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© Dark PDF in DM direct detection

@ The dark photon radiation in DM indirect detection
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Outline

@ The collinear splitting in the SM
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Photon radiation from charged particle

The probability of an electron to emit a collinear
photon with a fraction x of its energy, is given by
the Weizsaicker-Williams effective photon approx-

imation
o E?
fv(x) ~ _P’yf(x) In—
27 mg

o The photon virtuality is —p%/(1 — ), to the first order
approximation.

o The spliting function P, /() = (14 (1 — 2)?)/z.

1 1
Pa—p5)2 2B, B, (1—cos0)

@ The photon propagator (
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The parton distribution function

At the high energy scattering (£ > m), process of collinear emission of
initial state can be factorized into PDFSs, given the collinear
factorization formula. At muon collider,

Outpu— —>X Z/dzldz2fz/u+(zl)]9/u (22)0-13—>X(le23)

The large logarithms in the splitting can be resumed with the DGLAP

equation:
df;(
Z;]Og 02 Y Y P ) ® fi(z, Q%)

@ The factorization scale ()
@ The index I loops over all possible interactions of particle ¢

« e o) . 2 - 2 . 2 -
o The initial condition at Q* = my; is f,(x, m;) = 6(1 — ), and other
PDFs vanish
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Jet formation: the parton shower

Parton level

The copious collinear radiations produce a

collimated spray of particles, dubled jet. X\ f |

in calorimeters

Py

For a collinear emission: Pa Top_ .

d 2 s 5
Ot Nan/%/dza—})(z) Ean/dtW(t)
s 2T

splitting kernel P(z), z = Ey/E,, virtuality t = p>
With multiple emissions

On+4+m ~ O /dtl /dt W tl W( )

= o (| atwe)m
m!
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Jet formation: the parton shower

The probability for the next emission at ¢:

dProb(t) = dtW (#) exp(— / L W)

to

exp(— [ dtW(t)) is Sudakov form factor = No emission probability

Monte Carlo description for the parton shower process

o Evolve the virtuality from #™8 to ™", calculate the Sudakov
form factor for each step

@ Use veto algorithm to find the next splitting scale ¢, determine the
splitting process

e Construct the splitting kinematics
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Outline

© Dark matter shower signature at the collider
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Dark matter observations

@ Small scale structure problems

Core-vs-cusp (dwarfs, LSBs)
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Central densities of halos are too shallow.
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Too-Big-to-Fail (MW dwarf galaxies)

Where are they?
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@ Biggest

predicted
subhalos from
CDM
simulations

Brightest
observed
galaxies in the

Predicted Milky Way satellites more massive (larger

velocity dispersions) than observed ones.
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Interactions in the dark matter sector

a/m ~ [1 10] cm2/g
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Kaplinghat, Tulin, Yu (PRL 2015)

Favors a mild v-dependence
@ Dwarfs
e LLSBs

Blilet cluster

Boosted dark matter with new interactions?
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Dark matter shower at collider

At the collider, if the dark matter is produced with

energy much higher than the mass, the emission 1%7
and split of dark matter and force mediator re-

ceive strong enhancement in the collinear direction.

This will lead to high multiplicity dark jets.

Dark jet signatures:
@ lepton jet
@ semi-visible
@ emerging jets
@ soft bomb

g Iy 2
e
g Sa
¢ "
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© Dark PDF in DM direct detection
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Boosted DM in direct detection

The halo DM in space can be kicked by cosmic rays to have
relativistic speed, and probed by detector on ground
Electron-philic interaction:

LDex gemA ey e+ g AL xv"x
The recoil flux of CR-induced DM (CRDM):

dd,, pioe! /°° AP, doy.
N min dTC,‘l} dTX

DM scattered by energetic cosmic ray (CR):

2my (me + Ter)® — Ty ((me + my)? 4 2my, Tcr) + my T
47t (2me Tor + T2g) (2my Ty + m3)?

doye

T,

— g/2 (Egem)Q
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CR boosted dark matter flux

Taking ¢ =1, e =1, my =1 MeV

ma=1 MeV 10% 4
my,=10"1 MeV

o —— My, =10"2 MeV Tl
K —— My =103 MeV K
L 10% sy — ma=10"% MeV !
~ A=
§ T g
T 1084 Sl T> 101
o ~~ @ my=1 MeV
E 103 E my=10"1 MeV
> > 1073 4
k5 - 5 — my=10"2 MeV
S 100 . ks A s
s s —_— m,=10"
S \\\\ 3 my =10"> MeV
10-3 | == my=10735 MeV SN 10-5 4 =—— my=10"* MeV
-=- my=10"°5 MeV SN — my=10"% MeV
1073 lOI’2 10“1 l(l)0 l(l)1 1(‘)2 103 1073 10"2 16'1
T, [MeV]

e For light DM and low T, the flux is proportional to m,

100
T, [MeV]

10!

