarrow te^- ar{N}$	$N ightarrow e^- t^* \bar{d}$	×
♥ duNe	33	$t ightarrow be^+ N$	×	$N ightarrow e^- t^* ar b$	×
Ounar	31	$t ightarrow de^+ N$	$pp ightarrow te^- ar{N}/b u ar{N}$	$N ightarrow e^- t^* \overline{d}$	$N ightarrow u b ar{d}$
VLNQd	33	$t ightarrow be^+ N$	×	$N ightarrow e^- t^* ar b$	$N ightarrow u b ar{b}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Benchmark scenarios

Operator	Dominant production	Dominant decays
\mathcal{O}_{uN}^{13}	$pp ightarrow tNar{N}$	$V_{\ell N}$
${\cal O}_{{\it QuNL}}^{13}$	$pp ightarrow tear{N}, pp ightarrow t uar{N}$	one-loop 3-body and $V_{\ell N}$
\mathcal{O}_{duNe}^{13}	pp $ ightarrow tear{N}$	$V_{\ell N}$ for $m_N < m_W$ 4-body (3-body) for $m_N > m_W (m_t)$
${\cal O}_{duNe}^{33}$	top-quark decays	both op. and $V_{\ell N}$

Always turn on a single effective operator structure, together with the standard $V_{\ell N}$

ATLAS search

- Signature: a DV from the HNL decay, with jets from top-quark or HNL decays
- The ATLAS DV+jets search fails because of its too strong thresholds on jets' p_T
- Propose a new search strategy with optimal jet cuts and the optional requirement of a *b*-jet:
 - jet- p_T thresholds from a past 8-TeV ATLAS search for DVs
 - DV selections from the recent 13-TeV ATLAS search for DV+jets
- Event generation:
 - FeynRules: UFO model
 - MadGraph5: HNL production processes
 - Scan over $|V_{e\!N}|^2$ and m_N , keeping $c_{\mathcal{O}}^{ij}/\Lambda^2$ constant
 - MadSpin: forcing the HNLs to decay into ejj and νjj via mixing and channels with ≥ 2 jets via operators
 - Pythia8: showering, hadronization, and event selections
 - Implemented a toy-detector module in Pythia to reconstruct truth-level jets with FastJet
 - Detector response for jet- p_T measurements included

ATLAS event selections

- Event-level selections:
 - $n_{\text{jet}}^{90} \ge 4$ or $n_{\text{jet}}^{65} \ge 6$ or $n_{\text{jet}}^{55} \ge 6$, following <u>1504.05162</u>
 - Optionally: require iden. of b-jets for discovery potential
- OV-level selections:
 - Follow 2301.13866 and its recast JHEP 07 (2024) 209
 - ≥ 1 vertex in the event satisfy the following conditions:
 - $4 \text{ mm} < R_{xy} < 300 \text{ mm}$ and |z| < 300 mm
 - At least one track should satisfy d₀ > 2 mm
 - The displaced vertex should have at least 5 decay products of a massive particle satisfying the following requirements:
 - $\bullet~$ It should be a track with a boosted transverse decay length $>520~{\rm mm}$
 - Its p_T and charge q should obey the relation $p_T/|q|>1$ GeV
 - $m_{\rm DV} > 10~{\rm GeV}$
- Apply parameterized vertex-level efficiencies discussed previously (but not event-level efficiencies)

○ 20 비로 세종 세종 세종 세종 ▲

Computation of N_S^{ATLAS} and projected sensitivities

$$\begin{split} N_{S}^{\text{ATLAS}} &= \sigma \cdot \mathcal{L} \cdot \left\{ \mathcal{B}_{\text{mix}} \cdot \varepsilon^{\text{mix}} + \mathcal{B}_{\text{op}} \cdot \varepsilon^{\text{op}} \right\} \\ \mathcal{B}_{\text{mix}} &= \mathcal{B}(N \to ejj) + \mathcal{B}(N \to \nu jj) \\ \mathcal{B}_{\text{op}} &= \mathcal{B}(N \to 5\text{-body tree}) + \mathcal{B}(N \to 3\text{-body loop}) \end{split}$$

• $\mathcal{L} = 3 \text{ ab}^{-1}$; j : u, d, c, s, b; $\varepsilon^{\text{mix/op}}$: final cutflow efficiencies

• The vertex-level selection criteria designed to suppress all backgrounds

• 95% C.L. exclusion limits: 3 signal events

Example of effect on sensitivity if varying jet- p_T thresholds

LHC far detectors

- reproduced from [2410.19561] (C.-T. Lu, X. Wang, X. Wei, Y. Wu)
- With proton-proton collisions at $\sqrt{s} = 13-14$ TeV
- ATLAS and CMS usually hard to test meson decay products; LHCb can do, but other limitations (int. lumi.)
- "Far detectors" specifically for LLP searches, macroscopic distances from various IPs allowing for shielding and veto; DV reconstruction inside fiducial volume
- ANUBIS, CODEX-b, FACET, FASER and FASER2, MoEDAL-MAPP1 and MAPP2, and MATHUSLA
- Little background, if not background-free

