Theory Overview of X17 Beyond the Standard Model

Chris Verhaaren
Workshop on Multi-front Exotic Phenomena in Particles and Astrophysics
21 October 2023

ATOMKI's Results

The ATOMKI collaboration has reported three, >7 sigma, anomalies in nuclear decays

Beyond ATOMKI

Reported results

Exciting prospect of confirmation

Still waiting for the official publication

Schematic Experimental Set-Up

Proton beam strikes target nucleus, producing an excited state

Excited state decays to ground state and produces electron-positron pair

BSM Possibilities

The background produced through electromagnetic processes

Either pair creation during the initial collision (EPC)

$$p + \text{Target} \rightarrow N_* + \gamma^{(\star)} \rightarrow N_* + e^+ e^-$$

Or pair creation during the decay (IPC)

$$N_* \to N_0 + \gamma^{(\star)} \to N_0 + e^+ e^-$$

ATOMKI excesses are consistent with the production of a new boson, called X

Can all results come from one new particle?

$$N_*$$
 \longrightarrow N_0 $+$ \times \longrightarrow N_0 $+$ \times \longrightarrow N_0 $+$ N_0 $+$

Kinematic Consistency

Denton and Gehrlein, *Phys.Rev.D* 108 (2023) 1, 015009

Results across several experiments are consistent with a boson with mass a little less than 17 MeV

What about dynamical consistency?

Spin & Parity

The nuclear states are categorized by their spin and parity J^P

The same can be done for X boson possibilities

The ground states are all 0^+ states, so assuming parity is a good symmetry

$J_* = L \oplus J_X$	$P_* = 0$	$(-1)^{L} P_{X}$
----------------------	-----------	------------------

These simple observations already imply interesting results

If X is spin-0 its He width is likely to be larger than Be

Opposite for axial vector

The vector decays are both P-wave

The Be decay shows the X is not 0⁺

X N_*	0+	0-	1	1+
$^4\mathrm{He}~0^-$		S		P
⁴ He 0 ⁺	S		P	
$^{12}C\ 1^{-}$	P		S, D	P
⁸ Be 1 ⁺		P	P	S, D

Examining Dynamics

We examine each possible X boson, according to spin and parity

At low energies the definite parity parts of X dominate decays

E.g., if X is spin-0, only pseudoscalar part can explain beryllium result

$$1^{+} \rightarrow 0^{+} + 0^{-}$$
 $1^{+} \not\rightarrow 0^{+} + 0^{+}$

More complete investigation of the particle dynamics using effective field theory

Effective operators are composed of nuclear states each described by a point-like quantum field

Ground State N_0

Excited State N_*

Examining Dynamics

EFT operators encapsulate spin-parity and produce decay widths of excited states

To compare with other experiments we look at more elementary particles

Nuclear decays are matched to <u>nucleon</u> couplings to the X boson, assuming isospin

Determines decay rates up to unknown nuclear matrix elements

For vector X, decay widths can be compared to photon decays

Nuclear physics divides out

Analysis assumes X particle is produced from resonance

Vector X

Vector X decays are compared to known electromagnetic decays to eliminate unknown nuclear matrix elements

Define the X couplings with a factor of the QED coupling

$$J_X^{\mu} = e\varepsilon_p \overline{p}\gamma^{\mu}p + e\varepsilon_n \overline{n}\gamma^{\mu}n = \frac{1}{2}e(\varepsilon_p + \varepsilon_n)J_0^{\mu} + \frac{1}{2}e(\varepsilon_p - \varepsilon_n)J_1^{\mu}$$

The photon current is similar $J^\mu_\gamma=e\overline{p}\gamma^\mu p=rac{1}{2}eJ^\mu_0+rac{1}{2}eJ^\mu_1$

Factors of $\frac{1}{2}e\langle N_0|J^\mu_{0,1}|N_*\rangle$ are common to both X and photon decays

Vector X and Beryllium

Beryllium decay dominated by

$$\mathcal{M} = \langle N_0 X | \frac{1}{2} (\varepsilon_p + \varepsilon_n) e \, C_{V,\text{Be}} \, \mathcal{O}_{5P}^{(1)} | N_* \rangle = \frac{1}{2} (\varepsilon_p + \varepsilon_n) e \, C_{V,\text{Be}} \frac{1}{\Lambda} \varepsilon^{\mu\nu\alpha\beta} \, p_{*\mu} \, \epsilon_{*\nu} \, p_{X\alpha} \, \epsilon_{X\beta}$$
 with

$$\mathcal{O}_{5P}^{(1)} = \frac{N_0^{\dagger}}{\Lambda} \varepsilon^{\mu\nu\alpha\beta} \left(\partial_{\mu} N_{*\nu} \right) \partial_{\alpha} X_{\beta} \quad C_{V,\text{Be}} \frac{1}{\Lambda} \varepsilon^{\mu\nu\alpha\beta} p_{*\nu} \epsilon_{*\alpha} p_{X\beta} = \langle {}^{8}\text{Be} | J_0^{\mu} | {}^{8}\text{Be} (18.15) \rangle$$

Operator is "accidentally" gauge invariant when we replace X by the photon: N^{\dagger}

$$\mathcal{O}_{5P}^{\gamma} = \frac{N_0^{\dagger}}{2\Lambda} \varepsilon^{\mu\nu\alpha\beta} \left(\partial_{\mu} N_{*\nu}\right) \partial_{\alpha} F_{\alpha\beta}$$

