# A Stationary Mössbauer Scheme for Gravitational Wave detection

高宇 (Yu Gao) 高能物理研究所(IHEP)

<u>MEPA2023</u> 合肥, 2023/10/20 A conceptual experiment presented in <u>2310.06607</u>. In collaboration with 张华桥、徐伟

# Mössbauer effect

 Recoil-less emission and resonant absorption of nuclear transition photons.



- W/O phonon excitations, the recoil is extremely small (against the entire lattice + other shifts)
- Resonance is sensitive to a tiny photon energy variation.



Frequency peaks with recoil-less (natural) width  $\Gamma$  are separated by suppressed shifts (collective recoils, Doppler shifts, energy level differences)  $E_R$ . The separation  $2*E_R$  is compensated for by a manually introduced shift to achieve resonance.

1961

# An early role in relativity test

• Mossbauer effect can sense the gravitational redshift.



Jefferson laboratory at Harvard University. The experiment occurred in the left "tower". The attic was later extended in 2004.

Pound, Rebka & Snyder (1960-1965) Observation of a height-induced  $2ghc^{-2} \sim 4.905 \times 10^{-15}$  frequency shift Also see: frequency shift due to acceleration H.J. Hay, J. P. Schiffer, T. E. Cranshaw, and P. A. Egelstaff, (Atomic Energy Research Establishment, 1960)



# Mössbauer for GW?

- Many have thought about it, no doubt...
- Photon frequency varies when it propagates in an un-even space-time background.
- Mössbauer gave way to clock-based experiments in later tests of gravity.
   See <u>K. Hentschel</u>
- Issues with line-shifts.

<u>Annals of Science 53,</u> 269–295 (1996) Published: 11 July 1970

### Redshift Fluctuations arising from Gravitational Waves

#### WILLIAM J. KAUFMANN

Nature 227, 157–158 (1970) Cite this article

350 Accesses | 34 Citations | 3 Altmetric | Metrics

It should be noted that the gravitational waves which Weber<sup>4,5</sup> claims to have observed at 1,660 Hz are too weak to be detected by the method suggested in this paper. A gravitational radiation flux of 10<sup>4</sup> ergs cm<sup>-2</sup> s<sup>-1</sup> determined by Weber corresponds to the  $h_{\mu\nu}$  being several orders of magnitude below the present limits of detectability of the Mössbauer effect ( $h_{\mu\nu} \sim 10^{-18}$ ). Nevertheless, we might expect that refined techniques using the Mössbauer effect will one day become important tools in the detection of gravitational radiation.

A cryogenic  $^{65}$ Zn measurement of the local *g*-value (Potzel et.al. 1992)

Differential measurement of the resonance with a sinusoidal oscillator

\* resonance is achieved

\* g-value is off, possibilly due to various line-shifts.



### Can improve with a stationary scheme

"such solid-state effects might be difficult ... ... there might exist two exceptions. The first are <u>null redshift experiments</u>, in particular measurements with stationary source and absorber".

# A stationary measurement?

- Improve on vibration-induced uncertainties. ✓
- Replace Doppler shift with gravitational shift.  $\checkmark$
- GW: time-variance of resonance's *height-shift instead of absolute height* → avoid uncontrolled energy level uncertainties.



Energy loss E<sub>R</sub> is compensated by a slight height difference between absorber and source: can be calibrated in advance.

--- the absolute height of resonance (Z<sub>0</sub>) is affected by large systematics: 2<sup>nd</sup> Doppler, chemical composition, etc.

--- but its time-dependent shift under GW is *not* affected.