Computation of N_S^{FD} and projected sensitivities

- Not simulating HNL decays in this case
- $\langle P[N \text{ decay in f.v.}] \rangle = \frac{1}{k} \sum_{i=1}^{k} P[N^{i} \text{ decay in f.v.}]$
 - k: total number of the simulated HNLs for each HNL mass
 - Individual decay prob. determined by the HNL' s boosted decay length and momentum angle besides the geometry and position of the far detectors
- $N_{S}^{\text{FD}} = \sigma \cdot \mathcal{L} \cdot \langle P[N \text{ decay in } f.v.] \rangle \cdot \mathcal{B}(N \to \text{vis.}) \cdot \varepsilon$
 - $\mathcal{B}(N \rightarrow \text{vis.})$: BR of the HNL into visible final states (that can be induced either via mixing or the operator), for which we have only excluded the fully invisible tri-neutrino final states
 - Assume a detection efficiency of $\varepsilon = 100\%$
- Zero background: 3 signal events for exclusion limits at 95% C.L.
- Sensitivity limits for larger numbers of signal events provided; sensitivities for other acceptance or background levels

Numerical results – $|V_{eN}|^2$ vs. m_N

Numerical results – Λ vs. m_N

Conclusions

- NP might be hidden in LLPs
- (HL-)LHC can search for LLPs
- Recast a recent ATLAS search for DV plus jets and reinterpreted it in terms of ALPs with QFV and BSM particles from Higgs-boson decays
- Proposed a search for HNLs coupled to top quarks in *N_R*SMEFT, based on past 8-TeV and 13-TeV ATLAS searches for DV and DV+jets
- Studied also LHC far detectors for the latter case

Thank You! 谢谢!

Appendix

Searching for LLPs w/ DV & jets at the LHC

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Pre-selections

- Truth jets are reconstructed with FastJet, using anti- k_t algorithm and R = 0.4 from all selected stable particles excluding neutrinos and muons This definition includes particles from the LLP decay
- Jet momentum smearing is applied
- Displaced jets are defined as those among the jets selected above that are matched with the LLPs' decay positions and have $|\eta|<2.5$. By calculating ΔR between the LLP decay products and the truth jets, we determine that a truth jet stems from the LLP decay if the closest decay products of the LLP has $\Delta R<0.3$
- For the displaced truth jets, we require that the matched LLPs should decay with a transverse distance from IP smaller than 3870 mm which corresponds to the region of the calorimeter

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三日 ● ● ●

Conditions for safely using the parameterized efficiencies

- The event- and vertex-level acceptances combined should exceed 10%;
- Solution For any parameter-space point, if the corresponding signal events have an acceptance of over 90% with the High- p_T -jet SR, the parameterized efficiencies of the Trackless-jet SR should not be used; and
- The LLP proper decay length of less than 3 meters are recommended for models where "jets primarily originate from the decay of LLPs".

Validation results: additional High- p_T -jet SR acceptance and final cutflow efficiency

	Acceptance [%]						
$m(ilde{\chi}^0_1)$ [GeV]		1500		1500		1500	
$ au(ilde{\chi}_1^0)$ [ns]		0.032	0.1		1		
Selection	Exp.	This work	Exp.	This work	Exp.	This work	
Jet selection	84.7	82.5	84.7	82.4	84.7	82.4	
Event has ≥ 1 DV passing:							
$R_{xy}, z < 300 \text{ mm}$	84.7	82.5	84.7	82.4	80.1	78.0	
$R_{xy} > 4 \text{ mm}$	45.7	46.9	73.3	72.3	78.4	76.5	
≥ 1 track with $ d_0 > 2$ mm	45.7	46.9	73.3	72.3	78.4	76.5	
$\textit{n}_{\sf selected \ decay \ products} \geq 5$	45.7	46.9	73.3	72.3	78.4	76.5	
Invariant mass $> 10 \text{ GeV}$	45.7	46.9	73.3	72.3	78.4	76.5	

$\textit{m}(ilde{\chi}^0_1), au(ilde{\chi}^0_1)$	Full Sim.	Param. Exp.	Param. Ours	Non-closure
1500 GeV, 0.032 ns	39.6%	42.7%	45.6%	15.2%
1500 GeV, 0.1 ns	57.7%	62.7%	68.9%	19.4%
1500 GeV, 1 ns	36.7%	43.0%	65.0%	77.1%

• EW channel, $\tilde{\chi}^0_1$ decaying to heavy-flavor quarks

▶ ▲ 王 ▶ 王 = ● ○ ○ ○

Validation results: additional Trackless-jet $-p_T$ -jet SR acceptance and final cutflow efficiency

	Acceptance [%]					
$m(ilde{\chi}^0_1)$ [GeV]	1500		1500		1500	
$ au(ilde{\chi}_1^0)$ [ns]	0.032		0.1		1	
Selection	Exp.	This work	Exp.	This work	Exp.	This work
Jet selection	84.7	82.5	84.7	82.4	84.7	82.4
Event has ≥ 1 DV passing:						
$R_{xy}, z < 300 \mathrm{mm}$	84.7	82.5	84.7	82.4	80.1	78.0
$R_{xy} > 4 \text{ mm}$	45.7	46.9	73.3	72.3	78.4	76.5
≥ 1 track with $ d_0 > 2$ mm	45.7	46.9	73.3	72.3	78.4	76.5
$\textit{n}_{\sf selected \ decay \ products} \geq 5$	45.7	46.9	73.3	72.3	78.4	76.5
Invariant mass $> 10 \text{ GeV}$	45.7	46.9	73.3	72.3	78.4	76.5

