Exploring New Physics with Electronic Recoil Data from PandaX-4T Detector

> Xinning Zeng, SJTU On behalf of the PandaX Collaboration 2023.10.21, MEPA 2023, @Hefei, USTC





## Explosion of New Physics



## Dual Phase Xenon TPC



ZEPLIN · XENON · LUX · LZ · PandaX...



- Large A: large cross section & self-shielding; 1.
- 3D reconstruction and fiducialization 2.
- Scalable; 3.

(NR)

#### 4. **Discrimination power**

- WIMPs, v, n  $\rightarrow$  Nuclear Recoil (NR)
- Axion,  $\gamma, \beta$

Dark matter: nuclear recoil

γ background: electron recoil (ER)

 $\rightarrow$  Electronic Recoil(ER)







(S2/S1)<sub>NR</sub><<(S2/S1)<sub>FR</sub>

10/20/23

## NR Searches V.S. ER Searches



## Production Mechanisms of Solar Axion

Atomic recombination and deexcitation (Axio RD in figure), Bremsstrahlung, and Compton (ABC):

$$\Phi_{\rm a}^{\rm ABC} \propto g_{\rm ae}^2$$

□Primakoff effect:

$$\begin{split} \frac{d\Phi_{\rm a}^{\rm Prim}}{dE_{\rm a}} = & \left(\frac{g_{\rm a\gamma}}{{\rm GeV}^{-1}}\right)^2 \left(\frac{E_{\rm a}}{{\rm keV}}\right)^{2.481} e^{-E_{\rm a}/(1.205~{\rm keV})} \\ & \times 6 \times 10^{30}~{\rm cm}^{-2}{\rm s}^{-1}{\rm keV}^{-1}, \end{split}$$

■M1 nuclear transition of <sup>57</sup>Fe (14.4 keV):

$$\Phi_{\rm a}^{^{57}\rm Fe} = \left(\frac{k_{\rm a}}{k_{\gamma}}\right)^3 \times 4.56 \times 10^{23} (g_{\rm an}^{\rm eff})^2 \ \rm cm^{-2} s^{-1}$$



## ER Signals from Axio-electric Effect



The approximate cross section of axio-electric effect is:

$$\sigma_{Ae}(E) = \sigma_{\rm pe}(E) \frac{g_{Ae}^2}{\beta} \frac{3E^2}{16\pi\alpha m_e^2} \left(1 - \frac{\beta^2}{3}\right)$$

where  $g_{Ae} = C_{ae}m_a/f_a$ ,  $C_{ae}$  is model dependent.

10/20/23

## Other signals

### **Weakly Interacting Slim Particles (WISPs)**

• Axion-like Particles (ALPs)

$$R \simeq \frac{1.5 \times 10^{19}}{A} g_{\rm ae}^2 \left(\frac{m_{\rm a}}{\rm keV/c^2}\right) \left(\frac{\sigma_{\rm pe}}{\rm b}\right) \rm kg^{-1} d^{-1}$$
(1)

• Dark Photons

$$R \simeq \frac{4.7 \times 10^{23}}{A} \kappa^2 \left(\frac{\text{keV}/c^2}{m_{\text{V}}}\right) \left(\frac{\sigma_{\text{pe}}}{\text{b}}\right) \text{kg}^{-1} \text{d}^{-1}$$
(2)

### **Neutrino Magnetic Moment Enhanced Neutrino-electron Scattering**

$$\frac{d\sigma_{\mu}}{dE_{\rm r}} = \mu_{\nu}^2 \alpha \left(\frac{1}{E_{\rm r}} - \frac{1}{E_{\nu}}\right) \tag{3}$$

## Particle and Astrophysical Xenon Experiments



## PandaX-4T Detector System Layout



## PandaX-4T Commissioning Run (Run 0)

### □Sensitive volume: 3.7 tonne xenon

# Commissioning started from Nov/2020 (95 days)

- 0.63 tonne-year exposure, 1058 candidates
- Sensitivity improved from PandaX-II final analysis by 2.9 times (30 GeV/c2);







