Toni Baroncelli: Introduction to Particle Physics

Interaction by Particle Exchange

Interaction by Particle Exchange

Toni Baroncelli Haiping Peng USTC

Interactions by Particle Exchange

If the Hamiltonian can be perturbation expanded (i.e. superposition of smaller and smaller terms)

$$egin{aligned} H &= H_0 + \lambda V \ E_n &= E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \cdots \ ig| n ig> &= ig| n^{(0)} ig> + \lambda ig| n^{(1)} ig> + \lambda^2 ig| n^{(2)} ig> + \cdots \ ig| n^{(1)} ig> &= \sum_{k
eq n} rac{ig< k^{(0)} ig| V ig| n^{(0)} ig>}{E_n^{(0)} - E_k^{(0)}} ig| k^{(0)} ig>. \end{aligned}$$

In this lecture

- How particles interact via exchange of particles
- Introduction to QED

$$\Gamma_{fi} = 2\pi |T_{fi}|^2 \rho(E_f)$$

Fermi's Golden rule: transitions between states

$$T_{fi} = \langle f|V|i \rangle + \sum_{i \neq i} \frac{\langle f|V|j \rangle \langle j|V|i \rangle}{E_i - E_j} + \cdots$$

Scattering in a potential V_{fi}

Particles generate potentials, other particles scatter with potential.

Unsatisfactory!

Scattering via particle exchange V_{fj} V_{ji}

Particles interact vie exchange of particles → no action at 'distance'

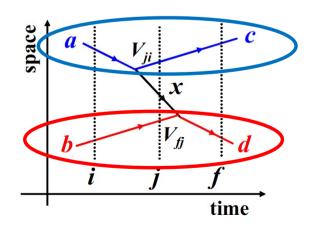
Time Ordered Feynman Diagrams

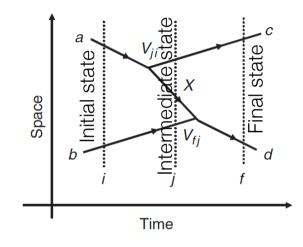
Study reaction $a + b \rightarrow c + d$.

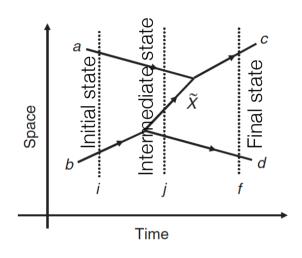
- Exchange of particle X;
- Two possible time orderings.

First case:

- $|i\rangle$ initial state a+b
- $|j\rangle$ intermediate state c + b + X
- $|f\rangle$ final state c+d
- \rightarrow *a* (electron) emits *X*(a photon) that is absorbed by *b* (a second electron) later





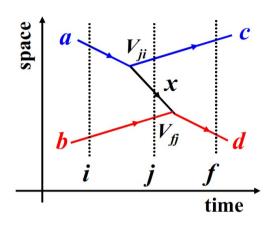


$$T_{fi}^{ab} = \frac{\langle f|V|j\rangle\langle j|V|i\rangle}{E_i - E_j} = \frac{\langle d|V|X + b\rangle (c + X|V|a\rangle)}{(E_a + E_b) - (E_c + E_X + E_b)}$$

Note: the intermediate state $|j\rangle$ has an energy larger than in the initial state: possible for a short period of time

$$\Delta E \Delta t \sim \hbar$$
.

Further Analysis -1



 V_{ji} non-invariant matrix element \mathcal{M}_{ji} Lorentz invariant matrix element

$$V_{ji} = \mathcal{M}_{ji} \prod_{k} (2E_k)^{-1/2}$$

The interaction contains two vertices

- Emission of X;
- Absorption of X.

$$V_{ji} = \langle c + X | V | a \rangle = \frac{\mathcal{M}_{a \to c + X}}{(2E_a 2E_c 2E_X)^{1/2}}$$