$m(ilde{\chi}^0_1), au(ilde{\chi}^0_1)$	Full Sim.	Param. Exp.	Param. Ours	Non-closure
700 GeV, 0.032 ns	26.6%	28.2%	30.0%	12.8%
700 GeV, 0.1 ns	37.5%	36.7%	42.5%	13.3%
700 GeV, 1 ns	20.0%	21.1%	34.9%	74.5%

• EW channel, $\tilde{\chi}^0_1$ decaying to heavy-flavor quarks

Recast&Reinterpret single top+jets/MET searchesQFV and ALP [JHEP 07 (2024) 209]

- $a \rightarrow jj$ appears as either prompt jets, displaced jets/vertices, or MET
- CMS search for a single leptonic top + prompt jets
- ATLAS search for a single top + MET
- Upper bounds on NP contributions to the cross sections [1609.04838]: $\sigma_{tj} \sim 0.29$ pb and $\sigma_t \sim 0.10$ pb
- Generate $pp \rightarrow ta$ at $\sqrt{s} = 13$ TeV with MadGraph5 and require:

$$\epsilon_{\text{prompt}}^{\text{acc.}} = \frac{1}{N_{\text{MC}}} \sum_{i=1}^{N_{\text{MC}}} \left(\left(1 - e^{\frac{-10^{-4}}{\beta_i^{r} \gamma_i c \tau_a}}\right) + \left(e^{\frac{-2.5 \times 10^{-2}}{\beta_i^{r} \gamma_i c \tau_a}} - e^{\frac{-2}{\beta_i^{r} \gamma_i c \tau_a}}\right) \right)$$
$$\epsilon_{\text{MET}}^{\text{acc.}} = \frac{1}{N_{\text{MC}}} \sum_{i=1}^{N_{\text{MC}}} e^{\frac{-10}{\beta_i^{r} \gamma_i c \tau_a}}$$

Cutflow – high- p_T -jet SR

- 10⁶ events generated
- $\frac{g_{3i}}{\Lambda} = 10^{-6} \text{ GeV}^{-1} \text{ small} \Rightarrow \text{ignore their induced decay width of } a$