## New DM searching channel: $\chi \longrightarrow \nu$



- Elastic scattering v.s. Inelastic scattering (Absorption).
  - DM being absorbed, with an outgoing neutrino v

Fermionic DM absorption model through neutral current:

- Detectable NR signals with higher recoil energy .
- DM mass range: MeV

## New DM searching channel: $\chi \longrightarrow \nu$



Phys. Rev. Lett. 129, 161803

□ First search for fermionic dark matter absorption signal in direct detection experiments

□Strongest limit of 1.5 x 10<sup>-50</sup> cm<sup>2</sup> achieved at 40 MeV/c<sup>2</sup> fermionic DM mass

 $\Box$  Constraints on the coupling  $g_{\chi}$  to the order of  $10^{-10} (\text{TeV}\cdot\text{cm})^{0.5}$ 

## New DM searching channel: $\chi e \rightarrow e \nu$



- General fermionic (sterile neutrino-like) dark matter absorption on e<sup>-</sup>;
- Strong sensitivity to vector and axialvector mediators; Complementary to astrophysical constraints, with much smaller theoretical uncertainties;

### □ Competitive constraint in 20-55 keV/c<sup>2</sup>

Phys. Rev. Lett. **129**, 161804

## Electro-magnetic Properties of DM

Minute photon-mediated interactions through millicharge or higher-order multipole is still possible;

Direct search for effective EM interactions: first experimental constraint on DM charge radius;

• 4 orders of magnitude smaller than neutrino

### **Other EM properties.**

| Table 1 | Comparison of electromagnetic properties |
|---------|------------------------------------------|
|---------|------------------------------------------|

|                                   | Dark matter            | Neutrino                      | Neutron                     |
|-----------------------------------|------------------------|-------------------------------|-----------------------------|
| Charge radius (fm²)               | <1.9×10 <sup>-10</sup> | (−2.1,3.3)×10 <sup>-6 a</sup> | –0.1155 °                   |
| Millicharge (e)                   | <2.6×10 <sup>-11</sup> | <4×10 <sup>-35 a</sup>        | (-2±8)×10 <sup>-22 a</sup>  |
| Magnetic dipole ( $\mu_{\rm B}$ ) | <4.8×10 <sup>-10</sup> | <2.8×10 <sup>-11 a</sup>      | -1×10 <sup>-3 a</sup>       |
| Electric dipole (ecm)             | <1.2×10 <sup>-23</sup> | <2×10 <sup>-21 b</sup>        | <1.8×10 <sup>-26 a</sup>    |
| Anapole (cm²)                     | <1.6×10 <sup>-33</sup> | roughly 10 <sup>-34 c</sup>   | roughly 10 <sup>-28 d</sup> |
|                                   |                        |                               | 7.5                         |

<sup>a</sup>Data are taken from the Particle Data Group<sup>33</sup>.

### X. Ning et al. Nature 618, 47-50 (2023)



14

## After Run 0

### □Tritium removal

• xenon distillation, gas flushing, etc

### 2021/11 – 2022/05: physics run (Run1)

• 164 days: ~ 1 tonne-year

### 2022/09 - 2023/10: hall construction

- xenon recuperation
- detector upgraded

### **Expect to resume by the end of 2023**

| Commissioning<br>(Run 0)      | Calibration                   | Distillation | Physics Run<br>(Run 1)        | Calibration                   | Detector<br>Upgrade |
|-------------------------------|-------------------------------|--------------|-------------------------------|-------------------------------|---------------------|
| 2020/11/28<br>_<br>2021/04/16 | 2021/04/17<br>_<br>2021/06/09 |              | 2021/11/15<br>_<br>2022/05/15 | 2022/05/16<br>_<br>2022/07/08 |                     |





## Data Taking Condition of Run 1

### □Gate -6kV, Cathode -16kV;

- □Xenon purity monitor: Maximum electron lifetime reaches 1800 us;
- Liquid level is monitored through the drift time of gate events and single electron gain (SEG);

### □Additional 10 top PMTs turn-off.





# Self-Calibration of PMT Gain and Signal Yield

### Degrading of PMTs:

- LED calibration: once a week, not instant monitoring;
- correction factor derived from single hit distribution.

