Detecting Dark Photons with Superconducting Radio-Frequency Cavities

Yanjie Zeng, ITP-CAS

zengyanjie@itp.ac.cn

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

October 20, Hefei, MEPA 2023

based on

arxiv: 2305.09711 with Tang, Wang, Chen, Li, Yang, Feng, Sha, Mi, Shu et al

arxiv: 2309.12387 with Chen, Li, Liu, Shu, Yang

ongoing work with Chen, Li, Liu, Liu, Shu

- ▶ Dark photons: gauge boson of a hidden U(1) symmetry
- Weak coupling with Standard model: kinetic mixing with photon: εF^{µν}F'_{µν} coupling with fermion, e.g.: F'_{µν}ψσ^{µν}ψ, F'_{µν}ψσ^{µν}iγ⁵ψ
- Various possible production mechanism candidates for wavelike dark matter
 - relativistic background:

e.g. decay from dark matter, thermal relics from the early universe, etc

Polarization degree of freedom: more information to study

Detection methods of Dark Photons

Electromagnetic resonator:

 RF cavities, e.g.: SQMS [Cervantes et al 22']
Dark SRF [Romanenko et al 23']

 LC circuit, e.g.: DM Radio [Chaudhuri et al 15']

Optomechanics [Graham et al 15']

Spin precession:

- CASPEr [Graham, Budker et al]
- Spin-based amplifier [Jiang, Peng, et al, USTC]

▲□▶ ▲冊▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

- Modify Maxwell equations as an effective current \vec{J}_{eff} $\nabla \times \vec{B} = \partial_t \vec{E} + \vec{J} + \epsilon m_{A'}^2 \vec{A'}$ No background \vec{B}_0 needed
- ► $H_{int} \propto \vec{E}_{rf} \cdot \vec{J}_{eff} \rightarrow$ vector sensor, sensitive to a specific direction

J_{eff} excites cavity mode E_{rf}:
Resonantly enhanced when ω_{rf} = ω_{A'}
the signal characterized by overlapping factor

First Scan Search for DPDM with SRF cavities

- ▶ Superconducting Radio-Frequency (SRF) Cavities: extremely high $Q_0 \simeq 10^{10} \rightarrow \text{improve SNR} \propto Q_0^{1/4}$
- 1-cell elliptical niobium cavity with mechanical tuner, immersed in liquid helium at T ~ 2 K
- TM₀₁₀ mode: z-aligned *E*, maximizes the overlap for dark photon dark matter (DPDM)

Experimental Operation

- Mechanical turner scans resonant frequency f_0 with the step $\sim f_0/Q_{\rm DM}$
- Calibrate f_0 and its stability range Δf_0 in each scan
- Frequency drift $\delta f_d \leq 1.5 \text{Hz}$ and microphonics effect $\sigma_{f_0} \approx 4 \text{Hz}$

► Conservatively choose Δf₀ ≈ 10Hz to maximize the sensitivity

Constraints

- $\blacktriangleright\,$ Scan covers 1.37 $\rm MHz$ of DPDM frequency around 1.3 $\rm GHz$
- Apply a constant fit to address small helium pressure fluctuation
- First scan search for DPDM and the most stringent constraints in most excluded regions.

Modulated Signal from Galactic Dark Photons

- Galactic dark photons from DM decay, e.g.: cascade decay from DM halo
- Vectorial observable $\propto \vec{A'}$
 - ightarrow angular-dependent signal \propto ${\cal C}(heta)$
 - \rightarrow modulation as the Earth rotates
- Production is polarization-dependent, modulations for longitude and transverse modes are opposite

SAC

SRF Constraints for Galactic Dark Photons

- Same dataset as DPDM search
- ► Scanned range within galactic dark photon bandwidth → combine all scan steps to analyze
- Longitude mode has better sensitivity because of the larger spatial wavefunction ~ ω_{A'}/m_{A'}

 Gradient color region represents exclusions for different DM mass

Quantum Noise Limit in Scan Search

Read out part introduce extra noise
→ reduce sensitivity outside response
bandwidth Δω_r

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $\Delta \omega_r$ determine the efficiency of a scan search
- How to overcome read-out noise: squeezing [HAYSTAC 20'] quantum non-demolition measurement [Dixit et al 20']
 PT-symmetric amplifiers [Li, Ma, Chen et al 20']

Simultaneous Resonant Broadband Detection

- A multi-mode system significantly enhances Δω_r
- Compatible with all EM resonators for ultralight bosons

► Scan several orders of frequency within one single step → remarkably boost scan search

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- **SRF cavities** are powerful for dark photon detection.
- The first scan search for dark photon dark matter is conducted, which gives the most stringent limit in most excluded regions.
- Galactic dark photons with rich information can be studied by a modulation analysis with data in the DPDM search.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Connecting multiple resonators can remarkably boost ultralight boson search.

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