X and photon decays mediated by the same operator

Vector X and Beryllium

Simple ratio

$$\frac{\Gamma_X^{8\text{Be}}}{\Gamma_{\gamma}^{8\text{Be}}} = (\varepsilon_p + \varepsilon_n)^2 \frac{p_{X,\text{Be}}^3}{p_{\gamma,\text{Be}}^3}$$

Modified slightly by isospin mixing with nearby iso-spin 1 state

$$\frac{\Gamma_X^{8\text{Be}}}{\Gamma_\gamma^{8\text{Be}}} = \left| -0.09 \left(\varepsilon_p + \varepsilon_n \right) + 1.09 \left(\varepsilon_p - \varepsilon_n \right) \right|^2 \frac{p_{X,\text{Be}}^3}{p_{\gamma,\text{Be}}^3}$$

$$\approx 0.043 \left| -0.09 \left(\varepsilon_p + \varepsilon_n \right) + 1.09 \left(\varepsilon_p - \varepsilon_n \right) \right|^2$$

Isospin breaking can also be included:

$$\frac{\Gamma_X^{^{8}\text{Be}}}{\Gamma_{\gamma}^{^{8}\text{Be}}} = |0.05 (\varepsilon_p + \varepsilon_n) + 0.95 (\varepsilon_p - \varepsilon_n)|^2 \frac{p_{X,\text{Be}}^3}{p_{\gamma,\text{Be}}^3}$$
$$\approx 0.043 |0.05 (\varepsilon_p + \varepsilon_n) + 0.95 (\varepsilon_p - \varepsilon_n)|^2$$

Feng, Fornal, Galon, Gardner, Smolinsky, Tait, Tanedo 1608.03591

Vector X constraints

The electromagnetic decay widths have been measured, can make definite statements about X couplings to SM fields and compare to other experiments

The coupling to the proton is limited by NA48/2 searches for $\pi \to X\gamma$

$$|\varepsilon_p| < 1.2 \times 10^{-3}$$

There is a much weaker bound on the neutron coupling from lead-neutron scattering

$$|\varepsilon_n| < 2 \times 10^{-2}$$

The beryllium results favor nucleon couplings of order 10^{-2} , implying "protophobic" couplings

X Analysis Summary in 2020

If X is a scalar, 0^+ , it cannot explain the beryllium signal

$$1^{+} \not\to 0^{+} + 0^{+}$$

Found pseudo scalar not a good fit

Did not consider ALP dynamics, see Alves *Phys.Rev.D* 103 (2021) 5, 055018

Axial vector a marginal fit

Vector a good fit of Be and He signals (only signals published)

Independent Analysis

A group of Nuclear theorists analyzed the Helium system Viviani, Filandri, Girlanda, Gustavino, Kievsky, Marcucci, Schiavilla, *Phys.Rev.C* 105 (2022) 1, 014001

Using different methods they conclude

"...the Be and He anomalies can be explained simultaneously by the exchange of a proto-phobic vector X17. For an axial X17 exchange, the coupling constants appear to be inconsistent with each other... A pseudoscalar X17 exchange also seems to be excluded..."

Including Carbon

When we (Feng, Tait, CV) checked the consistency of Be and He signals, we also included a prediction for Carbon-12

Essentially $\Gamma_X \sim 10^{-5} \Gamma_{\rm E0}$

Width of Carbon resonance is much wider

A bump-like feature at several energies

Seems to agree with non-resonant component of production?

Branching differs by about a factor of 10

But prediction assumed resonant production

$\overline{\mathrm{E}_p}$	B_x	Mass	Confidence
$\overline{\text{(MeV)}}$	$\times 10^{-6}$	$(\mathrm{MeV/c^2})$	
1.5	2.7(2)	16.62(10)	8σ
1.7	3.3(3)	16.75(10)	10σ
1.88	4.1(4)	16.94(10)	11σ
2.1	4.7(9)	17.12(10)	6σ
Averages	3.4(3)	16.86(17)	
Previous [1]	5.8	16.70(30)	
Previous [21]	5.1	16.94(12)	
Predicted [16]	3.0)	

Updated Bounds

Denton and Gehrlein, *Phys.Rev.D* 108 (2023) 1, 015009

Considered vectors only

See some tension between Be and C

Updated View

Barducci and Toni, JHEP 02 (2023) 154

Only axial-vector seems allowed

Considered scalars without definite parity, also seem ruled out

Colored regions are allowed

No region for Carbon-12 signal

Pion Constraints

From Hostert and Pospelov, *Phys.Rev.D* 108 (2023) 5, 055011 Filled in regions are **allowed** regions

Final Thoughts

Nuclear transitions are a natural place to look for MeV mass particles with small interactions to the SM

The ATOMKI group has reported new resonance structures in Beryllium, Helium, and Carbon that may originate beyond the SM

Significant uncertainties remain

Further experiments needed

Summary

BSM Scalar - Cannot explain ATOMKI signal in Beryllium

BSM Pseudoscalar - Cannot explain ATOMKI results in Carbon

BSM scalar combinations also excluded

BSM Vector - Excluded by charged Pion decays

N_*	0+	0-	1	1+
$^4\mathrm{He}~0^-$		S		P
⁴ He 0 ⁺	S		P	
$^{12}C\ 1^{-}$	P		S, D	P
⁸ Be 1 ⁺		P	P	S, D

BSM Axial-vector - remains most viable possibility