

A Spin on Solitons (in wave dark matter)

Mustafa A. Amin

some relevant literature from our group at Rice U + coll.

Spin of wave dark matter from astrophysics?

with Jain	2109.04892
Jain, Zhang	2111.08700
Jain, Karur, Mocz	2203.11935
Jain	2211.08433
Long, Schiappacasse	2301.11470
Jain, Thomas, Waniswecharungruang	2304.01985
Helfer, Wang	2309.04345
Jain, Pu	2211.08433

Jain

Wisha

Thomas

Zhang

Long

Karur

Mocz

Helfer

spin and dark matter sub-structure

Phenomenology

- reduced interference

- growth of structure, nucleation time-scales

- polarized solitons, with macroscopic spin

a model

non-relativistic limit = multicomponent Schrödinger-Poisson

$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{4} X_{\mu\nu} X^{\mu\nu} + \frac{1}{2} \frac{m^2 c^2}{\hbar^2} X_{\mu} X^{\mu} + \frac{c^2}{8\pi G} R + \ldots \right] + \text{non-grav, interactions}$$

$$X_{\mu\nu} = \nabla_{\mu} X_{\nu} - \nabla_{\nu} X_{\mu}$$

non-relativistic limit

$$\boldsymbol{X}(t, \boldsymbol{x}) \equiv \frac{\hbar}{2mc} \Re \left[\boldsymbol{\Psi}(t, \boldsymbol{x}) e^{-imc^2 t/\hbar} \right]$$

split in "fast" and "slow" parts

$$S_{nr} = \int dt d^3x \left[\frac{i\hbar}{2} \mathbf{\Psi}^{\dagger} \dot{\mathbf{\Psi}} + \text{c.c.} - \frac{\hbar^2}{2m} \nabla \mathbf{\Psi}^{\dagger} \cdot \nabla \mathbf{\Psi} + \frac{1}{8\pi G} \Phi \nabla^2 \Phi - m \Phi \mathbf{\Psi}^{\dagger} \mathbf{\Psi} \right]$$

non-relativistic limit = multicomponent Schrödinger-Poisson

$$[\Psi]_i = \psi_i \text{ with } i = 1, 2, 3$$
 vector case

$$i\hbar\frac{\partial}{\partial t}\Psi = -\frac{\hbar^2}{2m}\nabla^2\Psi + m\Phi\Psi,$$

$$\nabla^2 \Phi = 4\pi G m \, \Psi^\dagger \Psi$$

$$[\Psi]_i = \psi_i \text{ with } i = 1$$
 scalar case

at this level this is just 2s+1 equal-mass scalar fields but not when non-gravitational interactions are included!

conserved quantities

$$[\Psi]_i = \psi_i \text{ with } i = 1, 2, 3$$

$$N = \int d^3x \boldsymbol{\Psi}^{\dagger} \boldsymbol{\Psi}, \text{ and } M = mN, \qquad \text{(particle number and rest mass)}$$

$$E = \int d^3x \left[\frac{\hbar^2}{2m} \nabla \boldsymbol{\Psi}^{\dagger} \cdot \nabla \boldsymbol{\Psi} - \frac{Gm^2}{2} \boldsymbol{\Psi}^{\dagger} \boldsymbol{\Psi} \int \frac{d^3y}{4\pi |\boldsymbol{x} - \boldsymbol{y}|} \boldsymbol{\Psi}^{\dagger}(\boldsymbol{y}) \boldsymbol{\Psi}(\boldsymbol{y}) \right], \qquad \text{(energy)}$$

$$\boldsymbol{S} = \hbar \int d^3x \, i \boldsymbol{\Psi} \times \boldsymbol{\Psi}^{\dagger}, \qquad \text{(spin angular momentum)}$$

$$\boldsymbol{L} = \hbar \int d^3x \, \Re \left(i \, \boldsymbol{\Psi}^{\dagger} \nabla \boldsymbol{\Psi} \times \boldsymbol{x} \right). \qquad \text{(orbital angular momentum)}$$

spin angular momentum

$$[\Psi]_i = \psi_i \text{ with } i = 1, 2, 3$$

$$\mathbf{S} = \hbar \int \mathrm{d}^3 x \, i \mathbf{\Psi} \times \mathbf{\Psi}^{\dagger}$$

$$s = i\hbar \Psi^{\dagger} \times \Psi$$

$$0 \le |S| \le \hbar N$$

$$0 \le |s| \le \hbar \Psi^{\dagger} \Psi$$

Jain & MA (2021) [2109.04892]

condensation in the kinetic regime

Jain, MA, Wanischarunarung, Thomas (2023)