m_a [GeV], g_{ii}/Λ [GeV ⁻¹], $c\tau_a$ [mm]	$25, 10^{-9}, 2999$	$25, 10^{-8}, 29.99$	$25, 10^{-7}, 0.2999$	$40, 10^{-9}, 1790$	$40, 10^{-8}, 17.9$	$40, 10^{-7}, 0.179$
Jet selection	9.9×10^{-4}	9.6×10^{-4}	1.0×10^{-3}	8.9×10^{-4}	8.9×10^{-4}	8.9×10^{-4}
Event has ≥ 1 DV passing:						
$R_{xy}, z < 300 \text{ mm}$	1.8×10^{-5}	6.5×10^{-4}	1.0×10^{-3}	3.7×10^{-5}	8.0×10^{-4}	8.9×10^{-4}
$R_{xy} > 4 \text{ mm}$	1.7×10^{-5}	6.2×10^{-4}	1.9×10^{-4}	3.7×10^{-5}	7.5×10^{-4}	3.6×10^{-5}
≥ 1 track with $ d_0 > 2$ mm	1.7×10^{-5}	6.1×10^{-4}	1.5×10^{-4}	3.7×10^{-5}	7.5×10^{-4}	2.9×10^{-5}
$n_{\text{selected decay products}} \ge 5$	1.3×10^{-5}	5.9×10^{-4}	1.4×10^{-4}	3.4×10^{-5}	7.3×10^{-4}	2.9×10^{-5}
Invariant mass > 10 GeV	7.0×10^{-6}	3.8×10^{-4}	1.1×10^{-4}	2.9×10^{-5}	6.6×10^{-4}	2.5×10^{-5}
Param. Effi.	2.3×10^{-8}	2.7×10^{-5}	2.3×10^{-5}	2.0×10^{-6}	1.2×10^{-4}	1.2×10^{-5}
$m_a [\text{GeV}], g_{ii}/\Lambda [\text{GeV}^{-1}], c\tau_a [\text{mm}]$	$65, 10^{-9}, 1080$	$65, 10^{-8}, 10.8$	$65, 10^{-7}, 0.108$	$90, 10^{-9}, 777$	$90, 10^{-8}, 7.77$	$90, 10^{-7}, 0.0777$
$m_a \; [\text{GeV}], g_{ii} / \Lambda \; [\text{GeV}^{-1}], c \tau_a \; [\text{mm}]$ Jet selection	$\frac{65,10^{-9},1080}{1.0\times10^{-3}}$	$\begin{array}{c} 65,10^{-8},10.8\\ 9.2\times10^{-4} \end{array}$	$\frac{65,10^{-7},0.108}{9.8\times10^{-4}}$	$\begin{array}{c} 90,10^{-9},777\\ 1.0\times10^{-3} \end{array}$	$\begin{array}{c} 90, 10^{-8}, 7.77 \\ 9.5 \times 10^{-4} \end{array}$	$\frac{90, 10^{-7}, 0.0777}{9.7 \times 10^{-4}}$
$\begin{array}{l} \hline m_a \; [\text{GeV}], g_{ii}/\Lambda \; [\text{GeV}^{-1}], c\tau_a \; [\text{mm}] \\ \text{Jet selection} \\ \text{Event has} \geq 1 \; \text{DV passing:} \end{array}$	$\frac{65, 10^{-9}, 1080}{1.0 \times 10^{-3}}$	$\frac{65, 10^{-8}, 10.8}{9.2 \times 10^{-4}}$	$\frac{65, 10^{-7}, 0.108}{9.8 \times 10^{-4}}$	$\frac{90, 10^{-9}, 777}{1.0 \times 10^{-3}}$	$\frac{90, 10^{-8}, 7.77}{9.5 \times 10^{-4}}$	$\frac{90, 10^{-7}, 0.0777}{9.7 \times 10^{-4}}$
$\begin{array}{l} \hline m_{\mathfrak{a}} \; [\text{GeV}], g_{ii} / \Lambda \; [\text{GeV}^{-1}], c\tau_{\mathfrak{a}} \; [\text{mm}] \\ \text{Jet selection} \\ \text{Event has} \geq 1 \; \text{DV passing:} \\ R_{sy}, z < 300 \; \text{mm} \end{array}$	$\frac{65, 10^{-9}, 1080}{1.0 \times 10^{-3}}$ 8.4×10^{-5}	$\begin{array}{c} 65, 10^{-8}, 10.8\\ 9.2\times 10^{-4}\\ 9.0\times 10^{-4} \end{array}$	$\frac{65, 10^{-7}, 0.108}{9.8 \times 10^{-4}}$ 9.8×10^{-4}	$90, 10^{-9}, 777$ 1.0×10^{-3} 1.4×10^{-4}	$\begin{array}{c} 90,10^{-8},7.77\\ 9.5\times10^{-4}\\ 9.4\times10^{-4} \end{array}$	$\frac{90, 10^{-7}, 0.0777}{9.7 \times 10^{-4}}$ 9.7×10^{-4}
$\begin{array}{l} \hline m_{a} \; [\text{GeV}], g_{ii}/\Lambda \; [\text{GeV}^{-1}], c\tau_{a} \; [\text{mm}] \\ \text{Jet selection} \\ \text{Event has} \geq 1 \; \text{DV passing:} \\ R_{xy}, z < 300 \; \text{mm} \\ R_{xy} > 4 \; \text{mm} \end{array}$	$\begin{array}{c} 65,10^{-9},1080\\ \hline 1.0\times10^{-3}\\ 8.4\times10^{-5}\\ 8.2\times10^{-5} \end{array}$	$\begin{array}{c} 65,10^{-8},10.8\\ 9.2\times10^{-4}\\ 9.0\times10^{-4}\\ 7.5\times10^{-4} \end{array}$	$\begin{array}{c} 65,10^{-7},0.108\\ 9.8\times10^{-4}\\ 9.8\times10^{-4}\\ 0.0 \end{array}$	$\begin{array}{c} 90,10^{-9},777\\ \hline 1.0\times10^{-3}\\ 1.4\times10^{-4}\\ 1.3\times10^{-4} \end{array}$	$\begin{array}{c} 90,10^{-8},7.77\\ 9.5\times10^{-4}\\ 9.4\times10^{-4}\\ 7.3\times10^{-4} \end{array}$	$\begin{array}{r} 90, 10^{-7}, 0.0777\\ \hline 9.7 \times 10^{-4}\\ 9.7 \times 10^{-4}\\ 0.0 \end{array}$
