

Searching for ultralight dark matter using radio telescopes **Shuailiang Ge**

-
- (Peking University)

2207.05767 (PRL)

- with Haipeng An, Wen-qing Guo, Xiaoyuan Huang, Jia Liu, Zhiyao Lu 2301.03622 with Haipeng An, Xingyao Chen, Jia Liu, Yan Luo
	- October 20, 2023 MEPA2023 / Hefei

2304.01056 with Haipeng An, Jia Liu

Shuailiang Ge (PKU)

… …

gravitational lensing CMB observation

(adapted from 1904.07915, TASI lecture)

Shuailiang Ge (PKU) 3

Dark matter candidates

sterile v can be thermal

(adapted from 1904.07915, TASI lecture)

Extended the standard model by $U(1)_d$.

 $\mathcal{L} \supset -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - A_\mu j^\mu - \frac{1}{4} F^{'\mu\nu} F'_{\mu\nu} + \frac{1}{2} m_A^2 A^{'2} - \frac{\epsilon}{2} F^{'\mu\nu} F_{\mu\nu}$

Higgs mechanism, or Stueckelberg mechanism

Shuailiang Ge (PKU)

Dark Photon

m_A , and ϵ : two free parameters

 $\mathcal{L} \supset -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{4} F^{\prime\mu\nu} F^{\prime}_{\mu\nu} + \frac{1}{2} m_A^2 A^2 - A_{\mu} j^{\mu} + \epsilon A^{\prime}_{\mu} j^{\mu}$

Dark electric field:

Shuailiang Ge (PKU)

Dark Photon Fields redefinition $\begin{pmatrix} A \\ A' \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \frac{-\epsilon}{\sqrt{1-\epsilon^2}} \\ 0 & \frac{1}{\sqrt{1-\epsilon^2}} \end{pmatrix} \begin{pmatrix} A \\ A' \end{pmatrix}$

 $\mathbf{E}_{tot} = \mathbf{E} - \epsilon \mathbf{E}' \qquad \mathbf{E}' = -\dot{\mathbf{A}}' - \nabla A'$

C: $\mathcal{O}(1)$ numerical factor, depending on detailed antenna configuration

Induced equivalent flux density:

$$
I^{\rm eqv}_{\rm dipole}\equiv {\cal C} \epsilon^2 \langle {\bf E}'^2\rangle = {\cal C} \epsilon^2 \rho_{\rm DM}
$$

$$
\mathbf{E}'_z = \mathbf{E}'_0 \sin \theta \cdot \cos(\omega t - \mathbf{k}' \mathbf{r}) \simeq \mathbf{E}'_0 \sin \theta \cdot \cos(\theta)
$$

($\mathbf{k}' \mathbf{r} \ll 1$ because $k'/\omega = v_{DM} \sim 10^{-3}c$.)

Searching for Dark Photon directly using antennas

Dark electric field:

dipole antenna

FAST

(Five-hundred-meter Aperture Spherical radio Telescope)

Searching for Dark Photon directly using antennas

dish antenna

Dark electric field

electrons oscillations

dipole emission $d\mathbf{p} = 2\epsilon \mathbf{A}_{\parallel} dS$

Dark-photon-induced signal in antenna: dish antenna

Direction of the reflecting EM wave:

$$
k_{||}^{\text{out}} = k_{||}^{\text{in}}, \quad k_{\perp}^{\text{out}} = \sqrt{\omega^2 - (k_{||}^{\text{out}})^2}, \quad k_{||}^{\text{out}}/k_{\perp}^{\text{out}} \simeq 1
$$

(perpendicular to the surface.)

LOFAR array SKA-Low array SKA-mid array

Searching for Dark Photon directly using antennas

For two antennas with distance d_{mn} , **antenna arrays** the correlation signal is suppressed by

$$
\mathcal{S}_{mn} \approx \exp(-m_{A'}^2 v_0^2 c
$$

Dark photon induced EM flux is

 $S_{\text{DP}} = I_{\text{DP}}/B \sim \epsilon^2 \rho_{\text{DM}}/B$

The signal is monochromatic with a small dispersion B_{sig} :

 $B_{sig} \simeq$ 1 2*π* **⋅**

Detection ability

B: telescope frequency resolution $(B_{\text{sig}} \ll B)$

$$
\frac{k^2}{m_{A'}} \simeq 0.15 \text{ kHz} \left(\frac{m_{A'}}{\mu \text{eV}}\right)
$$

The telescope detection ability is:

Set the limits:

 $S_{\text{DP}} \geq S_{\text{min}}$

Detection ability

 $S_{\min} = \frac{\text{SEFD}}{\eta_s \sqrt{n_{\text{pol}} B \cdot t_{obs}}}$

 $\text{SEFD} = \frac{2k_B T_{\text{sys}}}{A_{\text{eff}}}$ SEFD: system equivalent (spectral) flux density.

-
- A_{eff} : antenna effective area.

 t_{obs} : observation time

$$
\epsilon^2 \propto \rho_{\rm DM} \cdot \text{SEFD} \cdot \sqrt{\frac{B}{t_{obs}}}
$$

Five-hundred-meter Aperture Spherical radio Telescope (FAST) FAST vs. Arecibo

FAST **500 m** (Guizhou, China)

Shuailiang Ge (PKU) 13

Arecibo **305 m** (Puerto Rico)

FAST Data

Frequency range 1-1.5 GHz. Good frequency resolution 7.63 kHz. Observed on December 14, 2020 (110 min)

Dark photon induced signal is constant with time.

Remove large fluctuations for each frequency bin.