102 10°

4

@ The differential flux is more flat for lighter DM and heavier dark
photon, 7.e., higher fraction of high energy DM
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The splitting functions for the dark sector

Interaction between Dirac fermion DM y (Y) and dark photon A':
LD g AxXY"x

Splitting function:

_ 2
dPasp+c 1 1 22 | Mspit |
2 — _ — 2
dzdkz. N 1672 (k2 + zm3 + 2m?2, — zzm?)
A BiC dPaBic _ P
—~ B+ —A=BAC = Papyc(2)
dzdk?.
1_'_22 _z 2m§<22+2m?4, (1—;22)
_ / _ o ) z E k:T—i—szz—‘,—mA/E
X/X — AT + X/X %kT k%+miz2+mi,2
2 2
_ / _ / 2 m /Z
X/X = AL +x/x =~k R 2

T z(k%—i—mizQ-i-mi‘,Z)
z§(2m>2<+m?4, (z2+22>)

2 +22+ R
/ _ _ Oz_/ 2 kT—l-mX—mA,zE
Ar 2 XXX e 22
20’ 1.2 mi,zQZ

AL = X/x+x/X

m T (k%—i—mi—mi,zzf

Table 1: Splitting functions involving y, ¥, and A’.
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The DGLAP equations and DM PDF

DGLAP equations of PDFs:

df; (kr, 1y
dile;;) :;N/x ?me—>i+n(2)fm <kT,§> _Z

g'=1, Q=100 MeV

106

—_— My =1 MeV
, —— mpy, =0.1 MeV
10%1 —— mu=0.01 MeV

fr.z.a(x, Q)

1073 1072 107! 10°

fr.z.a(x, Q)

106

104 4

gk

g’'=3, Q=100 MeV

—_— My =1 MeV
—— mgy, =0.1 MeV
—— mgy =0.01 MeV

1
/ dzPijv1(2)fi (kr, x)
0

e There are large fractions of y and A’ in the DM PDF, for large ¢,
small z and lighter A’ (m, = 0.01 MeV).

e Approaching the perturbative limit ¢’ = 3, f, no longer has the

peak around z ~ 1
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CRDM signal at the neutrino detectors: higher energy
threshold

e Considering the DM PDFs becomes necessary as we primarily
focus on a parameter region where the masses of DM and dark
photon are significantly smaller than the typical energy scale of
DM-electron scattering in neutrino detectors.

@ The ionization rate:

dR Tmax g do |
zon NSK To/ , X EO . Emm
dlnTp 7 Z/d Ydln TRf(Q’ )dTo@(x x ~ B

doy, d¢ !
NSK / dT X X T . Tmln
+ T XdlIl TR dT @( ) fX(Q) 37)

Tmax

e The index ¢ in the PDF runs over Y, Y, and A’, corresponding to
the scattering processes y +e¢ — v+ e ,x+e — x+e ,and
A"+ e — v+ e, respectively.
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Electron scattering signal at the Super-K

e Using the Super-K 161.9 kiloton-year exposure data, the total

measured number of events Ny is 4042 in the bin

0.1 < T./GeV < 1.

33.

@ We require the DM signal & X Npy < Ngk , with signal efficiency

¢ =0.93.

@ Npy is calculated by integrating

dRion
dTr

over the region

Tr > 100 MeV, with total number of electrons inside the Super-K

detector N, = 7.5 x 1033 and data-taking period of 2628.1 days.
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The dark photon signal: dark Compton scattering

Dark Compton scattering:
A+ e s y+e

The corresponding recoil rate:

- 1o de
dT? ( (Q, 1) —2x
dln E, / / © i 2, 14 @) g
xEO

mln)@(EmaX $E§)

The Super-K is a water-based Cherenkov detector in which the Cherenkov rings
produced by photons and electrons exhibit similarities. It is challenging to
distinguish a mono-energetic photon with a threshold of O(1) ~ O(10) MeV.
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Detecting the dark photon at DUNE and JUNO

@ The DUNE and JUNO detectors possess high-efficiency photon identification
capabilities.

@ In these detectors, an energetic single photon signal can be considered
background-free

@ For DUNE detector, the sensitivity reach with active LAr of 40 kilotons, which
corresponds to 1.085 x 103* electrons inside the detector.

