Workshop on Multi-front Exotic phenomena in Particle and Astrophysics (MEPA 2023), Hefei

DETECTING HIGH-FREQUENCY GWS IN PLANETARY MAGNETOSPHERE

Tao Liu (HKUST)

ArXiv: 2305.01832, with Jing Ren and Chen Zhang

11
11

$$
R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}
$$

In the theory of general relativity, gravitational waves (GWs) were first predicted in 1916 by Albert Einstein, as ripples in spacetime

First Indirect Evidence (1974)

Hulse-Taylor binary pulsar (PSR B1913+16) and its orbital decay

First Direct Evidence (2015)

4

Detection of LFGWs

 $f_{\rm ISCO} \simeq C^{3/2} \left(\frac{6 \times 10^{-3} M_{\odot}}{M} \right) 10^6 \,\text{Hz}$

Axion cloud: annihilation and decay

$$
f = 2 \left(\frac{m_a}{10^{-9} \text{ eV}} \right) \, 10^6 \, \text{Hz} \quad \ \, f = \frac{1}{2} \left(\frac{m_a}{10^{-9} \, \text{eV}} \right) \, 10^6 \, \text{Hz}
$$

$$
\left(\begin{array}{c}\n\hat{\mathbf{e}}_1 \\
\hline\n\hat{\mathbf{e}}_2\n\end{array}\right)\n\begin{array}{c}\n\hat{\mathbf{e}}_1 \\
\hline\n\hat{\mathbf{e}}_2\n\end{array}\n\begin{array}{c}\n\hat{\mathbf{e}}_2 \\
\hline\n\hat{\mathbf{e}}_3\n\end{array}\n\begin{array}{c}\n\hat{\mathbf{e}}_1 \\
\hline\n\hat{\mathbf{e}}_2\n\end{array}\n\begin{array}{c}\n\hat{\mathbf{e}}_2 \\
\hline\n\hat{\mathbf{e}}_3\n\end{array}\n\begin{array}{c}\n\hat{\mathbf{e}}_2 \\
\hline\n\hat{\mathbf{e}}_3\n\end{array}\n\begin{array}{c}\n\hat{\mathbf{e}}_1 \\
\hline\n\hat{\mathbf{e}}_2\n\end{array}\n\end{array}
$$

Alternative methodology - Inverse Gertsenshtein effect

While propagating in an external magnetic field, the GWs could oscillate into photons due to a state mixing.

$$
S=-\frac{1}{4}\int d^4x\sqrt{-g}g^{\mu\alpha}g^{\nu\beta}F_{\mu\nu}F_{\alpha\beta}
$$

Inverse Gertsenshtein Effect (Gertsenshtein, 1962)

$$
\left(\begin{array}{c}\n\hat{\mathbf{e}}_1 \\
\hat{\mathbf{e}}_2\n\end{array}\right)\n\begin{array}{c}\n\hat{\mathbf{e}}_1 \\
\hat{\mathbf{e}}_2\n\end{array}\n\begin{array}{c}\n\hat{\mathbf{e}}_1 \\
\hat{\mathbf{e}}_2\n\end{array}\n\begin{array}{c}\n\hat{\mathbf{e}}_1 \\
\hat{\mathbf{e}}_2\n\end{array}\n\begin{array}{c}\n\hat{\mathbf{e}}_1 \\
\hat{\mathbf{e}}_2\n\end{array}\n\begin{array}{c}\n\hat{\mathbf{e}}_1 \\
\hat{\mathbf{e}}_2\n\end{array}\n\begin{array}{c}\n\hat{\mathbf{e}}_1 \\
\hat{\mathbf{e}}_2\n\end{array}\n\end{array}
$$

 $\left(\begin{array}{cc} \Delta_\gamma & \Delta_\mathrm{M} \ \Delta_\mathrm{M} & 0 \end{array}\right) \quad \begin{array}{c} \Delta_\mathrm{M} = \frac{1}{2} \kappa B_t \ \Delta_\mathrm{vac} + \Delta_\mathrm{pla} \end{array}$

Encodes the GW-photon mixing

Eff photon mass without GW-photon mixing

$$
\Delta_{\rm vac}=7\alpha\omega/(90\pi)(B_t/B_c)^2\quad \ \Delta_{\rm pla}=-m_{\rm pla}^2/(2\omega)
$$

Conversion probability in a homogeneous magnetic field. Can be qualitatively used to guide experimental design

$$
P = \sin^2(2\Theta)\sin^2\left(\frac{L}{l_{\text{osc}}}\right) = (\Delta_{\text{M}}L)^2 \left(\frac{L}{l_{\text{osc}}}\right)
$$

L: effective travel distance of GWs in the magnetic field $l_{\rm osc} = 2/(4\Delta_{\rm M}^2 + \Delta_\gamma^2)^{1/2}$: GW-photon oscillation length

Coherence conversion: sinc -> 1 or large \lfloor _osc

Key features: intermediate magnetic field strength $(B \sim O(1)T)$ with a limited size $(L \sim O(10)m)$