$\begin{array}{l} \hline m_{a} \; [\text{GeV}], g_{ii}/\Lambda \; [\text{GeV}^{-1}], c\tau_{a} \; [\text{mm}] \\ \text{Jet selection} \\ \text{Event has} \geq 1 \; \text{DV passing:} \\ R_{xy}, z < 300 \; \text{mm} \\ R_{xy} > 4 \; \text{mm} \\ \geq 1 \; \text{track with } d_{0} > 2 \; \text{mm} \end{array}$	$\begin{array}{c} 65,10^{-9},1080\\ \hline 1.0\times10^{-3}\\ 8.4\times10^{-5}\\ 8.2\times10^{-5}\\ 8.1\times10^{-5} \end{array}$	$\begin{array}{c} 65,10^{-8},10.8\\ 9.2\times10^{-4}\\ 9.0\times10^{-4}\\ 7.5\times10^{-4}\\ 7.5\times10^{-4}\\ \end{array}$	$\begin{array}{c} 65,10^{-7},0.108\\ 9.8\times10^{-4}\\ 9.8\times10^{-4}\\ 0.0\\ 0.0\\ \end{array}$	$\begin{array}{c} 90,10^{-9},777\\ \hline 1.0\times10^{-3}\\ 1.4\times10^{-4}\\ 1.3\times10^{-4}\\ 1.3\times10^{-4} \end{array}$	$\begin{array}{r} 90,10^{-8},7.77\\ 9.5\times10^{-4}\\ 9.4\times10^{-4}\\ 7.3\times10^{-4}\\ 7.2\times10^{-4}\\ \end{array}$	$\begin{array}{r} 90, 10^{-7}, 0.0777\\ 9.7\times 10^{-4}\\ 9.7\times 10^{-4}\\ 0.0\\ 0.0\\ \end{array}$
$\begin{array}{l} \hline m_{a} \; [\text{GeV}], g_{ii}/\Lambda \; [\text{GeV}^{-1}], cr_{a} \; [\text{mm}] \\ \text{Jet selection} \\ \text{Event has} \geq 1 \; \text{DV passing:} \\ R_{xyr} \; z < 300 \; \text{mm} \\ R_{xyr} > 4 \; \text{mm} \\ \geq 1 \; \text{track with } d_{0} > 2 \; \text{mm} \\ \text{nselected decay products} \geq 5 \end{array}$	$\begin{array}{c} 65,10^{-9},1080\\ 1.0\times10^{-3}\\ 8.4\times10^{-5}\\ 8.2\times10^{-5}\\ 8.1\times10^{-5}\\ 8.0\times10^{-5}\\ \end{array}$	$\begin{array}{c} 65,10^{-8},10.8\\ 9.2\times10^{-4}\\ 9.0\times10^{-4}\\ 7.5\times10^{-4}\\ 7.5\times10^{-4}\\ 7.5\times10^{-4}\\ 7.5\times10^{-4}\\ \end{array}$	$\begin{array}{c} 65, 10^{-7}, 0.108\\ 9.8\times 10^{-4}\\ 9.8\times 10^{-4}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	$\begin{array}{c} 90,10^{-9},777\\ 1.0\times10^{-3}\\ 1.4\times10^{-4}\\ 1.3\times10^{-4}\\ 1.3\times10^{-4}\\ 1.3\times10^{-4}\\ 1.3\times10^{-4} \end{array}$	$\begin{array}{c} 90,10^{-8},7.77\\ 9.5\times10^{-4}\\ 9.4\times10^{-4}\\ 7.3\times10^{-4}\\ 7.2\times10^{-4}\\ 7.2\times10^{-4}\\ 7.2\times10^{-4}\\ \end{array}$	$\begin{array}{c} 90, 10^{-7}, 0.0777\\ 9.7\times 10^{-4}\\ 9.7\times 10^{-4}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$
$\begin{array}{l} \hline m_{a}\;[\text{GeV}],g_{ii}/\Lambda\;[\text{GeV}^{-1}],c\tau_{a}\;[\text{mm}]\\ \text{Jet selection}\\ \text{Event has}\geq 1\;\text{DV}\;\text{passing:}\\ R_{syr}\; z <300\;\text{mm}\\ R_{sy}>4\;\text{mm}\\ \geq 1\;\text{track with}\; d_{0} >2\;\text{mm}\\ n_{\text{selected decay products}}\geq 5\\ \text{Invariant mass}>10\;\text{GeV} \end{array}$	$\begin{array}{c} 65,10^{-9},1080\\ 1.0\times10^{-3}\\ 8.4\times10^{-5}\\ 8.2\times10^{-5}\\ 8.1\times10^{-5}\\ 8.0\times10^{-5}\\ 7.9\times10^{-5}\\ \end{array}$	$\begin{array}{c} 65,10^{-8},10.8\\ 9.2\times10^{-4}\\ 7.5\times10^{-4}\\ 7.5\times10^{-4}\\ 7.5\times10^{-4}\\ 7.5\times10^{-4}\\ 7.2\times10^{-4}\\ \end{array}$	$\begin{array}{c} 65, 10^{-7}, 0.108\\ 9.8\times 10^{-4}\\ 9.8\times 10^{-4}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	$\begin{array}{c} 90, 10^{-9}, 777\\ 1.0\times 10^{-3}\\ 1.4\times 10^{-4}\\ 1.3\times 10^{-4}\\ 1.3\times 10^{-4}\\ 1.3\times 10^{-4}\\ 1.3\times 10^{-4}\\ 1.3\times 10^{-4} \end{array}$	$\begin{array}{c} 90,10^{-8},7.77\\ 9.5\times10^{-4}\\ 9.4\times10^{-4}\\ 7.3\times10^{-4}\\ 7.2\times10^{-4}\\ 7.2\times10^{-4}\\ 7.1\times10^{-4}\\ \end{array}$	$\begin{array}{c} 90, 10^{-7}, 0.0777\\ \hline 9.7\times10^{-4}\\ 9.7\times10^{-4}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$