## Stationary detectors' resonance



The resonance line-shape (in terms of absorber height Z)



with extra shift/perturbation:

$$Z_0 \rightarrow Z_0(t) = Z_0 + g^{-1} \frac{\Delta f(t)}{f_\gamma}$$



Choose height binwidth that matches  $\Gamma_{exp}$  :

 $\Delta Z = 0.5 \cdot g^{-1} \Gamma_{\rm exp} / E_0$ 

Spatial resolution of peak relates to freq. shift:

$$\frac{\delta f}{f} = \frac{\delta Z_0}{\Delta Z} \cdot \frac{\delta f_{\text{Moss}}}{f} \equiv \frac{\xi(\epsilon f_S)}{\sqrt{C_{\infty}}} \cdot \frac{\Gamma_{\text{exp}}}{E_0},$$

\* Function  $\xi$  derives from line-shape fitting and it is insensitive to  $\Delta Z$ ;

\* Freq. resolution improves over larger statistics ( $C_{\infty}$ )

| Recoil free fraction | $C_{\infty}$ |         |         |         |  |
|----------------------|--------------|---------|---------|---------|--|
| $f_S$                | 50           | 500     | 5000    | 50000   |  |
| $0.05^{*}$           | -            | -       | -       | 1.2e-22 |  |
| 0.10                 | -            | -       | 1.3e-22 | 3.8e-23 |  |
| 0.20                 | 2            | 1.3e-22 | 4.5e-23 | 1.4e-23 |  |
| 0.30                 | -            | 7.9e-23 | 1.9e-23 | 7.0e-24 |  |
| 0.40                 | -            | 4.8e-23 | 1.5e-23 | 4.5e-24 |  |
| 0.50                 | -            | 3.3e-23 | 9.4e-24 | 2.9e-24 |  |
| 0.60                 | 7.3e-23      | 2.2e-23 | 7.2e-24 | 2.1e-24 |  |
| 0.70                 | 5.0e-23      | 1.5e-23 | 5.0e-24 | 1.5e-24 |  |
| 0.80                 | 4.1e-23      | 1.2e-23 | 4.0e-24 |         |  |
| 0.90                 | 3.7e-23      | 9.5e-24 | 3.1e-24 |         |  |

\* for metallic silver

Silver alloy/compound with higher  $T_{deBye}$  helps improve  $f_S$  e.g. AgB<sub>2</sub> has a higher  $T_{deBye}$  and  $f_S$  =0.2 (@ 4K)



tially resolved: 
$$\delta f/f \propto \sqrt{\Gamma_{exp}}$$

The realistic  $\Gamma_{exp}$  may come with a `broadening' factor. While the resonance width scales linearly with  $\Gamma_{exp}$ , so does  $\Delta Z$  and  $C_{\infty}$ . Improved stat. in each height bin lets the overall sensitivity  $\propto \sqrt{broadening \#}$ 

# Isotope of choice: <sup>109</sup>Ag

#### <sup>109</sup>Ag Isotope Properties

Isotopic abundance 48.161(5)%

Ground state properties: ? = -0.130563(23) nm

#### Excited state properties:

$$\begin{split} &\mathsf{E}=88.0341(11)\;keV\\ &\mathsf{E}_R=4.3544(9)\;10^{-2}\;eV\\ &?=4.400(6)\;nm\\ &Q=1.02(12)b\\ &\mathsf{T}_{1/2}=39.6(2)\;s\\ &W=7.9(2)\;10^{-11}mm/s \end{split}$$

#### **Decay Diagram**



Mössbauer database (DICP, CAS)

Unit Conversion: 1mm/s = 71.0043(9) MHz 1mm/s = 2.9365(4) 10<sup>-7</sup>eV

- Long parent nuclei lifetime: 461 days allow for sufficient operation time
- Narrow 88 keV linewidth: O(10<sup>-22</sup>) sensitivity
- Workable  $\Delta Z \approx 10 \mu m$  under terrestrial (1 g) gravity field for  $\Gamma_{exp} = 4.1\Gamma$

R&D with high-z detectors

The quest of the <sup>109</sup>Ag resonance:

 $\Gamma_{exp} \sim 30\Gamma$ , (W. Wildner and U. Gonser, 1979)

Improved resonance resolution, w broadening factors down to 16 (US) R. D. Taylor and G. R. Hoy, SPIE **875**, 126 (1988).

