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Toni Baroncelli: Introduction to Particle Physics

From Schrodinger to Klein-Gordon to Dirac

Basic requirement

of relativistic QM : Lorentz invariance of the associated wave -function

History: from Schrodinger to Klein-Gordon to Dirac

2
Non-relativistic formulation: i Schrédinger equation, obviously non invariant for Lorentz
' - om’ transformations (15t order in E, 2" order in p)
Relativistic formulation E2 — p? + m2 2"d order in both time and space
(start of Klein-Gordon): P ’

Using energy and momentum
E*u(x, 1) = p2u(x, 1) + m?

When applied to. ¥(X,f) = Ne

operators P = —iV and E = iat;ansforms into:

82 82 82 82
W, 0). ) @9, +mP =0, 9"9,= T ar o

i(p-x—E1) gives E2¢, — p2¢ + mza,!/, |:> Energy-momentum relationship OK

[ But negative energy solutions! E = + \fpz + m2. ] 3




Toni Baroncelli: Introduction to Particle Physics

Klein-Gordon: Negative Energy Solutions

The physical interpretation of the wave-function is that

Y (x, Y(x, y)d>x

is the probability of finding the particle it represents in a volume d3x.

Introduce probability density:

p(x,t) = P*(x, OY(x,y)d3x /d3x = P*(x, )P (x, y)

If the particle doesn’t decay or interacts — the probability stays constant.

Quantify the variation of probability = flux j(x, t) of probability leaving the volume V t@h dsS as

9 .

EIV plx,t)dV = fs jlx,t)dS ia—w _ —va%l’-

dp Ot 2m |

It can be shown that — continuity equation ~ V- + e 0. > apply to A 2y
at — 2m
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Probability Density & Probability Current

Compute

Yr(x,t) —yP(x,y)

And compare it to the continuity equation

—2—(WV2¢1 lﬁVzlﬁ) ( oy l!/)

69

i[(w*vw AL )]— i WY) =i

0
A\ E 0. that applied to a plane wave solution

Y(x,1) = Ne'PXED,

_ 2 « Probability density goes like E — relativistic length contraction
o =2INI"E . . . " . . .
« Negative energy solution = negative probability = impossible, unphysical

I Dirac equation: both negative energy solutions and description of spin of particles




Toni Baroncelli: Introduction to Particle Physics

The Dirac Equation

Try writing an equation 1st order in both time and space — Dirac Equation
And fulfilling energy-momentum Einstein relation

) (_ ) ) 0 )'ﬁ What are constants

Dirac Ey =(a-p+ pmy, iaw = iaxa - inya—y - f(l’za—z +pm a, B ??

Dirac equation must also satisfy Klein-Gordon equation!

_62_w—ia£+iaﬁ+iaﬁ—ﬁm la’ﬁ+la’£+la’£—}8m'ﬁ
oz \ox oy T o “ox oy oz ’

[ FU L 0% L0y

_ 2.2 i in-
v axﬁ + %a_yz + afZa_Zz — B m Y Looks like Klein Gordon]

Klein-Gordon

o and B cannot be

numbers — matrices
o)
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The Dirac Equation. ccand S

For Dirac to

satisfy Klein-Gordon then

a, f cannot be numbers

o and B are 4 mutually
anticommuting
matrices

Lowest dimension: 4x4

0 o
- ! /
) and | a; (U'i 0),

|

10 (01 (0 - G e 10
01 )11““{1o) v\ o ™ %2=lo 1)

1 0 O 0
0 1( O 0
0 0 -1 O
0O 0 0 -1

I all particles were massless

then the 3 term would not be |:>
Ev = (a-p+ Bm,

needed

The Dirac equation is a 4x4 matrix of
operators that act on a
four-component wave-function

4 degrees of freedom

Particles would be described by a two-
component object (Weyl spinor)

()
| Y2
— s

\ Y4 )




Dirac: Negative Probability Density?
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conjugate Transpose