▲圖▶ ▲ 글▶ ▲ 글▶ - 글|날 ◆?

Cutflow – trackless-jet SR

m_a [GeV], g_{ii}/Λ [GeV ⁻¹], $c\tau_a$ [mm]	$25, 10^{-9}, 2999$	$25, 10^{-8}, 29.99$	$25, 10^{-7}, 0.2999$	$40, 10^{-9}, 1790$	$40, 10^{-8}, 17.9$	$40, 10^{-7}, 0.179$
Jet selection	3.1×10^{-3}	1.5×10^{-2}	1.5×10^{-2}	6.7×10^{-3}	1.5×10^{-2}	1.5×10^{-2}
Event has ≥ 1 DV passing:						
$R_{xy}, z < 300 \text{ mm}$	$2.3 imes 10^{-4}$	$1.0 imes 10^{-2}$	$1.5 imes 10^{-2}$	$6.1 imes 10^{-4}$	$1.3 imes 10^{-2}$	1.5×10^{-2}
$R_{xy} > 4 \text{ mm}$	2.3×10^{-4}	$9.7 imes 10^{-3}$	2.3×10^{-3}	$6.0 imes 10^{-4}$	1.2×10^{-2}	2.9×10^{-4}
≥ 1 track with $ d_0 > 2 \text{ mm}$	2.2×10^{-4}	$9.6 imes 10^{-3}$	1.7×10^{-3}	$6.0 imes 10^{-4}$	1.2×10^{-2}	2.3×10^{-4}
$n_{\text{selected decay products}} \ge 5$	2.1×10^{-4}	9.2×10^{-3}	1.7×10^{-3}	5.6×10^{-4}	1.2×10^{-2}	2.3×10^{-4}
Invariant mass > 10 GeV	$1.3 imes 10^{-4}$	$5.9 imes 10^{-3}$	1.2×10^{-3}	$5.0 imes 10^{-4}$	1.1×10^{-2}	2.2×10^{-4}
Param. Effi.	6.8×10^{-6}	5.0×10^{-4}	2.4×10^{-4}	6.5×10^{-5}	2.3×10^{-3}	7.9×10^{-5}
$m_a [\text{GeV}], g_{ii}/\Lambda [\text{GeV}^{-1}], c\tau_a [\text{mm}]$	$65, 10^{-9}, 1080$	$65, 10^{-8}, 10.8$	$65, 10^{-7}, 0.108$	$90, 10^{-9}, 777$	$90, 10^{-8}, 7.77$	$90, 10^{-7}, 0.0777$
$m_a \; [\text{GeV}], g_{ii}/\Lambda \; [\text{GeV}^{-1}], c\tau_a \; [\text{mm}]$ Jet selection	$\frac{65,10^{-9},1080}{1.3\times10^{-2}}$	$\frac{65,10^{-8},10.8}{1.7\times10^{-2}}$	$\frac{65, 10^{-7}, 0.108}{1.7 \times 10^{-2}}$	$\frac{90, 10^{-9}, 777}{1.7 \times 10^{-2}}$	$\begin{array}{c} 90, 10^{-8}, 7.77 \\ 1.8 \times 10^{-2} \end{array}$	$\frac{90, 10^{-7}, 0.0777}{1.8 \times 10^{-2}}$
$\label{eq:ginversion} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{65, 10^{-9}, 1080}{1.3 \times 10^{-2}}$	$\frac{65, 10^{-8}, 10.8}{1.7 \times 10^{-2}}$	$\frac{65, 10^{-7}, 0.108}{1.7 \times 10^{-2}}$	$\frac{90, 10^{-9}, 777}{1.7 \times 10^{-2}}$	$\frac{90, 10^{-8}, 7.77}{1.8 \times 10^{-2}}$	$\frac{90, 10^{-7}, 0.0777}{1.8 \times 10^{-2}}$
$\begin{array}{l} \hline m_{a} \; [\text{GeV}], g_{ii} / \Lambda \; [\text{GeV}^{-1}], c\tau_{a} \; [\text{mm}] \\ \text{Jet selection} \\ \text{Event has} \geq 1 \; \text{DV passing:} \\ R_{\text{xy}}, \textbf{z} < 300 \; \text{mm} \end{array}$	$\begin{array}{c} 65, 10^{-9}, 1080\\ \hline 1.3 \times 10^{-2}\\ \hline 1.6 \times 10^{-3} \end{array}$	$\begin{array}{c} 65, 10^{-8}, 10.8\\ 1.7 \times 10^{-2}\\ 1.7 \times 10^{-2} \end{array}$	$\begin{array}{c} 65, 10^{-7}, 0.108\\ 1.7 \times 10^{-2}\\ 1.7 \times 10^{-2} \end{array}$	$\begin{array}{c} 90, 10^{-9}, 777\\ 1.7 \times 10^{-2}\\ 2.9 \times 10^{-3} \end{array}$	$\begin{array}{c} 90, 10^{-8}, 7.77\\ 1.8 \times 10^{-2}\\ 1.8 \times 10^{-2} \end{array}$	$\begin{array}{c} 90, 10^{-7}, 0.0777\\ 1.8 \times 10^{-2}\\ 1.8 \times 10^{-2} \end{array}$
$\begin{array}{l} \hline m_{a} \; [\text{GeV}], g_{ii}/\Lambda \; [\text{GeV}^{-1}], c\tau_{a} \; [\text{mm}] \\ \text{Jet selection} \\ \text{Event has} \geq 1 \; \text{DV passing:} \\ R_{xy}, z < 300 \; \text{mm} \\ R_{xy} > 4 \; \text{mm} \end{array}$	$\begin{array}{c} 65,10^{-9},1080\\ \hline 1.3\times10^{-2}\\ 1.6\times10^{-3}\\ 1.6\times10^{-3} \end{array}$	$\begin{array}{c} 65,10^{-8},10.8\\ \hline 1.7\times10^{-2}\\ 1.7\times10^{-2}\\ 1.4\times10^{-2} \end{array}$	$\begin{array}{c} 65,10^{-7},0.108\\ 1.7\times10^{-2}\\ 1.7\times10^{-2}\\ 4.0\times10^{-6} \end{array}$	$\begin{array}{c} 90,10^{-9},777\\ \hline 1.7\times10^{-2}\\ 2.9\times10^{-3}\\ 2.9\times10^{-3} \end{array}$	$\begin{array}{c} 90,10^{-8},7.77\\ \hline 1.8\times10^{-2}\\ 1.8\times10^{-2}\\ 1.3\times10^{-2} \end{array}$	$\begin{array}{c} 90, 10^{-7}, 0.0777\\ \hline 1.8 \times 10^{-2}\\ 1.8 \times 10^{-2}\\ 0.0 \end{array}$