S.RezaieSerej, G. R. Hoy, and R. D. Taylor, Laser Phys. **5**, 240 (1995). **Russian group: improvements with Grav. Effects** V. G. Alpatov, et.al. Laser Physics 17, 1067–1072 (2007). Yu. D. Bayukov, et.al. JETP Letters 90, 499–503 (2009).

### The GW signal: frequency shift

Consider a plain-wave strain perturbation

$$h(\mathbf{x},t) = h_0 e^{i(\omega t - \mathbf{k} \cdot \mathbf{x})}$$

 $ds^2 = c^2 dt^2 - [1 + h]dx^2 - [1 - h]dy^2 - dz^2$ 

A particle's 4-momentum response to GW strain after one-way propagation: Estabrook and Wahlquist, Gen. Relat.

$$\frac{\Delta f}{f_{\gamma}} = \frac{\ell^{\mu}\ell^{\nu}}{1 - \cos\theta} [h_{\mu\nu}^{\rm D} - h_{\mu\nu}^{\rm E}]$$

 $\ell^{\mu} = f_{\gamma}(1, \sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$ 

$$\int \frac{\Delta f}{f_{\gamma}} = 2h_0 \cos^2 \frac{\theta}{2} \cos 2\phi \sin \left(\omega d \sin^2 \frac{\theta}{2}\right)$$
$$\cdot \sin \left(\omega t - \omega d \cos^2 \frac{\theta}{2}\right),$$

Gravit. 6, 439-447 (1975);

Hellings, Phys. Rev. D 23, 832-843 (1981).



FIG. 1. Tracking geometry. (figure from Hellings paper)

Energy diff. between

 $E(t_E, \vec{0})$  and  $D(t_E + \frac{d}{c}, \frac{d}{c})$ 

When the baseline distance approaches to the GW's wavelength scale, a particle starts to see the strain difference.

$$\frac{\Delta f}{f_{\gamma}} = 2h_0 \cos^2 \frac{\theta}{2} \cos 2\phi \sin \left(\omega d \sin^2 \frac{\theta}{2}\right)$$
  
$$\cdot \sin \left(\omega t - \omega d \cos^2 \frac{\theta}{2}\right),$$
  
Spin-2

\* Requires a perpendicular h component.
\* Extra complication w baseline at high freq.
\* Vanishes when (anti) parallel to GW direction

Maximal shift with GW frequency:

 $\frac{\Delta f}{f_{\gamma}}\Big|_{\max} = \begin{cases} \frac{\omega d}{2}h_0, & \omega d \ll 1 \& \theta \to \frac{\pi}{2}, \\ \eta(\omega d) \cdot h_0, & \omega d > 1, \ 1^{\text{st}} \max. \end{cases}$ 

 $\eta \rightarrow 2$  at high frequency, with multiple maxima. Angular patterns becomes very complicated for  $\omega d > O(10)$ Angular pattern allows for GW direction reconstruction At low-freq, freq. shift decreases *linearly* with  $\omega d$  Non-trivial angular pattern with the incident GW direction:

Low GW freq: max. at 90.

High GW freq: modulated btw  $0 < \theta < 2\pi$ 

### "blind directions"

$$\omega d \sin^2 \frac{\sigma}{2} = n\pi, \quad n = 1, 2, 3...$$

Multiple directions can compensate for others' insensitive directions.



### A circular layout

- A ring of detectors in the horizontal plane covers  $\theta \in (\theta, \pi \theta)$  when GW comes at angle  $\theta$ .
- Guarantee (at least) two perpendicular directions relative to any GW incident θ angle.



Huaqiao's counting algorithm:

We sum up all detectors' counts within >90% signal region & identify this counting # (in each signal period) to the  $C_{\infty}$  in resonance peak location reconstruction.