[2304.01985]

condensation in the kinetic regime

Jain, MA, Wanischarunarung, Thomas (2023)

[2304.01985]

condensation in the kinetic regime

- nucleation time scale $\tau_{\rm s} \sim (2s+1)\tau_{\rm s=0}$

$$\tau_{s=0} = [n\sigma_{\rm gr}v\mathcal{N}]^{-1}$$

$$\sigma_{\rm gr} \sim (Gm/v^2)^2, \qquad \mathcal{N} \sim n\lambda_{\rm dB}^3$$

with Jain, Thomas, Wanichwecharungruang (2023) see Levkov et. al (2018) for scalar case

kinetic relaxation — multi-component case

Jain, MA, Thomas, Wanichwecharungruang (2023) [2304.01985]

$$i\frac{\partial}{\partial t}\psi_a = -\frac{1}{2m_a}\nabla^2\psi_a + m_a\Phi\psi_a$$
$$\nabla^2\Phi = 4\pi G \sum_a m_a \psi_a^*\psi_a.$$

where $\mathcal{D}_{ij}^{ab} = \int \frac{\mathrm{d}\tilde{\boldsymbol{v}}_b}{(2\pi)^3} f_{\tilde{\boldsymbol{v}}_b}^b \frac{\delta_{ij} - \hat{u}_i \hat{u}_j}{u} f_{\tilde{\boldsymbol{v}}_b}^b$ and $\mathcal{F}_i^{ab} = f_{\boldsymbol{v}_a}^a \int \frac{\mathrm{d}\tilde{\boldsymbol{v}}_b}{(2\pi)^3} \frac{\hat{u}_i}{u^2} f_{\tilde{\boldsymbol{v}}_b}^b$

$$\Gamma_{(s)} = \Gamma_0/(2s+1) \qquad \longleftarrow$$

$$\Gamma_a = \sum_b \frac{\Lambda (4\pi G)^2 \bar{\rho}_b}{\sigma_a^3 \sigma_b^3} \left[2\frac{\bar{\rho}_a}{m_a^3} - \beta_{ab} \frac{\bar{\rho}_b \sigma_a}{m_b^3 \sigma_b} \right]$$

what are these "blobs"?

[2304.01985]

solitons in s > 0 fields

spatially localized, coherently oscillating, long-lived

spatially localized

coherently oscillating (components)

exceptionally long-lived

vector solitons?

$$i\hbar \frac{\partial}{\partial t} \Psi = -\frac{1}{2m} \nabla^2 \Psi + m \Phi \Psi, \qquad \nabla^2 \Phi = 4\pi G m \Psi^{\dagger} \Psi$$

$$\Psi(t,r) = f(r)e^{i\mu t}\epsilon$$
 with $\epsilon^{\dagger}\epsilon = 1$

$$-\mu f = -\frac{1}{2m}\nabla^2 f + m\Phi f \qquad \nabla^2 \Phi = 4\pi G m f^2$$

"polarized" vector solitons

$$\Psi(t,r) = f(r)e^{i\mu t}\epsilon$$
 with $\epsilon^{\dagger}\epsilon = 1$

$$\boldsymbol{X}(t, \boldsymbol{x}) = \sqrt{\frac{2}{m}} \Re \left[\boldsymbol{\Psi}(t, \boldsymbol{x}) e^{-imt} \right]$$

$$f(r)\cos[(m-\mu)t]\hat{\boldsymbol{z}}$$

$$\epsilon_{\pm} = \hat{\boldsymbol{x}} \pm i\boldsymbol{y}/\sqrt{2}$$

$$f(r)[\hat{\boldsymbol{x}}\cos[(m-\mu)t] + \hat{\boldsymbol{y}}\sin[(m-\mu)t]]$$

"polarized" vector solitons (with macroscopic spin)

macroscopic intrinsic spin!

