
Update on UrQMD Production and Reading
Fan Si

2025/04/22

Overview
◦ Source: ui:/ustcfs/HICUser/fsi/urqmd_250421.tar.gz

◦ Location: ui:/ustcfs/HICUser/fsi/urqmd

◦ Subdirectories

◦ urqmd (original UrQMD production code)

◦ curqmd (this production code)

◦ run (script for production)

◦ UrqmdDst (classes for storage)

◦ UrqmdUtilities (new since current version)

◦ PdgData (new since current version)

◦ C++98 is supported (PdgData requires C++11)

2

Introduction: $Location/urqmd
◦ Taken from https://itp.uni-frankfurt.de/~bleicher/index.html?content=urqmd

◦ Change: pythia6409.f: −> pytahi6428.f (final PYTHIA6, https://pythia.org/)

◦ Change: mk/Linux.mk: new gfortran option -std=legacy

◦ Otherwise unable to be compiled with high versions of gfortran

◦ Change: GNUmakefile: pythia6409 −> pytahi6428

3

Introduction: $Location/curqmd
◦ For UrQMD production and its storage in ROOT Tree

◦ Contents:

◦ main.{cxx,h}: C++ −> (Fortran <−> C++)

◦ c_%.f: modified from $Location/urqmd/%.f

◦ GNUmakefile

◦ Calls $Location/urqmd/GNUmakefile

◦ Calls $Location/UrqmdDst/GNUmakefile

◦ Compiles c_*.f and main.cxx

◦ Links $Location/urqmd/*.o (only those different from $Location/curqmd/c_*.o),
$Location/curqmd/{c_*.o,main.o} to executable main

4

Introduction: $Location/run
◦ Contents:

◦ in.urqmd: input configuration of UrQMD production

◦ random.C: ROOT code for random number generation to random.list

◦ Input: n (random number counter, required), name (file name for existing numbers, default=“”)

◦ Output: file random.list containing n different random numbers (beginning with existing ones)

◦ 1<= random number <= maximum of 4-byte integer

◦ Used for UrQMD input seed for random number generator

◦ Able to read existing numbers since current version

◦ run.bash: script for calling UrQMD production

◦ Input: index (serial number for the job)

◦ Sets the seed as the index-th number in random.list and saves the updated in.urqmd to
in/${index}.urqmd

◦ Output: out/${index}.root (event IDs begin with ${index}*(#events per job))

5

Introduction: $Location/run
◦ Contents:

◦ run.condor: condor configuration template

◦ run_ui.condor: condor configuration template with specific settings for ui

◦ submit.bash: script for submitting condor jobs using run.condor

◦ Input: number (number of jobs, default=100)

◦ Saves the updated run.condor to script/run_${number}.condor

◦ Log files (error, log, output) saved in log/job_$(Process).{err,log,out}

◦ resubmit.bash: script for resubmitting condor jobs

◦ Input: condor configuration file (e.g. script/run_${number}.condor)

◦ Resubmits jobs with errors or incomplete jobs

6

Introduction: $Location/UrqmdDst
◦ Classes for storage of UrQMD data

◦ Contents:

◦ UrqmdDst.{cxx,h}: saves pointers to sub-structures and statuses of them

◦ UrqmdEvent.{cxx,h}: saves event information

◦ UrqmdColllision.{cxx,h}: saves collision information

◦ UrqmdTrack.{cxx,h}: saves track information

◦ UrqmdTrackEx.{cxx,h}: saves track extended information

◦ GNUmakefile

◦ Compiles code in this directory to (lib)UrqmdDst.so

7

Introduction: class UrqmdDst
◦ Useful functions:

◦ UrqmdEvent* event()

◦ UrqmdTimestep* timestep(UInt_t i)

◦ UrqmdCollision* collision(UInt_t i)

◦ UrqmdTrack* track(UInt_t i)

◦ UrqmdTrackEx* trackEx(UInt_t i)

◦ UInt_t numberOfTimesteps()

◦ UInt_t numberOfCollisions()

◦ UInt_t numberOfTracks()

◦ TChain* initInputChain(TString inputFileName, const TString inputTreeName = "urqmd")

◦ Reads UrqmdDst tree from file (*.root or *.list)

◦ TTree* initOutputTree(const TString outputTreeName = "urqmd")