As we did for Klein-Gordon compute A Hermitian matrix is a square
transpose of its conjugate matrix. - 2 3+i 2 [3—1‘ - }
4 N\ h
oA Y 0p R AR AN S SR
—ly— —1Xy— — O, — + m = +l—, +—a, + 11—, +t1——Q, + M = —1—.
tox T oy “ 0z ad ot ox * oy Y o0z ¢ vp ot
\ Wave function VAN Hermitian conjugate Wave function y

And compare to the continuity equation (omitting calculation)

Probability density = [p =y = W1+ ol + s> + Wal* = positive by definition ]

» Dirac formulation gives positive defined probability density;

» Dirac particles are more complex than Klein Gordon ones: four components wavefunctions
» Additional degrees of freedom (spin, intrinsic angular momentum);
» (Can de shown to describe particles & antiparticles
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Paull Matrices

Hermitian matrix is a complex square matrix that is equal to its own conjugate transpose

Ais Hermitian & a;;= aji Ais Hermitian & A = AT
0 1
gy — 0O —
1 0
The Pauli matrices are a set of three 2 X2 complex matrices 0 —2
that are traceless, Hermitian, unitary. 02 — 0Oy — : 0
1 0
0'3 —_— o’z —_—
0 -1



Dirac Particles and Angular Momentum

~

Reminder: the time dependence {dO a0

4o A — = 0 the observable is conserved < [H,0] =0
of an observable O is givenby | a7 a«)) = i(YllH, 0]|¢>J dt

dr — the two operators commute

L =rXp=(yp: —zpyzpx — XPz, XPy — YPx).

A A il

Angular momentum o o o
Ly =yp. —2py, Ly=2Zpx—xp; and L;=xp,—ypy.

Toni Baroncelli: Introduction to Particle Physics

Schrédinger equation A p’ SN _

(non relativistic) Hgp = o |Hsg, L] = 0 . Angular Momentum is conserved <:|
[ Dracequation g5 g [Ap Bl = [a-p+Bm.Ex ] = [a-p.f X ) )

(relativistic) p=a=prpm, LAp. Ll =10-p+pm.rXpl=I1t-p.rXpl. «
L [Ap,L] = —ia x p. Angular Momentum is NOT conserved |
Introduce a new operator: 0 110 0) (0 —i 0 0) (1 00 0)
A 1 0J0 O A i 00 O A O-10 O
SE%ﬁE%EBO) =15 001" 2|0 o0 -i| ™ =79 01 o
0o (00 10) L0 0 0) 0 00-1/
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Spin & Angular Momentum of Dirac Particles

It can be shown that also’S doesn’t commute with Hamiltonian [HD, § X P.

We have just seen that  [Hp, L] @ X P.

- Itis natural to associate the operator S with the Which translates into Sl e
intrinsic angular momentum of the particle; [HD’J] = [HD’L - S] =0. <:|

« The total angular momentum L + § is a conserved quantity;
« Dirac particles have all intrinsic angular momentum s = %;

 The intrinsic magnetic moment of a Dirac particleis  j1 = iS, where g and m are the charge and the
m

mass of the Dirac particle

Dirac equation includes naturally the description of spin %z particles.
This is NOT a mathematical consequence.

This is the consequence of requiring the wavefunction to satisfy a particular structure of the Dirac equation 1



Covariant Form of the Dirac Equation

Toni Baroncelli: Introduction to Particle Physics

The Dirac equation can be expressed in a covariant form (a few steps ...)

. .0 .0 . o0 . 0
1. Start from the standard equation zaw = (—zafxa — mfy@ — zafza—z +,8m) /8

2. Multiply it by B iﬁcxxg—"i + iﬁayg—";{ + iﬁazaa—"j + iﬁ‘z_"f — Bmy = 0.

3. Define ,yO Eﬁ, ,yl Eﬁa/xa ,},2 Eﬁa’y and '}’3 Eﬁ(]fz, @ [ (10 0 0) (0 00 1“
o |01 0 0 .l 0o o010
5 4 5 Zloo-1 ol YTl 0o-100
00 0-1) -1 000)
4. And 8, = (80,01,00,03) = [ =, —., —, )
b = (00, 01,0,03) (ataxayaz) (000 —i) (001 0)
, | 00 0 s | 000 -1
5. You can rewrite the Dirac equationas  (iy"d, —m)y = 0 Pl oo o T T-100 0
| ° Ui e \_ =00 0 010 0)/

12
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Solutions of the Dirac Equation

Which is the physical meaning of the solutions of the Dirac equation?