$$m{S}_{
m tot} = i(m{\epsilon} imes m{\epsilon}^\dagger) rac{M_{
m sol}}{m} \hbar$$

$$oldsymbol{\epsilon}_0 = \hat{oldsymbol{z}}$$

$$\epsilon_{\pm} = \hat{\boldsymbol{x}} \pm i\boldsymbol{y}/\sqrt{2}$$

$$S_{\text{tot}} = 0$$

$$oldsymbol{S}_{ ext{tot}} = \hbar \, rac{M_{ ext{sol}}}{m} \hat{z}$$

"polarized" vector solitons (with macroscopic spin)

$$m{S}_{
m tot} = i (m{\epsilon} imes m{\epsilon}^\dagger) rac{M_{
m sol}}{m} \hbar$$

- all lowest energy for fixed M
- bases for partially-polarized solitons

$$m{S}_{
m tot} = \hbar rac{M_{
m sol}}{m} \hat{z}$$

$$0 \le |S_{\mathrm{tot}}| \le \frac{M_{\mathrm{sol}}}{m}\hbar$$

Also see: Adshead & Lozanov (2021), Jain & MA (2021)

born to spin

even when initial total spin is negligible

MA, Jain, Karur & Mocz(2022) Jain, MA, Thomas, Wanichwecharungruang (2023)

a different higher energy soliton: the "hedgehogs"

earlier literature

$$W_j(\mathbf{x},t) = f(r) \frac{x^j}{r} \cos \omega t$$
,

Lozanov & Adshead (2021)

hedgehogs

$$E_{\rm hh}^s > E$$

$$E_{\rm hh}^{s=1} \approx 0.33E < 0$$

attractive non-gravitational self-interactions

Zhang, Jain & MA (2022)

2111.08700

Also see Jain (2021), Zhang & Ling (2023)

 $S_{\mathrm{tot}} = 0$

 $S_{
m tot}
eq 0$

energy

arXiv: 2211.08433

i-SPin: An integrator for multicomponent Mudit Jain & Mustafa Amin

Schrodinger-Poisson systems with self-interactions

i-SPin: An algorithm (and publicly available code) to numerically evolve multicomponent Schrodinger-Poisson (SP) systems, including attractive/repulsive self-interactions + gravity

problem: If SP system represents the non-relativistic limit of a massive vector field, nongravitational self-interactions (in particular, spin-spin type interactions) introduce new challenges related to mass and spin conservation which are not present in purely gravitational systems.

solution: Above challenges addressed with a novel analytical solution for the non-trivial 'kick' step in the algorithm (sec 4.3.2)

features: (i) second order accurate evolution (ii) spin and mass conserved to machine precision (iii) reversible

generalizations: n-component fields with SO(n) symmetry, an expanding universe relevant for cosmology, and the inclusion of external potentials relevant for laboratory settings

i-SPin 2: An integrator for general spin-s Gross-Pitaevskii systems

arXiv: 2305.01675

Mudit Jain, Mustafa Amin & H. Pu

i-Spin 2: An algorithm for evolving general spin-s Gross-Pitaevskii / non-linear Schrodinger systems carrying a variety of interactions, where the 2s+1 components of the 'spinor' field represent the different spin-multiplicity states.

Allowed interactions: Nonrelativistic interactions up to quartic order in the Schrodinger field (both short and long-range, and spin-dependent and spin-independent interactions), including explicit spin-orbit couplings. The algorithm allows for spatially varying external and/ or self-generated vector potentials that couple to the spin density of the field.

Applications: (a) Laboratory systems such as spinor Bose-Einstein condensates (BECs). (b) Cosmological/astrophysical systems such as self-interacting bosonic dark matter.

Numerical features: Our symplectic algorithm is second-order accurate in time, and is extensible to the known higher-order accurate methods.

$$S_{ax} = \int dt d^3x \left[\frac{i}{2} \psi_n^{\dagger} \dot{\psi}_n + c.c. - \frac{1}{2\mu} \nabla \psi_n^{\dagger} \cdot \nabla \psi_n \right]$$

 $- \mu \rho V(\mathbf{x}) - \gamma \, \mathcal{S} \cdot \dot{\mathbf{B}}(\mathbf{x}, t) - V_{torel}(\rho, \mathcal{S})$
 $- \frac{\xi}{2} \frac{1}{(2s+1)} |\psi_n \dot{A}_{nn'} \psi_{n'}|^2$
 $+ i g_{ij} \psi_n^{\dagger} [\dot{S}_i]_{nn'} \nabla_j \psi_n ,$
with $\dot{\mathbf{B}}(\mathbf{x}, t) = f(t) \dot{\mathbf{B}}(\mathbf{x})$, and
 $V_{torel}(\rho, \mathcal{S}) = -\frac{1}{2\mu^2} [\lambda \rho^2 + \alpha (\mathcal{S} \cdot \mathcal{S})]$.
number density $\rho = \psi_n^{\dagger} \psi_n$

spin density.