All particles included in the vertex

Let's assume that $\mathcal{M}_{a\to c+X}$ is the simplest we can think of: a simple scalar

$$V_{ji} = \langle c + X|V|a \rangle = \frac{g_a}{(2E_a 2E_c 2E_X)^{1/2}}$$

That measures the strength of the interaction
$$V_{ji} = \langle c + X | V | a \rangle = \frac{g_a}{(2E_a 2E_c 2E_X)^{1/2}}$$
 Same for the second vertex: g_b
$$V_{fj} = \langle d | V | X + b \rangle = \frac{g_b}{(2E_b 2E_d 2E_X)^{1/2}}$$

Further Analysis -2

The final result is then

$$T_{fi}^{ab} = \frac{\langle d|V|X+b\rangle\langle c+X|V|a\rangle}{(E_a+E_b) - (E_c+E_X+E_X)} = \frac{1}{2E_X} \cdot \frac{1}{(2E_a 2E_b 2E_c 2E_d)^{1/2}} \cdot \frac{g_a g_b}{(E_a-E_c-E_X)}$$

$$2E_x = \sqrt{2E_x} \cdot \sqrt{2E_x}$$

The Lorentz invariant matrix element \mathcal{M}_{ii} for

$$a + b \rightarrow c + d$$

Is related to the transition matrix element (not LI!) T_{fi}^{ab} by $\mathcal{M}_{fi}^{ab} = (2E_a 2E_b 2E_c 2E_d)^{1/2} T_{fi}^{ab}$.

$$\mathcal{M}_{fi}^{ab} = (2E_a 2E_b 2E_c 2E_d)^{1/2} T_{fi}^{ab}$$

$$\mathcal{M}_{fi}^{ab} = \frac{1}{2E_X} \cdot \frac{g_a g_b}{(E_a - E_c - E_X)}$$
 Similar expression for the 2nd time-ordering

$$\mathcal{M}_{fi}^{ba} = \frac{1}{2E_X} \cdot \frac{g_a g_b}{(E_b - E_d - E_X)}$$

Further Analysis -3

The probability for a given process is the sum of all probabilities of how that process can occur

$$\mathcal{M}_{fi} = \mathcal{M}_{fi}^{ab} + \mathcal{M}_{fi}^{ba}$$

$$= \frac{g_a g_b}{2E_X} \cdot \left(\frac{1}{E_a - E_c - E_X} + \frac{1}{E_b - E_d - E_X} \right)$$

If we take into account energy conservation $E_a + E_b = E_c + E_d \rightarrow E_b - E_d = E_c - E_a$

$$\mathcal{M}_{fi} = \frac{g_a g_b}{2E_X} \cdot \left(\frac{1}{E_a - E_c - E_X} - \frac{1}{E_a - E_c + E_X} \right)$$
$$= \frac{g_a g_b}{(E_a - E_c)^2 - E_X^2}.$$

We observe that:

$$E_x^2 = p_X^2 + m_X^2$$

And that at the 1st vertex

$$p_X = (p_a - p_c)$$

and for the 2nd vertex

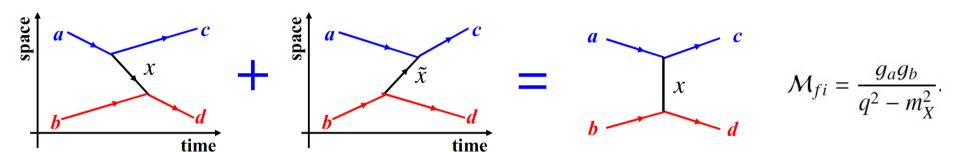
$$p_X = (p_b - p_a) = (p_a - p_c) \Rightarrow E_X^2 = p_X^2 + m_X^2 = (p_a - p_c)^2 + m_X^2$$
 But since $q = p_a - p_c$,
$$\mathcal{M}_{fi} = \frac{g_a g_b}{q^2 - m_X^2}.$$

$$\mathcal{M}_{fi} = \frac{g_a g_b}{(E_a - E_c)^2 - (\mathbf{p}_a - \mathbf{p}_c)^2 - m_X^2}$$
$$= \frac{g_a g_b}{(p_a - p_c)^2 - m_X^2},$$

But since
$$q = p_a - p_c$$
,

Feynman Diagrams

Sum of all possible time orderings, is Lorentz invariant \rightarrow a frame independent matrix element.