◦ Creates UrqmdDst tree for writing

8

Introduction: class UrqmdEvent
◦ Useful functions:

◦ UInt_t id()

◦ Serial number of event

◦ Double_t b(): impact parameter

9

Introduction: class UrqmdTimestep
◦ Useful functions:

◦ Double_t time(): time of this timestep

◦ UInt_t nPart(): not defined by UrQMD

◦ Calculated by (total # projectile and target nucleons) − (# tracks with parentCollisionType%100==0)

◦ parentCollisionType%100==0 means particle did not go through inelastic scattering

◦ UInt_t nColl(): nElasticColl+nInelasticColl+nBlockedColl

◦ UInt_t nElasticColl(), UInt_t nInelasticColl(), UInt_t nBlockedColl()

◦ UInt_t nDecays(), UInt_t nHardRes(), UInt_t nSoftRes(), UInt_t nDecayRes()

◦ UInt_t nTracks(): number of tracks at this timestep

◦ UInt_t startTrack(): "nTracks" tracks starting from track index "startTrack" belong to this
timestep

◦ If CTOption(4)==1, original UrQMD outputs initial configuration (t==0)

◦ This code saves timestep at t==0

10

Introduction: class UrqmdTimestep
◦ Useful functions:

◦ Double_t time(): time of this timestep

◦ UInt_t nPart(): not defined by UrQMD

◦ Calculated by (total # projectile and target nucleons) − (# tracks with parentCollisionType%100==0)

◦ parentCollisionType%100==0 means particle did not go through inelastic scattering

◦ UInt_t nColl(): nElasticColl+nInelasticColl+nBlockedColl

◦ UInt_t nElasticColl(), UInt_t nInelasticColl(), UInt_t nBlockedColl()

◦ UInt_t nDecays(), UInt_t nHardRes(), UInt_t nSoftRes(), UInt_t nDecayRes()

◦ UInt_t nTracks(): number of tracks at this timestep

◦ UInt_t startTrack(): "nTracks" tracks starting from track index "startTrack" belong to this
timestep

◦ If CTOption(4)==1, original UrQMD outputs initial configuration (t==0)

◦ This code saves timestep at t==0

11

√

√

√

√

√

√

√

√

Introduction: class UrqmdCollision
◦ (Serial number (starting from 1) not saved, equal to index; 0th collision always empty)

◦ Useful functions:

◦ Double_t time(): time of this colllision

◦ Double_t sqrtS(): s of this collision

◦ Double_t sigmaTotal(): total cross section (mbarn)

◦ Double_t sigmaPartial(): partial cross section (mbarn) of actual subprocess

◦ Double_t rhoB(): baryon density (in units of ρ0) at collision point

◦ UInt_t type(): type index of process defined by UrQMD

◦ UInt_t nIn(): number of incident particles in this collision

◦ UInt_t nOut(): number of outgoing particles in this collision

◦ UInt_t nTracks(): nIn+nOut

◦ UInt_t startTrack(): "nTracks" tracks starting from track index "startTrack" belong to this
collision; first "nIn" tracks are incident, last "nOut" tracks are outgoing

12

√

√

√

√

√

√

√

√

Introduction: class UrqmdTrack
◦ Useful functions:

◦ UInt_t id(): serial number (not particle type ID)

◦ UInt_t timestep()

◦ If timestep==0 and collision!=0, this track belongs to that collision

◦ UInt_t collision(): collision==0 should be ignored

◦ If collision==0 (even if timestep==0), this track belongs to that timestep

◦ Int_t iType(): type index according to isospin defined by UrQMD

◦ Int_t i3(): double 3rd component of isospin

◦ Int_t q(): double charge

◦ Int_t s(): double spin (not saved by original UrQMD, may be ineffective)

◦ Double_t m(): mass (in UrQMD, may not be equal to that in PDG)

◦ Double_t x(), Double_t y(), Double_t z()

◦ Double_t px(), Double_t py(), Double_t pz()

13

Introduction: class UrqmdTrack
◦ Useful functions:

◦ UInt_t id(): serial number (not particle type ID)

◦ UInt_t timestep()