 $S = \psi_n^* \hat{S}_{nn'} \psi_{n'}$

probing intrinsic spin of solitons

compactness of polarized solitons

more resistance to collapse to BH for circularly polarized stars

2309.04345

gravitational waves and spin

$$\mathcal{N}_{n} = -\frac{GM_{1}M_{2}}{r} \left[1 + \mathcal{O}(v^{2}/c^{2}) - \frac{2}{rc} [\hat{\boldsymbol{r}} \times (\boldsymbol{v}_{1} - \boldsymbol{v}_{2})] \cdot \sum_{a=1}^{2} \frac{\boldsymbol{S}_{a}}{M_{a}} \right] \\
 \mathcal{N}_{n} = -\frac{GM_{1}M_{2}}{r} \left[1 + \mathcal{O}(v^{2}/c^{2}) - \frac{2}{rc} [\hat{\boldsymbol{r}} \times (\boldsymbol{v}_{1} - \boldsymbol{v}_{2})] \cdot \sum_{a=1}^{2} \frac{\boldsymbol{S}_{a}}{M_{a}} \right] \\
 \mathcal{N}_{n} = -\frac{GM_{1}M_{2}}{r} \left[1 + \mathcal{O}(v^{2}/c^{2}) - \frac{2}{rc} [\hat{\boldsymbol{r}} \times (\boldsymbol{v}_{1} - \boldsymbol{v}_{2})] \cdot \sum_{a=1}^{2} \frac{\boldsymbol{S}_{a}}{M_{a}} \right] \\
 \mathcal{N}_{n} = -\frac{GM_{1}M_{2}}{r} \left[1 + \mathcal{O}(v^{2}/c^{2}) - \frac{2}{rc} [\hat{\boldsymbol{r}} \times (\boldsymbol{v}_{1} - \boldsymbol{v}_{2})] \cdot \sum_{a=1}^{2} \frac{\boldsymbol{S}_{a}}{M_{a}} \right] \\
 \mathcal{N}_{n} = -\frac{GM_{1}M_{2}}{r} \left[1 + \mathcal{O}(v^{2}/c^{2}) - \frac{2}{rc} [\hat{\boldsymbol{r}} \times (\boldsymbol{v}_{1} - \boldsymbol{v}_{2})] \cdot \sum_{a=1}^{2} \frac{\boldsymbol{S}_{a}}{M_{a}} \right] \\
 \mathcal{N}_{n} = -\frac{GM_{1}M_{2}}{r} \left[1 + \mathcal{O}(v^{2}/c^{2}) - \frac{2}{rc} [\hat{\boldsymbol{r}} \times (\boldsymbol{v}_{1} - \boldsymbol{v}_{2})] \cdot \sum_{a=1}^{2} \frac{\boldsymbol{S}_{a}}{M_{a}} \right] \\
 \mathcal{N}_{n} = -\frac{GM_{1}M_{2}}{r} \left[1 + \mathcal{O}(v^{2}/c^{2}) - \frac{2}{rc} [\hat{\boldsymbol{r}} \times (\boldsymbol{v}_{1} - \boldsymbol{v}_{2})] \cdot \sum_{a=1}^{2} \frac{\boldsymbol{S}_{a}}{M_{a}} \right] \\
 \mathcal{N}_{n} = -\frac{GM_{1}M_{2}}{r} \left[1 + \mathcal{O}(v^{2}/c^{2}) - \frac{2}{rc} [\hat{\boldsymbol{r}} \times (\boldsymbol{v}_{1} - \boldsymbol{v}_{2})] \cdot \sum_{a=1}^{2} \frac{\boldsymbol{S}_{a}}{M_{a}} \right] \\
 \mathcal{N}_{n} = -\frac{GM_{1}M_{2}}{r} \left[1 + \mathcal{O}(v^{2}/c^{2}) - \frac{2}{rc} [\hat{\boldsymbol{r}} \times (\boldsymbol{v}_{1} - \boldsymbol{v}_{2})] \cdot \sum_{a=1}^{2} \frac{\boldsymbol{S}_{a}}{M_{a}} \right] \\
 \mathcal{N}_{n} = -\frac{GM_{1}M_{2}}{r} \left[1 + \mathcal{O}(v^{2}/c^{2}) - \frac{2}{rc} [\hat{\boldsymbol{r}} \times (\boldsymbol{v}_{1} - \boldsymbol{v}_{2})] \cdot \sum_{a=1}^{2} \frac{\boldsymbol{S}_{a}}{M_{a}} \right] \\
 \mathcal{N}_{n} = -\frac{GM_{1}M_{2}}{r} \left[1 + \mathcal{O}(v^{2}/c^{2}) - \frac{2}{rc} [\hat{\boldsymbol{r}} \times (\boldsymbol{v}_{1} - \boldsymbol{v}_{2})] \cdot \sum_{a=1}^{2} \frac{\boldsymbol{S}_{a}}{M_{a}} \right] \\
 \mathcal{N}_{n} = -\frac{GM_{1}M_{2}}{r} \left[1 + \mathcal{O}(v^{2}/c^{2}) - \frac{2}{rc} [\hat{\boldsymbol{r}} \times (\boldsymbol{v}_{1} - \boldsymbol{v}_{2})] \cdot \sum_{a=1}^{2} \frac{\boldsymbol{S}_{a}}{M_{a}} \right] \\
 \mathcal{N}_{n} = -\frac{GM_{1}M_{2}}{r} \left[1 + \mathcal{O}(v^{2}/c^{2}) - \frac{2}{rc} [\hat{\boldsymbol{r}} \times (\boldsymbol{v}_{1} - \boldsymbol{v}_{2})] \cdot \sum_{a=1}^{2} \frac{\boldsymbol{S}_{a}}{M_{a}} \right] \\
 \mathcal{N}_{n} = -\frac{GM_{1}M_{2}}{r} \left[1 + \mathcal{O}(v^{2}/c^{2}) - \frac{2}{rc} [\hat{\boldsymbol{r}} \times (\boldsymbol{v}_{1} - \boldsymbol{v}_{2})] \cdot \sum_{a=1}^{2} \frac{\boldsymbol{S}_{a}}{M_{a}} \right] \\
 \mathcal{N}_{n} = -\frac{GM_{1}M_{2}}{r} \left[1 + \mathcal{O}(v^{2}/c^{2}) - \frac{2}{rc} [\hat{\boldsymbol{r}} \times (\boldsymbol{v}_{1} - \boldsymbol{v}_{2}$$