(iy"0, —m)y = 0. =\

7

~
Free particle wavefunctions of spin %2 particles w(x, 1) = u(E, p)

 u(E,p) is 4-component spinor
* No position and time dependence

g J
g o0 0 0
Derivativot only on the exponent 0y = (0p,01,02,03) = 9 5% 3y 0

1/
ox

0
o= 2= —iBy, 0 =

Iy

YE —y'px —¥*py — v’ p; — mu(E, p)e"P¥ ) = (,

(iy— m)y = 0.

derivatives
(Y'pu—m)u =0, It is the free-particle Dirac equation for

the spinor u(E, p)

= ipxy, Oy =ipyy and O3y =ip.

&

— the expression doesn’t contain

13
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Dirac Equation: Solution for a Particle at Rest

U(x, 1) = u(E,p)e' P> ED,

a particle at rest

E - y'py —¥*py — ¥ p: — mu(E, p)eP*E) = 0,

(¢1) (¢1) v is diagonal & 4 orthogonal solutions
$2 | _ m $2
¢3 ¢3
\ @4 ) \ @4 ) The 4 states are also eigenstates of the S, operator
_ Nwavefunction Soin U Spin down
Spin up 1) |normalisation (0) pin Uup 0) P (0)
| i 0 0
u(E,0) 8 and s (E, 0) .  Spindown (£, 0) || and w(E.0) @ 0
0) "y 0) 1)

Positive energy solution E = +m

v = u(E,0)e ',

Ey°u = mu

Negative energy solution E = —m

14
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Particle at Rest: Dirac solution

/8]

I
2

"y

e—imt, I,[Q — N

"y

e—imt, l[/?, — N

"y

et and iy = N

Dirac equation for a particle at rest has positive probability density;
Represents well spinors with spin up and spin down;

Has still not solved the problem with negative energy solutions!

+imt

15



Dirac Equation: Solution for a Free-Particle

Pauli matrices

EYu=mu  Writteninfull > (EY' = poy' = pui¥> = p:v° —mu =0 . (0 1)
xr — 1 0 ’
0 1,2,3 .
14 y=” (0 —z)
. — . o2 =0y = | . 0 )’
1
I 0 0O o-p I 0 4 solutions !
_ — = 0. 1.0
[(0 —I)E (—O'-p 0 ) m(o 1)]” R ! agzozz(o 1).
B (E—m)l —0O.p  Note i1 =
= = - : .P = PxOx + pyOy + p;O;: u
( G.p — (E _I_ m)] L S S S Yoy L ErTL u:%

Note in the above equation the 4x4 matrix is
written in terms of four 2x2 sub-matrices

Toni Baroncelli: Introduction to Particle Physics

*Writing the four component
spinor as

: UA
— u =
L ] ()

16



Explicit Positive & Negative Energy Solutions

Toni Baroncelli: Introduction to Particle Physics

(E—m)[ —o-p Ua —0
o-p —(E+mi|\ug]

ag-p
'uA - MB7
Gives u, as a function of uy E-m
0'0
BT mt
One more step: explicit ug: uy and us. 0y = ( 1 ) and iy = (0) Orthogonal choice
(2 solutions for positive energy) 0 1
The corresponding ug* g = o'pP _ 1 Pz_ Px — 1Dy i,
terms can be derived as E+m E+m\px+tipy, —P;

17



Explicit Positive & Negative Energy Solutions

Toni Baroncelli: Introduction to Particle Physics

4 )
The first two solutions of the 0
Dirac equation for a free particle. (g p)= N, and  ux(E,p) = N2 pe-ip, |
Positi t ? pf:g” =1
n nergy’ m m
\ ositive or negative energy E+ E+ Y
1 0
Compare with solutions for a particle at rest: u(E,0) =N g and ux(E,0) = (1)
— the spin operator $ doesn’t return O or 1 (0 0
. . . 1 0
Other two solution are obtained with g =1 and up = [
And derive u, from u,, Uy = g-b ug,
E-m

The choices are arbitrary; just like choosing one reference frame.