$\begin{array}{l} \hline m_a \; [\text{GeV}], g_{ii}/\Lambda \; [\text{GeV}^{-1}], c\tau_a \; [\text{mm}] \\ \text{Jet selection} \\ \text{Event has } \geq 1 \; \text{DV passing:} \\ R_{xy}, z < 300 \; \text{mm} \\ R_{xy} > 4 \; \text{mm} \\ \geq 1 \; \text{track with } d_0 > 2 \; \text{mm} \end{array}$	$\begin{array}{c} 65,10^{-9},1080\\ \hline 1.3\times10^{-2}\\ 1.6\times10^{-3}\\ 1.6\times10^{-3}\\ 1.6\times10^{-3}\\ 1.6\times10^{-3} \end{array}$	$\begin{array}{c} 65,10^{-8},10.8\\ 1.7\times10^{-2}\\ 1.7\times10^{-2}\\ 1.4\times10^{-2}\\ 1.4\times10^{-2}\\ 1.4\times10^{-2} \end{array}$	$\begin{array}{c} 65,10^{-7},0.108\\ 1.7\times10^{-2}\\ 1.7\times10^{-2}\\ 4.0\times10^{-6}\\ 3.0\times10^{-6} \end{array}$	$\begin{array}{c} 90,10^{-9},777\\ \hline 1.7\times10^{-2}\\ 2.9\times10^{-3}\\ 2.9\times10^{-3}\\ 2.9\times10^{-3}\\ 2.9\times10^{-3} \end{array}$	$\begin{array}{c} 90, 10^{-8}, 7.77\\ \hline 1.8 \times 10^{-2}\\ 1.8 \times 10^{-2}\\ \hline 1.3 \times 10^{-2}\\ 1.3 \times 10^{-2} \end{array}$	$\begin{array}{c} 90, 10^{-7}, 0.0777\\ 1.8 \times 10^{-2}\\ 1.8 \times 10^{-2}\\ 0.0\\ 0.0\\ \end{array}$
$\begin{array}{l} \hline m_a \; [\text{GeV}], g_{ii}/\Lambda \; [\text{GeV}^{-1}], cr_a \; [\text{mm}] \\ \text{Jet selection} \\ \text{Event has} \geq 1 \; \text{DV passing:} \\ R_{xyr} \; z < 300 \; \text{mm} \\ R_{xyr} > 4 \; \text{mm} \\ \geq 1 \; \text{track with } d_0 > 2 \; \text{mm} \\ \text{nselected decay products} \geq 5 \end{array}$	$\begin{array}{c} 65, 10^{-9}, 1080\\ 1.3\times 10^{-2}\\ 1.6\times 10^{-3}\\ 1.6\times 10^{-3}\\ 1.6\times 10^{-3}\\ 1.6\times 10^{-3}\\ 1.6\times 10^{-3}\\ \end{array}$	$\begin{array}{c} 65,10^{-8},10.8\\ 1.7\times10^{-2}\\ 1.7\times10^{-2}\\ 1.4\times10^{-2}\\ 1.4\times10^{-2}\\ 1.4\times10^{-2}\\ 1.4\times10^{-2} \end{array}$	$\begin{array}{c} 65, 10^{-7}, 0.108\\ 1.7\times 10^{-2}\\ 1.7\times 10^{-2}\\ 4.0\times 10^{-6}\\ 3.0\times 10^{-6}\\ 3.0\times 10^{-6}\\ \end{array}$	$\begin{array}{c} 90,10^{-9},777\\ 1.7\times10^{-2}\\\\ 2.9\times10^{-3}\\ 2.9\times10^{-3}\\ 2.9\times10^{-3}\\ 2.9\times10^{-3}\\ 2.9\times10^{-3}\\ \end{array}$	$\begin{array}{c} 90, 10^{-8}, 7.77\\ 1.8\times 10^{-2}\\ 1.8\times 10^{-2}\\ 1.3\times 10^{-2}\\ 1.3\times 10^{-2}\\ 1.3\times 10^{-2}\\ 1.3\times 10^{-2} \end{array}$	$\begin{array}{c} 90, 10^{-7}, 0.0777\\ 1.8\times10^{-2}\\ 1.8\times10^{-2}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$
$\begin{array}{l} \hline m_{a} \ [\text{GeV}], g_{ii}/\Lambda \ [\text{GeV}^{-1}], cr_{a} \ [\text{mm}] \\ \text{Jet selection} \\ \text{Event has} \geq 1 \ \text{DV passing}; \\ R_{Syr} \ z < 300 \ \text{mm} \\ R_{Syr} > 4 \ \text{mm} \\ \geq 1 \ \text{track with } d_{0} > 2 \ \text{mm} \\ n_{\text{selected decay products}} \geq 5 \\ \text{Invariant mass} > 10 \ \text{GeV} \end{array}$	$\begin{array}{c} 65,10^{-9},1080\\ 1.3\times10^{-2}\\ 1.6\times10^{-3}\\ 1.6\times10^{-3}\\ 1.6\times10^{-3}\\ 1.6\times10^{-3}\\ 1.5\times10^{-3}\\ \end{array}$	$\begin{array}{c} 65,10^{-8},10.8\\ 1.7\times10^{-2}\\ 1.4\times10^{-2}\\ 1.4\times10^{-2}\\ 1.4\times10^{-2}\\ 1.4\times10^{-2}\\ 1.3\times10^{-2} \end{array}$	$\begin{array}{c} 65, 10^{-7}, 0.108\\ \hline 1.7 \times 10^{-2}\\ 4.0 \times 10^{-6}\\ 3.0 \times 10^{-6}\\ 3.0 \times 10^{-6}\\ 3.0 \times 10^{-6}\\ 3.0 \times 10^{-6}\\ \end{array}$	$\begin{array}{c} 90, 10^{-9}, 777\\ 1.7\times 10^{-2}\\ 2.9\times 10^{-3}\\ 2.9\times 10^{-3}\\ 2.9\times 10^{-3}\\ 2.9\times 10^{-3}\\ 2.8\times 10^{-3}\\ \end{array}$	$\begin{array}{c} 90,10^{-8},7.77\\ 1.8\times10^{-2}\\ 1.8\times10^{-2}\\ 1.3\times10^{-2}\\ 1.3\times10^{-2}\\ 1.3\times10^{-2}\\ 1.3\times10^{-2}\\ 1.3\times10^{-2} \end{array}$	$\begin{array}{c} 90, 10^{-7}, 0.0777\\ \hline 1.8 \times 10^{-2}\\ 1.8 \times 10^{-2}\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$h \rightarrow NN$

