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IN PLANETARY MAGNETOSPHERE

Tao Liu (HKUST)

ArXiv: 2305.01832, with Jing Ren and Chen Zhang




In the theory of general relativity, gravitational
waves (GWs) were first predicted in 1916 by

Albert Einstein, as ripples in spacetime




Hulse-Taylor binary pulsar (PSR
B1913+16) and its orbital decay
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mnu First Direct Evidence (2015)
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[B.P. Abbott et. al.,
PRL 116, 061102 (2016)]
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Detection of LFGWSs
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© High-scale first order cosmological phase transition:
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- Cosmic gravitational microwave background (CGMB):  f ~ (1 — 100) GHz

o Late Universe
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https://inspirehep.net/authors/1942282
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shorter effective arm length, lower sensitivity
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Alternative methodology - Inverse Gertsenshtein effect
While propagating in an external magnetic field, the GWs could oscillate into photons due to a state mixing.
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W Inverse Gertsenshtein Effect (Gertsenshtein, 1962)
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Afy AM Ay = %K,Bt Encodes the GW-photon mixing
AM 0 A,y %_ Ayac + Apla Eff photon mass without GW-photon mixing

Avac = Tow/(90m)(Bi/Be)*  Apla = —mj;,/(2w)

Conversion probability in a €
homogeneous magnetic field. D sin2(2@) gin2 L :
Can be qualitatively used to .
guide experimental design %
L: effective travel distance of GWs in the magnetic field Coherence conversion:

lose = 2/(4A3%; + A2)1/2: GW-photon oscillation length sinc ->1 or large |_osc
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JJ Sensitivity Analysis
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JJ Artificial Magnetic Field
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Key features: intermediate magnetic field strength (B ~ O(1)T) with a limited size (L ~ O(10)m)

- Axion helioscope (above THz or GHz)
> Ejlli, et al., EPJC 79 (2019)
> Franciolini, et al., PRD 106 (2022)

> narrow angular distribution of signal flux

- Resonant cavity experiments (MHz-GHz)

Berlin, et al. PRD 105 (2022)

Domcke, et al., PRL 129 (2022)

Schmieden and Schott, arXiv:2209.12024 [gr-gc]

enhanced sensitivity at the cost of a narrow band
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- Small effective FOV (due to narrow angular
distribution of signal photon flux)

< Short GW-photon coherent conversion path

Noxp (mHz) A (m?) Lo (m) By (T) Af (Hz)

(limited by exp facility geometry)
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Cosmo/Astro Magnetic Field
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Key features: more extremal (either much stronger or much weaker) magnetic field
with a cosmo/astro scale

- Cosmic magnetic field (Rayleigh-Jeans tail of CMB, radio)
> Chen, PRL 74 (1995)
> Domcke and Garcia-Cely, PRL 126 (2021)

> Large uncertainties of cosmic magnetic field

- Neutron stars (frequency bands for NS observation)
> Raffelt and Stodolsky, PRD 37 (1988)
> lto et. al., arXiv: 2305.13984 [gr-qc]

> Suppressed oscillation length and extremely tiny angular
distribution of signal flux
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Magngtic '
g 1dllines - Collapsed core of a massive star, with a radius ~10km
and strong surface magnetic field ~ 10"8 - 10415 Gauss

Spin axis

© Overall enhancement by strong B: A,; «x B

Magnae)t(gg - Difficult to achieve coherent conversion for its short | _osc
[G. Raffelt and L. Stodolsky, Phys.Rev.D 37 (1988)]

lose = 2/ (402 + A2)1/2

© Limited by the extremely tiny angular distribution of signal
flux, the effective FOV is tiny.



https://en.wikipedia.org/wiki/Stellar_structure

2 -",‘_,Th‘e Earth’s'Magn,etic Field - | e Magnetic Field

Magnetic Geographic . .
Pole - [ North Pole - - .

: I . .
sy :
L
’77'50 .
j ’

. !
; / -/’South
" " Geographic

- . SouthPole Magnetic
) SR Pole

Earth: radius ~ 6000 km and surface magnetic field ~ 0.5 Gauss
Jupiter: radius ~ 70000 km and surface magnetic field ~ 10 Gauss

- Relatively weak B: Ay x B
~ Not difficult to achieve coherent conversion: losc = 2/(4A%; + A%)l/Q

© Wide angular distribution of signal flux (although technology constraints for FOV
need to be considered)




Our Proposal - Planet Magnetic Field
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gamma ray ultraviolet  visible infrared  microwave

EM wave spectrum
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Satellite-Based Detector
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Two benchmark Scenarlos for Sensntuvuty Analysis
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© Operate at low-Earth orbit
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Based on the M7 X-ray
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BAW \ NSs < : dim isolated NSs
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Crab and Geminga pulsars observations
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Comparable sensitivities are obtained
In the X-ray band in 10

[Ito et. al., arXiv: 2305.13984] I T
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< Higher GW-photon conversion probability

© Suppressed impacts from atmospherical thermal radiation
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May bring up the sensitivities by orders of magnitude (especially for the infrared band)
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EM wave spectrum

Radio = Microwave Infrared visible Ultraviolet  X-ray Gamma-ray
Frequency
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> The detection of HFGWs represents a high-scientific-value task in GW astronomy
- For high-frequency bands, however, efficient detection methodologies are strongly demanded

- With long GW-photon conversion path and wide angular distribution of signal fluxes, the
proposal of detecting HFGWs in planet magnetosphere opens a new operation space, with
encouraging sensitivities projected for a wide coverage of frequencies.

- For some specific frequency bands, the first constraints from the existing data are obtained.

- More comprehensive study, with a refined analysis, is expected. Stay tuned ...




~ KBEARHZAG
UC

University Grants Committee

—

PEIAP TR
'.'-..‘.‘-t;_“' -
o' AT ' a FETRCRE o e P

o — -

& i - = -f.'\" 1 TJ_.‘ -1 2 = - - —— : -
. . c ‘"“Wl-x\h :'_ﬁ?. a?»wc?um'b: T &
= ) : - - S - " ”ﬁ A