It is the simplest choice! 18



Explicit Positive & Negative Energy Solutions

Toni Baroncelli: Introduction to Particle Physics

« Explicitly write down 4 solutions;

4 (1 ) (0 ) [Pz (Px=ipy\
E—m E-m
O 1 Pxtipy ETPZ
@: @ P |, U2 = N Px—ipy | > Uz = N3| E-m Us = Ny (_)m
E_‘,'_'m E+m 1
Pxtip =~p
\_ \ E+my) \ E+;:n J \ 0 ) \ 1 J y

« Which energy do they correspond to? All these solutions satisfy Dirac equation:

W)= wi(E, p)e'®* "

If you put back any of these solutinns intn Dirac equation — get E? = p? + m?

If you put p = 0 then you get ( (1) Spirprs 1, , reduce t.o the o i i
positive energy solutionofa £ = T ‘\/P +m ‘
* There are 4 independent @ Dirac particle at rest
solutions; \ T/
« We cannot avoid negative And the same for u 4 EF=— ‘W‘
energy solutions

19



Antiparticles & Negative Energy Solutions

Toni Baroncelli: Introduction to Particle Physics

Dirac equation: Difficulty:

* Incredibly good framework for spin %2 particles; « If really ‘negative energy states’ existed,

« Spin and magnetic moments emerge naturally; and were accessible, then all positive

* Negative energy solutions cannot be excluded as energy electrons would fall into this lower
‘unphysical’; energy states;

* Must provide a ‘physical’ interpretation for these
solutions.

First attempt: the ‘Dirac’ sea

The vacuum is fully occupied by | Phvairal world | N

negative energy states R L Ioee L, e

* — no hole is present for +energy : : :
electrons to go;

° ¢ . ) n — — —
— negative energy states’ are m L —e—— m, | ——— m, | ——
inaccessible z ’Jﬂ JY

* Fermi exclusion principle prevents . T ,..rf

: - : v
eleqtrons from occupying the same -my |- —o—e— M, |- —o—e— -m, b —o——
posmon/energy — —_—— ———
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The Dirac see

This idea seemed not bad:

£ Ifa photon, energy > 2m, excites one )

with
» Less negative energy;
* Aloss of charge -1 — charge +1
\_ A positive energy electron with charge +1)

( A positive energy electron falling into one\
available ‘hole’ would give
» Disappearance of energy (negative
energy);
» Disappearance of a charge -1 (charge
+1)

K Electron/positron annihilation. )

— antiparticles ?7?!!

‘negative energy electron’ would leave a ‘hdle’ - ————— To——

'S
my | —————— mg __f_ v me : v
Y Iy
-m, - ———e— me—:g:._o— —My | —O———
Difficulties:

« The Dirac see would be populated by an infinite
number of antielectrons — infinite energy! How to
handle this?

« Today we know that also anti-bosons exist and the
Fermi exclusion principle would not exclude occupying
the same ‘hole’

21



The Feynman—Stiickelberg interpretation

Toni Baroncelli: Introduction to Particle Physics

We know today that:
Each spin 2 fermion has a spin 2 partner with exactly same characteristics BUT opposite charge.