(sacrifice angular information for statistics)

$$N_{90} = R_s \cdot \frac{2\pi f_t}{\omega} \cdot \frac{(2\pi f_\phi d) \cdot \Delta Z}{4\pi d^2}$$

 $f_t$ ~0.3 for the time fraction of >90% signal in each period.

Total angular fraction:  $f_{\phi}\Delta Z/2d$ 



An estimate on the required source intensity: (R<sub>s</sub> for an isotropic source)

$$R_{s} = \frac{\omega}{2\pi} \frac{C_{\infty} 2d}{\Delta Z f_{\phi} f_{t}} = \frac{2\omega dg\xi^{2}}{f_{\phi} f_{t}} \left(\frac{\Gamma_{\exp}}{E_{0}}\right) \left(\frac{\delta f}{f}\right)^{-2}$$
$$\approx 10^{14} \text{ Bq} \cdot \left(\frac{\omega/2\pi}{\text{MHz}}\right) \left(\frac{d}{1 \text{ m}}\right) \left(\frac{g}{g_{\oplus}}\right)$$
$$\cdot \left[\frac{\eta(\epsilon f_{S})}{12.4}\right]^{2} \left(\frac{4 \times 10^{-21}}{\delta f/f}\right)^{2} = \frac{1}{12.4} \left(\frac{g}{g_{\oplus}}\right)^{2}$$

Beware: pars on the 2<sup>nd</sup> line do not scale independently.

- Source intensity scales linearly with baseline length and inversely with the local gravitational acceleration.
- Need to balance between resonance shift length, detector size, and practical sources.
- Non-isotropic source / focusing would immensely enhance efficiency.
- Coherently repeated signals can boost statistics: N<sub>90</sub> -> N<sub>90</sub>\*Q

#### Benchmarks: A: table-top experiment. B: 10-meter radius in low-g

|                | $g~(g_\oplus)$ | d (m) | $\Delta Z$      | $\epsilon f_S$ | $h_{\min}$          | $f_{\max}$         | $R_s$ (Bq.) |
|----------------|----------------|-------|-----------------|----------------|---------------------|--------------------|-------------|
| A              | 1              | 1     | $10 \ \mu m$    | 0.04           | $3 \times 10^{-15}$ | 0.6 KHz            | $10^{11}$   |
| A'             | 1              | 5     | $10 \ \mu m$    | 0.04           | $3 \times 10^{-17}$ | $13 \mathrm{~KHz}$ | $10^{13}$   |
| В              | $10^{-4}$      | 10    | $1 \mathrm{dm}$ | 0.4            | $3 \times 10^{-23}$ | $30 \mathrm{~MHz}$ | $10^{14}$   |
| $\mathbf{A}^C$ | 1              | 1     | $10 \ \mu m$    | 0.04           | $1 \times 10^{-21}$ | $3~\mathrm{GHz}$   | $10^{11}$   |

TABLE II. Sample static Mössbauer measurement configurations that corresponds to a table-top experiment with a Type-III source intensity (A) and a low-g setup with a stronger source (B). A' is scaled-up scenario by increasing the source intensity in A by two orders of magnitude.  $h_{\min}$  and  $f_{\max}$  denote the sensitivity to the GW strain and the maximal GW frequency that can be probed. A<sup>C</sup> represents the sensitivity with setup A but for a periodic signal with coherence up to 10<sup>6</sup> periods. The source intensity is given for isotropic sources.

#### 2310.06607



### Take-home message

2310.06607

 A conceptual layout for a stationary Mössbauer measurement for GWs:

\*Measure the spatial peak shift instead of peak width.
\*A relatively small-scale setup (meter – 10 meter).
\*<sup>109</sup>Ag gives 10<sup>-22</sup> sensitivity, has long lifetime.
\*Encouraging forecast for f<sub>GW</sub> > kHz, a multiband search alternative.
\*Overall Sensitivity scales as sqrt of the effective Mössbauer width.
\*Significant improvement in low-g, or any other way to enhance detectors' angular coverage, e.g. beam focusing, Laue lens, etc.