@ The JUNO experiment will be equipped with liquid scintillator detector with
fiducial mass of 20 kilotons, total number of electrons is 6.314 x 1033,
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Outline

@ The dark photon radiation in DM indirect detection
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Dark matter splitting in indirect detection

DM annihilation through a hidden Z’ to hidden*
quark, followed by shower to hidden meson, can
explain the Galactic Centre Excess

X

A heavy component of relic DM annihilates into a lighter DM species,
giving boosted DM.

@ We introduce a hidden local U(1)y symmetry and SM singlet field
contents

Dirac fermions: x (@y), ¥(Qy), Scalar: ¢(2),
requiring | Qy] # | Qul. [2Qy] # 2, 2] # 2 and @y £ Q| # 2.

@ The relevant Lagrangian for the Dirac fermions is
L =X — my)x + P — my),

where D, x(¢) = (0, + iQy ()91 Z],) x (1) is the covariant derivative
with gy being gauge coupling of U(1)g.
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Dark matter phenomenology

o Assume m, > my and gzrpy > 97/yys

o Relic density of x is dominantly determined by annihilation cross
section of yx — Z' — ¢
e Relic density of 1 is small, Y — Z'Z’

2 2
Oh2 ~(0.05)< 1.0) (0'01> ( X )2
v ngwp gZ’XX 20 GeV ’

my [GeV] | 100 10 1000 10 1000
my [GeV] 1 1 1 0.1 10
My 0.5 0.5 0.5 0.05 5
9% xx 0.029 | 0.003 0.3 0.003 0.3
ap 0.2 0.2 0.2 0.2 0.2
Q, 0.111 | 0.115 | 0.101 | 0.115 | 0.101
Qs 2-107712-107%(2-107%[2-107% | 2-107°
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The splitting function

dPo—sbre 1 1 Q? Mooyt |2
T E 2 A Ve 2 D) split )
dzdIn Q) N 167° (Q2 — m2)
Process Aa(Ap), Ac | Mypiic|?
Zh =+ b= Ac 29%/1/@%
_ m2
Zy >+ Ab = —Ac 207 (22 + (1= 2)*) (Q° - z(1ipz))
ZL =+ b= Ac 0
7L — b+ Ap = —Ac 8971 My 2(1 — 2)
- — 1+(1—2)? m2,(1—2)+m?2 z
V0= Zp+ /P Aa= A 29%%1##(@2 - o )
_ _ m2 22
VIO = Zp /P Aa= A 297 g Tor
— - m2, 1—z
W/ T AU Aa= A 403 2
Vo= Z+ /Y A== 0

Jinmian Li (Sichuan University) DP from dark splitting Oct. 20th 24 /29



Radiated dark photon in the indirect detection

¢X

Y X
xXx~yy (Vector) xx—Z'Z' (Vector)
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Event rate at the AMS detector

e The differential flux of positron at the location of the earth can be
calculated by convoluting the spectra at production with the
propagation functions:

AP+ (E) B Vet l P(Tsun) ?
dE .+ ATb(E, reun) 1 My

< 3 / df+

f=v,2"

(ES) I (E7 E87 Tsun)

@ Thermal averaged annihilation cross sections for the vector portal
model are given by

(m WLZ/)?)/2
gZ XX dmmy (m7, —2m2 )2
(ov)y = mi—mw(2m +m3)
gZ/ ngllmb 2mmy (m7, —4m2)2 XX — Yy

xx — 27
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The AMS-02 positron bounds

Indirect Bounds

@ Assume positron flux from
AMS-02 measurement arises
/////// solely from the astrophysical
backgrounds and fitted with
degree 6 polynomial

@ Fit DM-induced flux
allowing the parameters to
float within 30% around the
best fit

@ 95% C.L. limit obtained by
Ax? =271

m, =10 GeV
m, =25 GeV
m,, =50 GeV

0.1

0.05 0.1 0.2 0.4 1 2 5 10 20
my [GeV]

@ Upper exclusion regions are induced by the dark showers subsequent to
XX — Y, larger mass splitting between the x and v can lead to stronger dark
showering effects, i.e. stronger bound.

@ Lower exclusion regions are induced by xx — Z'Z’, small g, means larger g,
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Conclusion

@ Boosted DM exists in DM collider search, direct detection, and indirect
detection.

@ The PDF effects in CRDM detection can be significant. The collinear
splitting induces dark Compton scattering, the mono-photon signal can
possibly be probed at DUNE and JUNO.

@ In a two-component DM model with large mass splitting, the dark

photon produced from dark shower of the boosted DM can be probed in
the AMS-02.
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