- Axion helioscope (above THz or GHz)
	- Ejlli, et al., EPJC 79 (2019)
	- Franciolini, et al., PRD 106 (2022)
	- narrow angular distribution of signal flux
- Resonant cavity experiments (MHz-GHz)
	- Berlin, et al. PRD 105 (2022)
	- Domcke, et al., PRL 129 (2022)
	- Schmieden and Schott, arXiv:2209.12024 [gr-qc]
	- enhanced sensitivity at the cost of a narrow band

$$
P = \sin^2(2\Theta) \sin^2\left(\frac{L}{l_{\text{osc}}}\right) = (\Delta_{\text{M}} L)^2 \text{sinc}^2 \left(\frac{L}{l_{\text{osc}}}\right)
$$

$$
h_{c,95\%} \approx 4.5\kappa \left(\frac{\phi_b}{A \Delta t \Delta \omega \Delta \Omega}\right)^{1/4} \left(\frac{1}{\langle P \rangle_{\text{det}}}\right)^{1/2}
$$

- Small effective FOV (due to narrow angular distribution of signal photon flux)
- Short GW-photon coherent conversion path (limited by exp facility geometry)

Key features: more extremal (either much stronger or much weaker) magnetic field with a cosmo/astro scale

- Cosmic magnetic field (Rayleigh-Jeans tail of CMB, radio)
	- Chen, PRL 74 (1995)
	- Domcke and Garcia-Cely, PRL 126 (2021)
	- Large uncertainties of cosmic magnetic field
- Neutron stars (frequency bands for NS observation)
	- Raffelt and Stodolsky, PRD 37 (1988)
	- Ito et. al., arXiv: 2305.13984 [gr-qc]
	- Suppressed oscillation length and extremely tiny angular distribution of signal flux

Neutron Stars

$$
P = \sin^2(2\Theta) \sin^2\left(\frac{L}{l_{\text{osc}}}\right) = (\Delta_{\text{M}}L)^2 \text{sinc}^2\left(\frac{L}{l_{\text{osc}}}\right)
$$

$$
h_{c,95\%}\approx 4.5\kappa\left(\frac{\phi_b}{A\,\Delta t\Delta\omega\Delta\Omega}\right)^{1/4}\left(\frac{1}{\langle P\rangle_{\rm det}}\right)^{1/2}
$$

- Collapsed [core](https://en.wikipedia.org/wiki/Stellar_structure) of a massive star, with a radius ~10km and strong surface magnetic field \sim 10^8 - 10^15 Gauss
- Overall enhancement by strong B: $\Delta_M \propto B$
- Difficult to achieve coherent conversion for its short I osc [G. Raffelt and L. Stodolsky, Phys.Rev.D 37 (1988)]

$$
l_{\rm osc}=2/(4\Delta_{\rm M}^2+\Delta_\gamma^2)^{1/2}
$$

Limited by the extremely tiny angular distribution of signal flux, the effective FOV is tiny.

Our Proposal - Planet Magnetic Field

Earth: radius \sim 6000 km and surface magnetic field \sim 0.5 Gauss Jupiter: radius \sim 70000 km and surface magnetic field \sim 10 Gauss

- Relatively weak B: $\Delta_M \propto B$
- Not difficult to achieve coherent conversion: $l_{\rm osc}=2/(4\Delta_{\rm M}^2+\Delta_\gamma^2)^{1/2}$

 Wide angular distribution of signal flux (although technology constraints for FOV need to be considered)

Our Proposal - Planet Magnetic Field

Satellite-Based Detector

$$
\bar{P}(\theta') = \frac{1}{P_0} \frac{1}{2\pi} \int_0^{2\pi} P(\Omega') d\phi'
$$

(P average along azimuthal angle, with polar angle fixed)

$$
\langle P \rangle_{\text{det}} = \frac{1}{\Delta \Omega} \int_{\Delta \Omega} P(\Omega') d\Omega' = P_0 \frac{\int_{\Delta \Omega} \bar{P}(\theta') \sin \theta' d\theta'}{\int_{\Delta \Omega} \sin \theta' d\theta'}
$$

- Peaks sharply at the boundary between planet cone (PC) and outer space (OS)
- As H/r0 increases, \bar{P} increases along the PC central axis and decreases in opposite direction

Two benchmark Scenarios for Sensitivity Analysis

Outlook I - Look into Outer Space

- Higher GW-photon conversion probability
- Suppressed impacts from atmospherical thermal radiation

Outlook I - Look into Outer Space

May bring up the sensitivities by orders of magnitude (especially for the infrared band)

Outlook II - Extend to Radio Band

Ground-based observation (mainly for radio telescopes)

Outlook III - Jupiter and Solar Missions

 Conservative (based on JUNO observation): aurora emissions by JIRAM and UV emissions by UVS

Optimistic: 4sr/100cm^2/10^5s

Compared to the Earth, Jupiter and Sun

- Stronger surface magnetic field
- Longer GW-photon conversion path
- More complex background fluxes

- The detection of HFGWs represents a high-scientific-value task in GW astronomy \bigcirc
- For high-frequency bands, however, efficient detection methodologies are strongly demanded \bigcirc
- With long GW-photon conversion path and wide angular distribution of signal fluxes, the \bigcirc proposal of detecting HFGWs in planet magnetosphere opens a new operation space, with encouraging sensitivities projected for a wide coverage of frequencies.
- For some specific frequency bands, the first constraints from the existing data are obtained. \bigcirc
- More comprehensive study, with a refined analysis, is expected. Stay tuned … \bigcirc

CRF under Grant No. C6017-20G

Th*ank y*ou*!*

SEPTEMBER

PAUL AN