# □Instability of signal yield: S1 & S2 of monoenergetic peak evolve by time:

 correction factor derived from S1 and S2 with 5.5MeV alpha events from <sup>222</sup>Rn decay;



• likely related to the liquid level.



164keV centerE vs runNumber

## **Detector Calibration**

### Rn, D-D neutron and AmBe neutron for low energy region



## ER Calibration



□ The detector response is modelled by **NEST (Noble Element Simulation** Technique). Detector parameters are fit to Rn calibration data using unbinned likelihood fitting with emcee; □ Calibrated NEST fits well with <sup>83m</sup>Kr data, both in spectra and resolutions: Energy resolution @ 41.5 keV: 6.8% Phys. Rev. Lett. 127, 261802

Phys. Rev. Lett. 129, 161803

60

## Solar Axion Signals in PandaX-4T



Expected solar axion signals in energy space produced by different mechanisms:

 $\Box \text{ ABC process: } g_{Ae} = 5 \times 10^{-12};$ 

 $\Box$  Primakoff effect:  $g_{A\gamma} = 2 \times 10^{-10}$ 

$$\Box$$
 <sup>57</sup>Fe nuclear transition:  $g_{An}^{eff} = 1 \times 10^{-6}$ 

## Main ER Backgrounds: <sup>222</sup>Rn

- Rn level varies with running conditions
- Update the analysis

| Rn level | µBq/kg                                    |
|----------|-------------------------------------------|
| Run 0    | $7.07 \pm 0.02$ (stat.) $\pm 0.23$ (sys.) |
| Run 1    | 8.67 ± 0.01(stat.) ± 0.27(sys.)           |

### Circulation system to be upgraded









## Main ER Backgrounds: <sup>85</sup>Kr

## Compare to Commissioning run

- tightening beta-gamma coincidence selection
- less contributions from accidental events





|                        | β–γ<br>events | accidental<br>events | <b>Kr/Xe</b><br>[ppt (10 <sup>-12</sup> )] |
|------------------------|---------------|----------------------|--------------------------------------------|
| Run0<br>0.6 tonne-year | 4             | 0.14 ± 0.04          | 0.5 ± 0.3                                  |
| Run1<br>1.0 tonne-year | 12            | $0.25 \pm 0.05$      | $0.9 \pm 0.3$                              |

## Main ER Backgrounds: Tritium



□ Tritium spectrum identified in the data

- □ Likely originated from a tritium calibration at the end of PandaX-II;
- □ Preliminary estimation of tritium level in Run 1: fitting S1 spectrum,

keeping S2 blinded



## Background Summary



Different from WIMP analysis, we extended the ROI to 30keV

- Rn emanation;
- Krypton contamination;
- Tritium;
- Radioactive isotopes of xenon: <sup>127</sup>Xe, <sup>136</sup>Xe, <sup>124</sup>Xe;
- Material: radioactivity of materials are assayed by HPGe;
- pp neutrino: theoretical estimation;
- others: surface, neutron, accidental, <sup>8</sup>B.

The combined analysis of run0 and run1 is under final check and the data is ready to unblind.

## Summary and Outlook

- PandX-4T has finished two physics runs;
- Combined analysis of Run0 and Run1 are updated;
- **ER** responses are calibrated with <sup>220</sup>Rn;
- Expected background contributions are estimated respectively; tritium level has significantly reduced in Run1;
- > Exploring new physics with Run0 and Run1 data of PandaX-4T is ongoing!

## PandaX Collaboration







## Combined Analysis of Run0 + Run1

## □New active time determination

• window-size of removal time depending on the charge of large signal in front

### **New event window based on S2**

• fix window: 1ms before and after

### **New event builder**

 S1-S2 pairing requires quality of S1 in prior

### □New selection criteria

charge-dependent cut threshold



#### 10/20/23

## Main ER Backgrounds: Radon Emanation







## <sup>127</sup>Xe (Cosmogenically Activated)



## Electronics



- V1725 Digitizer, 250 MS/s;
- Self-trigger mode: read out pulses above 20 ADC (~ 1/3 PE);



- Higher sampling rate;
- · Accept out-trigger mode;