Shuailiang Ge (PKU)

FAST Data

Data cleansing

H. An, **SG,** W.Q. Guo, X.Huang, J.Liu, Z.Lu 2207.05767 (PRL)

Featured in Physics

Shuailiang Ge (PKU) 16

Searching for Dark Photon directly using antennas

Dark photons resonantly convert into photons in the solar plasma

Shuailiang Ge (PKU) 17

Another mechanism:

$$
\mathcal{L}_{dp}=-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}-\frac{1}{4}F^{\prime\mu}
$$

Dark Photon

 $\mathcal{L} \supset -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - A_{\mu} j^{\mu} - \frac{1}{4} F^{'\mu\nu} F'_{\mu\nu} + \frac{1}{2} m_A^2 A^{'2} - \frac{\epsilon}{2} F^{'\mu\nu} F_{\mu\nu}$

Fields redefinition $\begin{pmatrix} A \\ A' \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{\sqrt{1-\epsilon^2}} & 0 \\ \frac{-\epsilon}{\sqrt{1-\epsilon^2}} & 1 \end{pmatrix} \begin{pmatrix} A \\ A' \end{pmatrix}$,

 ${}^{\mu\nu}F'_{\mu\nu} + \frac{1}{2}m_{A'}^2A'^2$ $- \epsilon m_{A'}^2A'_\mu A^\mu$.

Equations of motion for dark photon-photon conversion:

$$
\left(\frac{\partial^2}{\partial t^2}-\frac{\partial^2}{\partial r^2}+\tilde{M}\right)\left(\frac{d}{dt}\right)
$$

 $\overline{1}$

Solar corona plasma

(H. An, F. P. Huang, J. Liu and W. Xue, 2010.15836, taken from V. De La Luz, et al. *Geofisica Internacional* 47 (Jul, 2008) 197-203)

Conversion probability: $P_{X\rightarrow\gamma} = \left| \int_{r} \right|$

Applying Saddle-point method: P_{A}

Conversion power:

 $\frac{d\mathcal{P}_0}{d\Omega} = 2 \times \frac{1}{4\pi} \rho_{\rm DM} v_0 \cdot \int_0^{b_{\rm max}} db 2\pi b \cdot P_{X\rightarrow \gamma} = r_c^2 P_{X\rightarrow \gamma} (v_0) \rho_{\rm DM} v(r_c).$

Signal strength observed on the Earth

(H. An, F. P. Huang, J. Liu and W. Xue, 2010.15836) (H. An, **SG**, J. Liu, 2304.01056)

$$
\int_{r_0}^r dr' \Delta_{AX}(r') \exp\left\{i \int_{r_0}^{r'} dr'' \frac{1}{2k_r} \left[\omega_p^2(r'') - m_X^2\right]\right\} \bigg|^2
$$

$$
A' \rightarrow \gamma \simeq \frac{2}{3} \pi \epsilon^2 m_{A'} \frac{1}{v_r(r_c)} \left| \frac{\partial \ln \omega_p^2}{\partial r} \right|_{r=r_c}^{-1}
$$

$$
\text{th:} \qquad S_{\text{sig}} = \frac{1}{d^2} \frac{1}{B} \frac{d\mathcal{P}}{d\Omega}
$$

LOFAR data

Shuailiang Ge (PKU) 22

(H.An, X.Chen, **SG**, J.Liu, Y.Luo 2301.03622)

LOFAR data

120

CROWS

CAST

Pulsars

5

6

 $\sqrt{\frac{2}{3}\epsilon m_{A'}^2} \Leftrightarrow g_{a\gamma\gamma} |B_T|\omega$, $(\omega \simeq m_a$, non-relativistic).

(H.An, X.Chen, **SG**, J.Liu, Y.Luo 2301.03622)

Constraints for the axion case are not so good in comparison with the dark photon case.

Because solar magnetic field in solar corona is relatively weak, 1~4 Gauss. (Yang et al, Science 2020, 369, 694–697)

Thank you for watching

Questions?

Backup Slides

Dark-photon-induced signal in antenna: dish antenna

FAST

(Five-hundred-meter Aperture Spherical radio Telescope, "中国天眼")

> covering 1-1.5 GHz, good resolution 7.63 kHz.

Direction of the reflecting EM wave:

$$
k_{||}^{\text{out}} = k_{||}^{\text{in}}, \quad k_{\perp}^{\text{out}} = \sqrt{\omega^2 - (k_{||}^{\text{out}})^2}, \quad k_{||}^{\text{out}}/k_{\perp}^{\text{out}} \simeq 1
$$

(perpendicular to the surface.)

Dark-photon-induced signal in antenna: dish antenna

Direction of the reflecting EM wave:

$$
k_{||}^{\text{out}} = k_{||}^{\text{in}}, \quad k_{\perp}^{\text{out}} = \sqrt{\omega^2 - (k_{||}^{\text{out}})^2}, \quad k_{||}^{\text{out}}/k_{\perp}^{\text{out}} \simeq 1
$$

(perpendicular to the surface.)

Numerical simulation of FAST telescope

The DP-induced equivalent flux density:

 $I_{\rm dish}^{\rm eqv} = \mathcal{C}$

Numerical simulation of C:

$$
T_{\text{dish}}^{\text{eqv}} = C\epsilon^2 \langle \mathbf{E}'^2 \rangle \times \left[\frac{\lambda^2}{\mathcal{A}} \right] = C\epsilon^2 \rho_{\text{DM}} \frac{\lambda^2}{\mathcal{A}}
$$
\nsuppression factor compared with the ordinary EM, due to non-focusing

due to non-focusing.

Detection on Earth

Photon propagation in the solar plasma: > Refraction effect

- > Absorption effect (inverse bremsstrahlung)
- > Scattering effects (Compton + irregular refraction by electron density fluctuations)

Ray-tracing Monte Carlo simulation:

photon effective mass in plasma:

forward scattering changes the photon's dispersion relation:

