
To
n
i 
B

a
ro

n
c
e

lli
: 
In

tr
o

d
u
c
ti
o

n
to

 P
a

rt
ic

le
P

h
ys

ic
s

2

Dirac Equation & Co

Dirac Equation

Toni Baroncelli

Haiping Peng

USTC
Year 2024



To
n
i 
B

a
ro

n
c
e

lli
: 
In

tr
o

d
u
c
ti
o

n
 t

o
 P

a
rt

ic
le

 P
h
ys

ic
s

3

From Schrödinger to Klein-Gordon to Dirac

Basic requirement of relativistic QM : Lorentz invariance of the associated wave-function

History: from Schrödinger to Klein-Gordon to Dirac

Non-relativistic formulation:

Using energy and momentum operators transforms into:

Relativistic formulation 

(start of Klein-Gordon):

Schrödinger equation, obviously non invariant for Lorentz 

transformations (1st order in E, 2nd order in p)

When applied to.                                     gives Energy-momentum relationship OK

But negative energy solutions!

2nd order in both time and space
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Klein-Gordon: Negative Energy Solutions

The physical interpretation of the wave-function is that

𝜓∗ 𝒙, 𝑡 𝜓 𝒙, 𝑦 𝑑3𝒙

is the probability of finding the particle it represents in a volume 𝑑3𝒙.

Introduce probability density:

𝜌 𝑥, 𝑡 = Τ𝜓∗ 𝒙, 𝑡 𝜓 𝒙, 𝑦 𝑑3𝒙 𝑑3𝒙 = 𝜓∗ 𝒙, 𝑡 𝜓 𝒙, 𝑦

If the particle doesn’t decay or interacts → the probability stays constant.

Quantify the variation of probability = flux 𝑗 𝒙, 𝑡 of probability leaving the volume V through dS as

𝜕

𝜕𝑡
𝑉׬

𝜌 𝑥, 𝑡 𝑑𝑉 = 𝑆׬
𝑗 𝒙, 𝑡 𝑑𝑺

It can be shown that → continuity equation                                   to apply to 
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Probability Density & Probability Current

Compute

𝜓∗ 𝒙, 𝑡 − 𝜓 𝒙, 𝑦
And compare it to the continuity equation

that applied to a plane wave solution

• Probability density goes like E → relativistic length contraction

• Negative energy solution  ⇒ negative probability ⇒ impossible, unphysical 

Dirac equation: both negative energy solutions and description of spin of particles
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The Dirac Equation 

Try writing an equation 1st order in both time and space → Dirac Equation

And fulfilling energy-momentum Einstein relation

Dirac equation must also satisfy Klein-Gordon equation!

Dirac

Klein-Gordon

 and  cannot be 

numbers → matrices

What are constants 

𝜶, 𝛽 ??

Looks like Klein-Gordon
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The Dirac Equation:  and 

For Dirac to satisfy Klein-Gordon then

 and  are 4 mutually 

anticommuting 

matrices

Lowest dimension: 4x4

𝛽 =

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

The Dirac equation is a 4x4 matrix of 

operators that act on a 

four-component wave-function

4 degrees of freedom

If all particles were massless 

then the  term would not be 

needed

Particles would be described by a two-

component object (Weyl spinor)

𝜶, 𝛽 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠
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Dirac: Negative Probability Density?

As we did for Klein-Gordon compute 

difference between

Wave function Hermitian conjugate Wave function

And compare to the continuity equation (omitting calculation)

⇒ positive by definition

• Dirac formulation gives positive defined probability density;

• Dirac particles are more complex than Klein Gordon ones: four components wavefunctions

• Additional degrees of freedom (spin, intrinsic angular momentum);

• Can de shown to describe particles & antiparticles

Probability density  =

A Hermitian matrix is a square 

matrix that is equal to the 

transpose of its conjugate matrix.
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Pauli Matrices

Hermitian matrix is a complex square matrix that is equal to its own conjugate transpose

A is Hermitian ⟺ 𝑎𝑖𝑗= 𝑎𝑗𝑖 A is Hermitian ⟺ 𝐴 = 𝐴𝑇

The Pauli matrices are a set of three 2 ×2 complex matrices 

that are traceless, Hermitian, unitary.
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Dirac Particles and Angular Momentum

Reminder: the time dependence 

of an observable ෠𝑂 is given by 
if 

𝑑 ෠𝑂

𝑑𝑡
= 0 the observable is conserved ෡𝐻, ෠𝑂 = 0

→ the two operators commute

Angular momentum 

Schrödinger equation 

(non relativistic) 
෢𝐻𝑆𝐸, ෠𝐿 = 0 →. Angular Momentum is conserved

Dirac equation  

(relativistic) 

Angular Momentum is NOT conserved

Introduce a new operator:
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Spin & Angular Momentum of Dirac Particles

It can be shown that also෡𝑆 doesn’t commute with Hamiltonian

We have just seen that

Which translates into

• The total angular momentum ෠𝐿 + መ𝑆 is a conserved quantity;

• Dirac particles have all intrinsic angular momentum 𝑠 =
1

2
;

• The intrinsic magnetic moment of a Dirac particle is                        where 𝑞 𝑎𝑛𝑑 𝑚 are the charge and the 

mass of the Dirac particle

• It is natural to associate the operator መ𝑆 with the 

intrinsic angular momentum of the particle;

Dirac equation includes naturally the description of spin ½ particles.

This is NOT a mathematical consequence.

This is the consequence of requiring the wavefunction to satisfy a particular structure of the Dirac equation
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Covariant Form of the Dirac Equation

The Dirac equation can be expressed in a covariant form (a few steps …)

1. Start from the standard equation 

2. Multiply it by 𝛽

3. Define

4. And 

5. You can rewrite the Dirac equation as
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Solutions of the Dirac Equation

Which is the physical meaning of the solutions of the Dirac equation?

Free particle wavefunctions of spin ½ particles

• 𝑢(𝐸, 𝒑) is 4-component spinor

• No position and time dependence 

Derivatives 𝜕𝜇𝜓(𝒙, 𝑡)act only on the exponent 

→ the expression doesn’t contain 

derivatives

It is the free-particle Dirac equation for 

the spinor 𝑢(𝐸, 𝒑)
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Dirac Equation: Solution for a Particle at Rest

a particle at rest

𝛾0

𝐸𝛾0𝑢 = 𝑚𝑢

𝛾0 is diagonal ⟺ 4 orthogonal solutions

Positive energy solution 𝐸 = +𝑚 Negative energy solution 𝐸 = −𝑚

N wavefunction 

normalisationSpin up Spin up Spin down

Spin down

The 4 states are also eigenstates of the ෡𝑆𝑧 operator
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Particle at Rest: Dirac solution

• Dirac equation for a particle at rest  has positive probability density;

• Represents well spinors with spin up and spin down;

• Has still not solved the problem with negative energy solutions! 
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Dirac Equation: Solution for a Free-Particle

𝐸𝛾0𝑢 = 𝑚𝑢 Written in full →

Pauli matrices

𝛾0
𝛾1,2,3

Describe 𝑢 as sum of 𝑢𝑎 and 𝑢𝑏

4 solutions !

𝑢𝐴
1

𝑢𝐴
2

𝑢𝐵
1

𝑢𝐵
2
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Explicit Positive & Negative Energy Solutions

Gives 𝑢𝑎 as a function of 𝑢𝑏

One more step: explicit 𝑢𝑎: 𝑢𝐴
1 and 𝑢𝐴

2.       

(2 solutions for positive energy)
Orthogonal choice

The corresponding 𝑢𝐵
1,2

terms can be derived as
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Explicit Positive & Negative Energy Solutions

The first two solutions of the 

Dirac equation for a free particle.

Positive or negative energy?

Compare with solutions for a particle at rest:

→ the spin operator መ𝑆 doesn’t return 0 or 1 

Other two solution are obtained with 

And derive 𝑢𝑎 from 𝑢𝑏

The choices are arbitrary; just like choosing one reference frame.

It is the simplest choice!
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Explicit Positive & Negative Energy Solutions

• Explicitly write down 4 solutions;

• Which energy do they correspond to? All these solutions satisfy Dirac equation:

If you put back any of these solutions into Dirac equation → get 𝐸2 = 𝑝2 + 𝑚2

If you put 𝑝 = 0 then you get
Spinors 𝑢1,2 reduce to the 

positive energy solution of a 

Dirac particle at rest

And the same for 𝑢3,4

• There are 4 independent 

solutions;

• We cannot avoid negative 

energy solutions
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Antiparticles & Negative Energy Solutions 

Dirac equation:

• Incredibly good framework for spin ½ particles;

• Spin and magnetic moments emerge naturally;

• Negative energy solutions cannot be excluded as 
‘unphysical’;

• Must provide a ‘physical’ interpretation for these 

solutions.
First attempt: the ‘Dirac’ sea

Difficulty:

• If really ‘negative energy states’ existed, 

and were accessible, then all positive 

energy electrons would fall into this lower 
energy states;

The vacuum is fully occupied by 

negative energy states

• → no hole is present for +energy 

electrons to go;

• → ‘negative energy states’ are 
inaccessible

• Fermi exclusion principle prevents 

electrons from occupying the same 

position/energy 

Physical world

Vacuum
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The Dirac see

This idea seemed not bad:

• If a photon, energy > 2𝑚𝑒 excites one 

‘negative energy electron’ would leave a ‘hole’ 

with
• Less negative energy;

• A loss of charge -1 → charge +1

• A positive energy electron with charge +1

• A positive energy electron falling into one 
available ‘hole’ would give

• Disappearance of energy (negative 

energy);

• Disappearance of a charge -1 (charge 

+1)
• Electron/positron annihilation.

→ antiparticles ??!!

Difficulties:

• The Dirac see would be populated by an infinite 

number of antielectrons → infinite energy! How to 

handle this?
• Today we know that also anti-bosons exist and the 

Fermi exclusion principle would not exclude occupying 

the same ‘hole’
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The Feynman–Stückelberg interpretation

We know today that:

Each spin ½ fermion has a spin ½ partner with exactly same characteristics BUT opposite charge.

Solution:

Negative energy fermions that propagate 

backward in time 

Positive energy antifermions that 

propagate forward in time 
≡

Wavefunction doesn’t change when
𝐸 → −𝐸 + (−𝑡) → (−𝑡)

𝑒[−𝑖𝐸𝑡] ≡ 𝑒[−𝑖(−𝐸)(−𝑡)]
electron

Time →
electron

electron

positron
Time →

electron emits 𝛾 + 

electron with 

negative energy →

backward in time 

electron (+E) annihilates with 

positron (+E) and emits 𝛾

𝑒+ 𝑎𝑛𝑑 𝑒−

forward in 𝑡

Graphic convention:

Antiparticles are drawn as 

travelling back in time
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Physical Antiparticle Spinors

Use ‘physical spinors’: physical energy and 

momentum: go from 

𝑢3 → 𝑣1 𝑎𝑛𝑑 𝑢4 → 𝑣2

Same procedure as for 𝑢1 𝑎𝑛𝑑 𝑢2

Dirac particle solution

Dirac antiparticle solution

𝑁𝑖 = 𝐸 + 𝑚 wavefunction 

normalisation (Lorentz contraction) 
to give 2𝐸 particles per unit volume



To
n
i 
B

a
ro

n
c
e

lli
: 
In

tr
o

d
u
c
ti
o

n
 t

o
 P

a
rt

ic
le

 P
h
ys

ic
s

24

Operators Acting on Antiparticles 

Operators that return physical energy and momentum of antiparticles have to modified:  

Dirac sea picture: a spin-up hole in the negative energy Dirac sea, leaves the vacuum in a net spin-down state.

Feynman–Stückelberg interpretation: 

To maintain ෢𝐻𝐷, ෠𝑳 + ෡𝑺 = 0 for antiparticles
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Charge Conjugation

Symmetries are very important in Particle Physics. We will discuss more

Charge conjugation is a discrete transformation of particles into antiparticles

• Classical dynamics → how the Charge 

conjugation operator is defined.

• Motion of a charged particle in an 

electromagnetic field 𝐴𝜇 = (𝜙, 𝑨)

𝜙, 𝑨 scalar and vector 

potentials, q is the charge of the 
particle 

4 vector notation

Classical Physics → Quantum Mechanics 

Dirac equation motion of a charged particle 𝑞 = −𝑒 in an EM field becomes

particle

Dirac equation motion of a charged antiparticle 𝑞 = +𝑒 in an EM field becomes

antiparticle
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Spin and Helicity

Z-component of 

the spin operator

Particle at rest spinors (E>0)
Eigenstates of ෡𝑆𝑧

Clearly not true for 𝑝 ≠ 0.

In the special case 𝑝𝑧 = ±𝑝, 𝑝𝑥,𝑦 = 0.
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Spin Effect

The action of ෢𝑆𝑍 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

and of ෢𝑆𝑧
𝑣 𝑎𝑛𝑡𝑖𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

Spin up

Spin down

Spin up

Spin down

Spin up Spin up Spin up Spin upSpin down Spin down Spin down Spin down

p→

→p 

Possible configurations:
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Helicity

• Cross sections calculation depends on spin states;

• The z component of the Spin operator is of limited use;

• The z component of the Spin operator does not commute with the Dirac Hamiltonian;

→ introduce 

Helicity: projection of the spin along the direction of motion

simultaneous eigenstates of the free particle Dirac Hamiltonian 

and the helicity operator.

For a fermion the eigenvalues of the helicity operator ±1. These 

states called 

• right-handed and 

• left-handed helicity states

The corresponding helicity operator is

It can be shown that the  Dirac Hamiltonian commutes with ෠ℎ
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Helicity Eigenstates

Need explicit solutions of Dirac Equations that are also eigenstates of Helicity

Particles, right-handed spinor 𝑢↑ left-handed spinor 𝑢↓

Antiparticles, right/left-handed spinor 𝜐↑ 𝜐↓

In the ultra-relativistic region, 𝐸 ≫ 𝑚, the 

4 spinors can be approximated as
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Helicity Eigenstates
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