◦ If timestep==0 and collision!=0, this track belongs to that collision

◦ UInt_t collision(): collision==0 should be ignored

◦ If collision==0 (even if timestep==0), this track belongs to that timestep

◦ Int_t iType(): type index according to isospin defined by UrQMD

◦ Int_t i3(): double 3rd component of isospin

◦ Int_t q(): double charge

◦ Int_t s(): double spin (not saved by original UrQMD, may be ineffective)

◦ Double_t m(): mass (in UrQMD, may not be equal to that in PDG)

◦ Double_t x(), Double_t y(), Double_t z()

◦ Double_t px(), Double_t py(), Double_t pz()

14

√

√

√

√

√

√

√

√

√

√

√

Introduction: class UrqmdTrack
◦ Useful functions:

◦ UInt_t nCollisions()

◦ UInt_t lastCollision(): index of last collision experienced by this particle

◦ UInt_t parentCollision(): index of parent collision creating this particle

◦ Should <=lastCollision, because elastic scattering (A+B −> A+B) not recorded as parent collision

◦ Not saved in UrQMD

◦ To encode this and lastCollision, a variable "lstColl" in UrQMD is changed

◦ UInt_t parentCollisionType()

◦ = nElasticScatterings*100 + collisionType (>=0, <100) according to UrQMD

◦ If only collision type required, calculate parentCollisionType%100

◦ Int_t iTypeParent1(), Int_t i3Parent1()

◦ Int_t iTypeParent2(), Int_t i3Parent2()

◦ Parent i3 not saved in original UrQMD

◦ To encode these four, a variable "origin" in UrQMD is changed

15

Introduction: class UrqmdTrack
◦ Useful functions:

◦ UInt_t nCollisions()

◦ UInt_t lastCollision(): index of last collision experienced by this particle

◦ UInt_t parentCollision(): index of parent collision creating this particle

◦ Should <=lastCollision, because elastic scattering (A+B −> A+B) not recorded as parent collision

◦ Not saved in UrQMD

◦ To encode this and lastCollision, a variable "lstColl" in UrQMD is changed

◦ UInt_t parentCollisionType()

◦ = nElasticScatterings*100 + collisionType (>=0, <100) according to UrQMD

◦ If only collision type required, calculate parentCollisionType%100

◦ Int_t iTypeParent1(), Int_t i3Parent1()

◦ Int_t iTypeParent2(), Int_t i3Parent2()

◦ Parent i3 not saved in original UrQMD

◦ To encode these four, a variable "origin" in UrQMD is changed

16

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

Should be last collision number

(prevents reaction between 2 particles just reacted)

Introduction: class UrqmdTrackEx
◦ Index always equal to UrqmdTrack

◦ In origin UrQMD, this information not saved for tracks belong to collisions

◦ Can be saved via this code

◦ Useful functions:

◦ Double_t tFreezeOut(),

◦ Double_t xFreezeOut(), Double_t yFreezeOut(), Double_t zFreezeOut()

◦ Double_t pxFreezeOut(), Double_t pyFreezeOut(), Double_t pzFreezeOut()

◦ Double_t tauDecay(): decay time

◦ Double_t tauForm(): formation time

◦ Double_t rSigma(): cross section reduction factor

17

Introduction: class UrqmdTrackEx
◦ Index always equal to UrqmdTrack

◦ In origin UrQMD, this information not saved for tracks belong to collisions

◦ Can be saved via this code

◦ Useful functions:

◦ Double_t tFreezeOut(),

◦ Double_t xFreezeOut(), Double_t yFreezeOut(), Double_t zFreezeOut()

◦ Double_t pxFreezeOut(), Double_t pyFreezeOut(), Double_t pzFreezeOut()

◦ Double_t tauDecay(): decay time

◦ Double_t tauForm(): formation time

◦ Double_t rSigma(): cross section reduction factor

18

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

Configuration File
◦ Before xxx

◦ The same configuration as original UrQMD

◦ f14 −> does not save f14 output file (#f14 −> saves f14 output file)

◦ After xxx

◦ Specific configurationfor this code

◦ #ske −> skips empty events (Ncoll + Ndecays == 0)

◦ For non-empty events, Npart (only counts inelastic collisions) may be 0
(can be manually skipped when reading)

◦ #qut −> quiet standard output

◦ col −> does not save collision information

◦ tke −> does not save track extended information

◦ Removed since this version: esd −> does not use external seed for random

19

How to save parent particle information
◦ 4-byte integer: "origin" (original definition)