Photons from Dark Photon Solitons via Parametric Resonance

MA & Mou (2019) 2009.11337

 $F_{\mu\nu}G^{\mu\nu}$

$$\mathcal{L}_{\mathrm{int}} \sim g^2 X X F F$$

2301.11470
with Schiappacasse & Long (2022)

spin of soliton® polarization of photons

$$\mathcal{O}_1 = -\frac{1}{2} F_{\mu\nu} \tilde{F}^{\mu\nu} (X \cdot X_5)$$

$$\mathcal{O}_2 = -\frac{1}{2} F_{\mu\nu} F^{\mu\nu} (X \cdot X_0)$$

$$\mathcal{O}_3 = F_{\mu\rho} F^{\nu\rho} X^{\mu} X_{\nu} \quad _{0.5}$$

$$\mathcal{O}_4 = \tilde{F}_{\mu\rho}\tilde{F}^{\nu\rho}X^{\mu}X_{\nu} \quad _{0.0}$$

$$\mathcal{O}_5 = F_{\mu\rho} F^{\nu\rho} \partial^{\mu} X_{\nu}$$

explosive photon production (under certain conditions)

$$\mu R \gtrsim 1, \qquad \mu \sim g^2 X^2 m$$

 $R = \text{soliton radius}, \ \mu = \text{Floquet exponent}$

$$-0.5$$
 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 $(k-m)/(g^2\bar{X}^2m)$ $(k-m)/(g^2\bar{X}^2m)$

generalization to arbitrary spin

extremally polarized solitons

macroscopic spin $S_{\rm tot}/\hbar = \lambda N \hat{z}$ N=# of particles in soliton

Jain & MA (2021)

summary

Phenomenology

- reduced interference

- polarized solitons, with macroscopic spin

- growth of structure, nucleation time-scales