- Momentum conserved at vertices
- Energy not conserved at vertices
- · Exchanged particle "on mass shell"

$$|E_X^2 - |\vec{p}_X|^2 = m_X^2$$

- Momentum AND energy conserved at interaction vertices
- Exchanged particle "off mass shell"

$$E_X^2 - |\vec{p}_X|^2 \neq m_X^2$$

 \rightarrow Virtual Particle

Low energy description of 'scattering of non-relativistic electrons in a potential': the potential V(r) that reproduces low energy data is the Yukawa potential:

$$V(r) = g_a \cdot g_b \cdot e^{-mt}/r$$

For the exchange of a m = 0 particle (a photon) \rightarrow familiar 1/r Coulomb potential.

Quantum Electrodynamics (QED)

QED is theory of EM interactions.

$$\mathcal{M} = \langle \psi_c | V | \psi_a \rangle \frac{1}{q^2 - m_X^2} \langle \psi_d | V | \psi_b \rangle$$

3 parts:

The strength of the interaction at each vertex

$$\langle \psi_c | V | \psi_a \rangle \frac{1}{q^2 - m_X^2} \langle \psi_d | V | \psi_b \rangle$$

The propagator

In the simplest choice of a LI matrix element, we have chosen a scalar interaction

$$\langle \psi_c | V | \psi_a \rangle \propto g_a$$

 $\langle \psi_d | V | \psi_b \rangle \propto g_b$

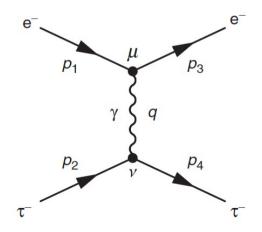
In a realistic treatment of EM interactions, we have to consider that the

photon is a spin 1 particle

→ we need to account for polarisation states

Free photon wavefunction: plane wave + 4-vector for the polarisation:

$$A_{\mu} = \varepsilon_{\mu}^{(\lambda)} e^{i(\mathbf{p} \cdot \mathbf{x} - Et)}.$$

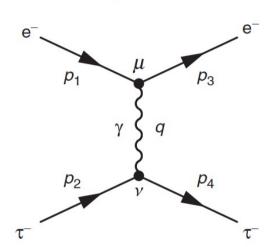


Interaction Fermion (Charge q) and EM Field

$$A_{\mu} = \varepsilon_{\mu}^{(\lambda)} e^{i(\mathbf{p} \cdot \mathbf{x} - Et)}.$$

$$e^-\tau^- \rightarrow e^-\tau^-$$

 ε^{μ} : 4 vector indicating polarisation



A photon propagating along the z direction has 2 orthogonal polarisation states

$$\varepsilon^{(1)} = (0, 1, 0, 0)$$
 and $\varepsilon^{(2)} = (0, 0, 1, 0)$.

Interaction between a fermion with charge q and an EM field $A_{\mu}(\phi, A)$

The same substitution we studied for Dirac particles $A_{\mu} = (\phi, \mathbf{A}), \partial_{\mu} = (\partial/\partial t, +\nabla) \qquad \qquad \partial_{\mu} + iqA_{\mu}$

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi=0,$$
 Free Dirac equation
$$a \rightarrow \partial_{\mu}+iqA_{\mu}$$

$$\gamma^{\mu}\partial_{\mu}\psi + iq\gamma^{\mu}A_{\mu}\psi + im\psi = 0.$$

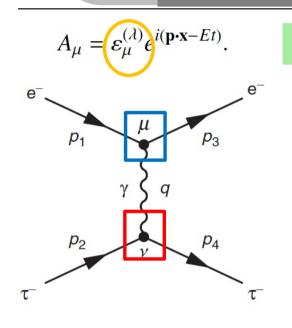
Derive Hamiltonian:

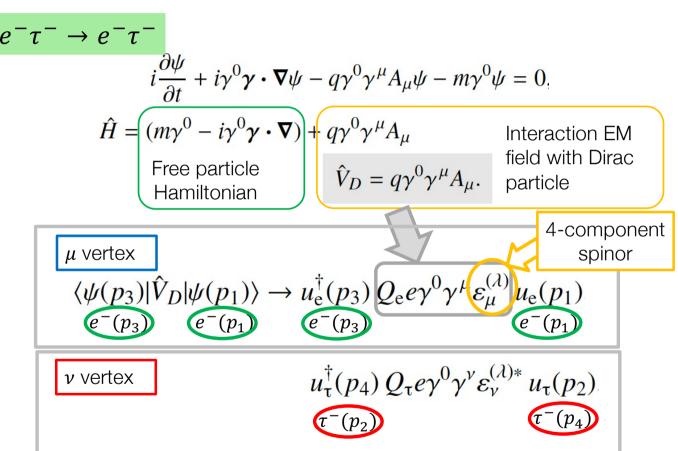
1. Multiply all terms by
$$\gamma^0$$
 ($\gamma^0 \gamma^0 = 1$)

$$i\frac{\partial\psi}{\partial t} + i\gamma^{0}\gamma \cdot \nabla\psi - q\gamma^{0}\gamma^{\mu}A_{\mu}\psi - m\gamma^{0}\psi = 0$$

$$\hat{H}\psi = i\frac{\partial\psi}{\partial t}, \quad -\text{Hamiltonian}$$

The Hamiltonian Interaction EM





$$e^-\tau^- \rightarrow e^-\tau^-$$

$$e^-\tau^- \rightarrow e^-\tau^-$$

$$\mathcal{M} = \sum_{\mathbf{q}} \left[u_{\mathbf{e}}^{\dagger}(p_3) Q_{\mathbf{e}} e \gamma^0 \gamma^{\mu} u_{\mathbf{e}}(p_1) \right] \varepsilon_{\mu}^{(\lambda)} \frac{1}{q^2} \varepsilon_{\nu}^{(\lambda)*} \left[u_{\tau}^{\dagger}(p_4) Q_{\tau} e \gamma^0 \gamma^{\nu} u_{\tau}(p_2) \right].$$

Sum over polarisation states of the photon

Use
$$\sum_{\lambda} \varepsilon_{\mu}^{(\lambda)} \varepsilon_{\nu}^{(\lambda)*} = -g_{\mu\nu}$$
,

Transition matrix

$$\mathcal{M} = -[Q_{\rm e}e\,\overline{u}_{\rm e}(p_3)\gamma^{\mu}u_{\rm e}(p_1)]\frac{g_{\mu\nu}}{q^2}[Q_{\tau}e\,\overline{u}_{\tau}(p_4)\gamma^{\nu}u_{\tau}(p_2)].$$

Define currents

$$j_e^{\mu} = \overline{u}_e(p_3)\gamma^{\mu}u_e(p_1)$$
 and $j_{\tau}^{\nu} = \overline{u}_{\tau}(p_4)\gamma^{\nu}u_{\tau}(p_2)$.

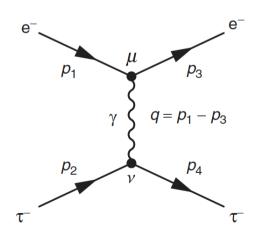
Rewrite in compact form
$$\mathcal{M} = -Q_{\rm e}Q_{\rm \tau}\,e^2\,\frac{j_{\rm e}\cdot j_{\rm \tau}}{q^2}$$

Feynman Rules for QED

Three items in Feynman Diagrams

- 1. Dirac spinors for external fermions (initial and final state particles)
- 2. A propagator representing the virtual photon

For each item one term, the product of these terms give $-i\mathcal{M}$



$$\overline{u}(p_3)[ie\gamma^{\mu}]u(p_1)$$

$$\frac{-ig_{\mu\nu}}{q^2}$$

$$\overline{u}(p_4)[ie\gamma^{\nu}]u(p_2)$$

initial-state particle:
$$u(p)$$

final-state particle: $\overline{u}(p)$

initial-state antiparticle: $\overline{v}(p)$

final-state antiparticle: $v(p)$

initial-state photon: $\varepsilon_{\mu}(p)$

photon propagator: $-\frac{ig_{\mu\nu}}{q^2}$

QED vertex:
$$-iQe\gamma^{\mu}$$

fermion propagator:

There is no QED vertex connecting more than three particles: 1 photon + 2 charged fermions