◦ = parentCollisionType + 100*(# elastic scatterings)
+ 1000*(|iType_parent1| + 1000*|iType_parent2|)

◦ 0 <= parentCollisionType < 100, 0 <= |iType_ parent| < 1000

◦ No "i3_parent" or sign of "iType_parent"

◦ parentCollisionType = origin%100

◦ # elastic scatterings = (origin/100)%10

20

How to save parent particle information
◦ 4-byte integer: "origin" (new definition)

◦ = parentCollisionType + 100*(# elastic scatterings)
+ 1000*((i3_parent1+3)+7*(t_iType_parent1+100))
+ 1400000*((i3_parent2+3)+7*(t_iType_parent2+100))

◦ 0 <= parentCollisionType < 100, 0 <= i3_parent+3 <= 6

◦ t_iType_parent=iType_parent; if(>=100) −=40; if(<=−100) +=40

◦ 0 < t_iType_parent +100 < 200

◦ origin < 1.96e9 (4-byte integer max ~ 2.1e9)

◦ !!!Also affects *.txt output

◦ parentCollisionType = origin%100

◦ # elastic scatterings = (origin/100)%10

21

How to store parent collision information
◦ Original UrQMD saves serial number of last collision

◦ "lstColl" in code; parent collision number in users guide (better to say last collision number)

◦ To prevent reaction between 2 particles from the same collision

◦ If a particle goes through elastic collision (A+B −> A+B), "lstColl" is recorded, and its parent
collision (in which collision the particle is produced) is not known

◦ In this code, both last collision and parent collision are saved

◦ parentCollision <=lastCollision, because elastic scattering not recorded as parent collision

◦ "lstColl" changed to encode both quantities (decoded when required in UrQMD simulation)

◦ lastCollision = integer((sqrt(1+8.0d0*lstcoll)-1)/2)

◦ For odd "lastCollision", parentCollision = lstColl-(lastCollision+1)/2*lastCollision

◦ For even "lastCollision", parentCollision = lstColl-lastCollision/2*(lastCollision+1)

◦ !!!Also affects *.txt output

22

Check

23

Check

24

Update on writting

25

◦ Add forward compatibility for ROOT version < 6.30

◦ Error when ROOT files written by ROOT >= 6.30 are read by ROOT < 6.30

◦ Solution 1: file->SetBit(TFile::k630forwardCompatibility);

◦ Solution 2: put TFile.v630forwardCompatibility: true in ~/.rootrc

◦ Fully valid for ROOT 6.32 (>= 6.32.10) and ROOT 6.34 (>=6.34.04)

◦ ROOT on ui is 6.32.02

Known Issues
◦ Negligible particles (such as some c-baryons) do not have UrQMD iType indices

◦ In Original UrQMD, PDG ID saved in iType (4-byte integer)

◦ In this code, only values between ±100 are reserved for iType

◦ iType == 0 is saved for these particles (can be identified using mass)

◦ Some UrQMD iType indices may not correspond to PDG ID

◦ Current data structure (iType, i3) not affected

◦ Particles of the same species in UrQMD may not have the same masses

◦ For proton, UrQMD mass = 0.938, some protons may < 0.938

26

Known Issues
◦ Different simulation results from CentOS 7 gfortran 4.8.5 and Ubuntu gfortran 11+

◦ Unknow reason

◦ UrQMD simulation using some input seeds may be broken (exit with error)

◦ Both original UrQMD and this code

◦ Solution: input a new seed and resubmit the job

27

Introduction: $Location/UrqmdUtility
◦ Contents:

◦ UrqmdUtility.{cxx,h}

◦ GNUmakefile

◦ Compiles Fortran $Location/urqmd/{blockres.f,error.f,ityp2pdg.f,upmerge.f} and C++ code in this
directory to (lib)UrqmdUtility.so

◦ Useful functions:

◦ static Int_t getPdgId(Int_t iType, Int_t i3)

◦ static Int_t getPdgId(std::pair<Int_t, Int_t> id)

◦ static TString getParticleName(Int_t iType)

◦ static void getUrqmdId(Int_t& iType, Int_t& i3, Int_t pdgId)

◦ static std::pair<Int_t, Int_t> getUrqmdId(Int_t pdgId)