- Long-lived heavy neutral leptons (HNLs) from SM-like h decays
- $U(1)_{B-L}$, new particles: N, Z', H, ...
- N: Majorana HNLs

$$\Gamma(h \to NN) = \frac{1}{2} \frac{m_N^2}{\tilde{x}^2} \sin^2 \alpha \, \frac{m_h}{8\pi} \left(1 - \frac{4m_N^2}{m_h^2} \right)^{3/2}$$

- α: scalar-mixing angle
 g'₁: gauge coupling of U(1)_{B-L}
 - $\tilde{x} = m_{Z'}/2g'_1$: vev of the new scalar H
- Assume only one generation of N kinematically relevant and that N mixes only with v_e

$$\mathsf{Br}(h \to \mathsf{NN}) = \frac{\Gamma(h \to \mathsf{NN})}{\Gamma(h \to \mathsf{NN}) + \cos^2 \alpha \, \Gamma^h_{\mathsf{SM}}}$$

$$\begin{split} m_N &= 12 - 62 \text{ GeV}, |U_{eN}|^2 = 10^{-12} - 10^{-6}, \\ m_{Z'} &= 6 \text{ TeV}, g_1' = 0.8, \tilde{x} = 3.75 \text{ TeV}, \\ m_H = 450 \text{ GeV}, \sin \alpha = 0.3 \end{split}$$

$h \rightarrow NN$

Signal process: $\sigma(pp \xrightarrow{g.f.} h \to NN) = \cos^2 \alpha \cdot \sigma_h^{g.f.} \cdot Br(h \to NN)$

- Decay width of the Majorana HNL: 2010.07305
- Signature final state: $N \rightarrow \nu_e/e + jj$, j = u, d, c, s, b
- HNL production mediated by α and \tilde{x}
- HNL decay induced separately by $|U_{eN}|^2$

Reinterpretation results

-

Identification of *b*-jets

• <u>2501.09065</u>

We treat a jet as a *b*-jet based on the flavor of the truth quark that initiated the jet. From all truth jets in the event with $p_T > 20$ GeV and $|\eta| < 2.5$, we tag a jet as a *b*-jet if a Monte-Carlo truth *b*-quark with $p_T > 5$ GeV is found within a cone of size $\Delta R = 0.3$ around the jet direction. We additionally force a flat *b*-jet identification efficiency of 77%

Experiments at the LHC

- Consider pp collisions at $\sqrt{s} = 14$ TeV with equal beam energies
- HL-LHC with 3 ab⁻¹ integrated luminosity
- Various far detectors have different projected integrated luminosities

MATHUSLA

 MAssive Timing Hodoscope for Ultra Stable neutraL pArticles: a surface detector above the CMS IP: 100 m × 100 m ×25 m [2009.01693]

Extracted from [1810.03617]

L_d (m)	L_h (m)	L_{v} (m)	<i>H</i> (m)	$\phi/2\pi$	\mathcal{L} (fb ⁻¹)
100	68	60	25	0.22	3000

ANUBIS

• AN Underground Belayed In-Shaft search experiment: [1909.13022] In one of the service shafts above the ATLAS or CMS IP

• $d_h = 5 \text{ m}, d_v = 24 \text{ m}, l_h = 18 \text{ m}, l_v = 56 \text{ m}$ • $\mathcal{L} = 3000 \text{ fb}^{-1}$

CODEX-b

A Compact Detector for Exotics at LHCb: 10 m \times 10 m \times 10 m $[\underline{1708.09395}]$

Extracted from [1810.03617]

L_d (m)	<i>L</i> (m)	$\phi/2\pi$	η	\mathcal{L} (fb $^{-1}$)
10	25	0.06	[0.2, 0.6]	300

MoEDAL-MAPP1 & MAPP2

- MoEDAL' s Apparatus for Penetrating Particles
- A sub-detector of the MoEDAL experiment [Universe 5 (2019) 2, 47] near IP8 of the LHCb
- \bullet MAPP1 (approved): 130 m^3, during LHC run 3, 30 fb^{-1}, ~ 55 m from the IP
- MAPP2: 430 m³, HL-LHC, 300 fb⁻¹, the whole of the UGC8 gallery

FASER & FASER2

• ForwArd Search ExpeRiment: [<u>1901.04468</u>] a cylindrical detector in very forward direction along beam axis

- FASER duing LHC run 3 (approved), and FASER2 during HL-LHC
- $L + L_d = 480$ m, $L_d = 1.5/5$ m, R = 0.1/1 m, full ϕ coverage $\eta : [9.17/6.86, \infty]$, $\mathcal{L} = 150/3000$ fb⁻¹