Workshop on Multi-front Exotic phenomena in Particle and Astrophysics (MEPA 2023)

Achim Denig October 20, 2023

Status of the DarkMESA Experiment

Workshop on multi-front exotic phenomena in particle and astroparticle physics (MEPA2023) Hefei, China

Mainz

Electron Accelerator E_{max} =1.6 GeV (CW) operated at JGU Mainz Hallmarks

- Intensity max. 100 μA
- Resolution $\sigma_{\rm E}$ < 0.100 MeV
- Polarization 85%
- Reliability: up to 7000 h / year

GU

5

Mainz Energy-Recovering Superconducting Accelerator (MESA)

Mainz Energy-Recovering Superconducting Accelerator (MESA)

Operation of a high-intensity (polarized) ERL beam in conjunction with light internal target
 → a novel technique in nuclear and particle physics

High-Resolution MAGIX Spectrometers

Design density 10¹⁹/cm²

Achim Denig

Status of the DarkMESA experiment

GEM readout

•

High-Resolution MAGIX Spectrometers

Operation of a high-intensity (polarized) ERL beam in conjunction with light internal target
 → a novel technique in nuclear and particle physics

NIM A1013 (2021)

Supersonic crygenic gas jet target

- Windowless environment
- Commissioned at A1/MAMI
- Design density 10¹⁹/cm²

ble each

ach

GU

ometers

TPC-based focal plane detector

- 10⁻⁴ momentum resolution
- Requires spatial resolution of O(100 μm)
- Open field cage
- GEM readout

MESA Physics Programme

aza

	ERL Mode MAGIX expt.	Extracted Beam Mode P2 expt.	Extracted Beam Mode DarkMESA.
Nucleon From Factors	\checkmark		
EW Mixing Angle		\checkmark	
Nuclear Astrophysics	¹² C (α,γ) ¹⁶ O	neutron skin of nuclei	
Few Body Physics	\checkmark		
Light Dark Matter Search	\checkmark		\checkmark

Light Dark Matter (LDM)

Light Dark Matter MeV < m_{DM} < ~ GeV

- Thermal relic targets exist for the MeV-GeV mass scale
- LDM requires a beyond SM force
- Rich phenomenology of portals: vector, higgs, neutrino, axion

WIMPs GeV < m_{DM} < ~ TeV

- Matching relic abundance for the electroweak mass scale
- WIMPs require only SM interaction
- No positive evidence after LHC and galactic DM searches

Vector Mediator: Dark Photon

<u>Model 1</u>: $m_{\gamma'} \ll m_{\rm DM}$

Dark Photon decaying into SM particles – coupling $\epsilon \rightarrow$ MAGIX

 $\frac{1}{2}\epsilon_Y F^Y_{\mu\nu}F'^{\mu\nu}$

Holdom [1986]

Dark Photon Search at MAGIX

Vector Mediator: Dark Photon

<u>Model 1</u>: $m_{\gamma'} \ll m_{\rm DM}$

Dark Photon decaying into SM particles – coupling $\epsilon \rightarrow$ MAGIX visible decay

 $\frac{1}{2}\epsilon_Y F_{\mu\nu}^Y F^{\prime\mu\nu}$

<u>Model 2</u>: $m_{\gamma'} > 2m_{\rm DM}$

Dark Photon decaying into Dark Matter
→ MAGIX invisible decay and DarkMESA

LDM Portals – A rich Phenomenology

Electron Scattering (MESA) on Beam Dump → Collimated pair of Dark Matter particles !

<u>Model 2</u>: $m_{\gamma'} > 2m_{\rm DM}$

Electron Scattering (MESA) on Beam Dump → Collimated pair of Dark Matter particles !

Full GEANT4 simulation:

P2 target, beam dump, BDX detector volume, walls etc.

Detector Concept for DarkMESA

Ideal Requirements:

- 1. Electron Detection > few MeV
- 2. Large Surface (Acceptance)
- 3. Large thickness (Int. Prob.)
- 4. Reliability (long running time)
- 5. Background rejection
- Cosmics
- Natural Backgrounds
- Beam Backgrounds (n, v)

Baseline Concept

Inorganic crystal calorimeter

- Cherenkov (fast, no neutrons)
- Scintillator (higher light yield)

Status of the DarkMESA experiment

PbF₂ (old A4/MAMI crystals) and the Pb-glass SF5 offer proper electron sensitivity and neutron insensitivity

Electron sensitivity study

Electron beam tests Mirco Christmann, et al.

- NIM A 958 (2020) 162398
- NIM A 960 (2020) 163665

Neutron sensitivity study

Neutron sensitivity study with an AmBe source

23

JGU

Run plan for DarkMESA

Phase	Detector	Period	Time	EOT
А	Prototype	14. year	2,200 h	$7.42 \cdot 10^{21}$
В	PbF ₂ , SF5	46. year	6,600 h	$2.22 \cdot 10^{22}$
С	+TPC	712. year	13,200 h	$4.45 \cdot 10^{22}$

- DarkMESA allows to test parameter space in well-motivated thermal DarkMatter model (complentary to WIMP model, for which room for discovery is narrowing)
- Based on rather conservative calorimeter design
 Phase C might need more inovative detector aspects
- Strong competition world-wide, however complementarity (direct vs. indirect searches, different probes)

Potential to make a very fundamental discovery in physics !

26