◦ static Int_t getUrqmdIType(Int_t pdgId)

◦ static Int_t getUrqmdI3(Int_t pdgId)

28

Introduction: $Location/PdgData
◦ Contents:

◦ ParticleDataEntry.{cxx,h}

◦ PdgData.{cxx,h}

◦ GNUmakefile

◦ Compiles code in this directory to (lib)PdgData.so

◦ Useful functions:

◦ PdgData: static const ParticleDataEntry* get(const Int_t pid)

◦ ParticleDataEntry: Int_t pid(): PDG particle ID

◦ ParticleDataEntry: Int_t spin(): double spin

◦ ParticleDataEntry: Int_t charge(): triple electric charge

◦ ParticleDataEntry: Int_t color()

◦ ParticleDataEntry: Double_t mass()

29

Usage
◦ By ROOT: gSystem->Load($Location/UrqmdDst/libUrqmdDst.so");

◦ By GCC: -L$Location/UrqmdDst -lUrqmdDst -Wl,-rpath,$Location/UrqmdDst

◦ How to read tree

◦ UrqmdDst* u = new UrqmdDst();

◦ TChain* c = u->initInputChain("PATH_OF_FILE");//*.root or *.list

◦ for(Long64_t iEntry=0; iEntry<c->GetEntries(); iEntry++){

◦ c->GetEntry(iEntry);

◦ for(UInt_t iTimestep=0; iTimestep<u->numberOfTimesteps(); iTimestep++){

◦ const UrqmdTimestep* timestep = urqmdDst->timestep(iTimestep);

◦ for(UInt_t iTrack=0; iTrack<timestep->nTracks(); iTrack++){

◦ const UrqmdTrack* track = u->track(timestep->startTrack()+iTrack);

◦ …

30

Usage
◦ By ROOT: gSystem->Load($Location/UrqmdUtility/libUrqmdUtility.so");

◦ By GCC: -L$Location/UrqmdUtility -lUrqmdUtility
-Wl,-rpath,$Location/UrqmdUtility

◦ By ROOT: gSystem->Load($Location/PdgData/libPdgData.so");

◦ By GCC: -L$Location/PdgData -lPdgData -Wl,-rpath,$Location/PdgData

31

Summary
◦ A few updates on UrQMD production and reading

◦ Almost all information can be accessed with as small disk space required as possible

◦ New version compatible with older ones

◦ New codes UrqmdUtility and PdgData help with reading UrQMD data

◦ Existing UrQMD samples in ui:/ustcfs/HICUser/fsi/MODEL/UrQMD/

◦ Naming conventions: ProjectileTarget_energy(_configuration)

◦ E.g., UU_2p1, AuAu_3_eos1

32

	幻灯片 1: Update on UrQMD Production and Reading
	幻灯片 2: Overview
	幻灯片 3: Introduction: $Location/urqmd
	幻灯片 4: Introduction: $Location/curqmd
	幻灯片 5: Introduction: $Location/run
	幻灯片 6: Introduction: $Location/run
	幻灯片 7: Introduction: $Location/UrqmdDst
	幻灯片 8: Introduction: class UrqmdDst
	幻灯片 9: Introduction: class UrqmdEvent
	幻灯片 10: Introduction: class UrqmdTimestep
	幻灯片 11: Introduction: class UrqmdTimestep
	幻灯片 12: Introduction: class UrqmdCollision
	幻灯片 13: Introduction: class UrqmdTrack
	幻灯片 14: Introduction: class UrqmdTrack
	幻灯片 15: Introduction: class UrqmdTrack
	幻灯片 16: Introduction: class UrqmdTrack
	幻灯片 17: Introduction: class UrqmdTrackEx
	幻灯片 18: Introduction: class UrqmdTrackEx
	幻灯片 19: Configuration File
	幻灯片 20: How to save parent particle information
	幻灯片 21: How to save parent particle information
	幻灯片 22: How to store parent collision information
	幻灯片 23: Check
	幻灯片 24: Check
	幻灯片 25: Update on writting
	幻灯片 26: Known Issues
	幻灯片 27: Known Issues
	幻灯片 28: Introduction: $Location/UrqmdUtility
	幻灯片 29: Introduction: $Location/PdgData
	幻灯片 30: Usage
	幻灯片 31: Usage
	幻灯片 32: Summary