Solution:
Negative energy fermions that propagate —
backward in time

Wavefunction doesn’t change when electron emits y + electrpn (+E) annihilatqs with

(E) » (=E) + (—t) » (—t) electron with positron (+E) and emits y

el—IEt] = p[=i(=E)(=t)] || (E>0) negative energy — e (E>0) et and e™
electron backward in time electron forward in t
| . i R v

Graphic convention: & S
O QO
P

Antiparticles are drawn as

- +
travelling back in time e (E<0) e"(E>0)

electron , positron .
Time — Time —

22
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Physical Antiparticle Spinors

Pz Px—ipy

Use ‘physical spinors’: physical energy and perip, E-m

momentum: go from 3 = Ns _Eim s = Ny E(—)m
Uz = vy and uy = v, 0 X

v1(E,pe P = yy(—E, —p)e'l P E]

N; = VE + m yavefunction
no isation (Lorentz contraction)
to give 2E particles per unit volume

2 (E, ple” PXED = iy (=, —p)ell P BN,

Same procedure as for u; and u,

1 0
+i( Et) 0 ’ 1
Dirac particle solution  ¢; = u;e™"'P*~ ur(p) 2 and  ux(p) pe=ipy |
E+m E+m
x+lpy =
“E+m E+m
E+m m
Dirac antiparticle solution ¢; = v; —i(px- EI) Pxtipy
[ o ‘7&! € Ul(p) 6 and v(p) ’ E—i—m .

E:+|W| 1 0
23
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Operators Acting on Antiparticles

Operators that return physical energy and momentum of antiparticles have to modified:

n 9,
AV = ~i= and pY = +iV,

Feynman-Stuckelberg interpretation:  (E£,p) — (=E,—p)

) L=rxp—-L

N PSP N &) &
To maintain [Hp, L + S| = 0 for antiparticles S =-S5,

Dirac sea picture: a spin-up hole in the negative energy Dirac sea, leaves the vacuum in a net spin-down state.

24
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Charge Conjugation

Symmetries are very important in Particle Physics. We will discuss more

Charge conjugation is a discrete transformation of particles into antiparticles

Classical dynamics — how the Charge ¢, A scalar and vector
conjugation operator is defined. E—E-qgp and p— p-JA, potentials, g is the charge of the
Motion of a charged particle in an | particle

electromagnetic field A* = (¢, A) 4 vector notation Pu = Pu = qAu-

Classical Physics — Quantum Mechanics E =id/dt. p=—iV |:> i0, — 0, — qA,.

Dirac equation motion of a charged particle ¢ = —e in an EM field becomes

[y“(a@eAﬂ).,y +imy = 0. ]

particle

Dirac equation motion of a charged antiparticle q = +e in an EM field becomes

[y ageA iy =0.| =i ) = = i

antiparticle
25
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Spin and Helicity

1 00 0 4 1 0) \
Z-component of & _ | 1(crZ 0 ) 10o-10 0 @ 0 @_ 1
, S, =32, =5 = = , u (Ef0)y =N and u(EJO) =N .
the spin operator = 27 2\ 0 o) 2[(0 01 O 0 0
0O 00 -1 0 . 0
Particle at rest spinors (E>0)
Clearly not true for p # 0. Figenstates of S,
. y
o i = £
—P: x TPy
u(p)= VE+m| p,_ and  ux(p) = VE+m| p—ip, | vi(p) = VE +m Eam and 0(p) = VE +m EJlrm
E+m “E+m
pxtip =
e v 1 0
In the special case p, = +p,pyy = 0.
+
_v| 0 _N| = _
Ml—N E:I_:'_—P;n ,MQ—N _0 ,U]—N 0 andvg—N 1
— 1 0

20
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Spin Effect

The action of S, (particles)

S:ui(E, 0,0, +p) =|+35ui (£,0,0,£p).  Spin up
S;uz(E, 0,0, £p) =f-51h(E,0,0,£p)  5pin down

and of S? (antiparticles)

SAZ(U)vl(E, 0,0,+p) = —S.v1(E, 0,0, +p) =
SAZ(U)vg(E, 0,0, +p) = —S,02(E, 0,0, +p) =

(E,0,0,£p). Spinup
(E,0,0,£p).  Spin down

Possible configurations:

Spinup  Spindown Spinup  Spindown Spinup Spindown Spinup  Spin down

—)
—_—

Uy

<= - <= —) 4= - <4
= | > 44— 44— 44—
) vy Vo U4 U V4 Vo

> Z > Z

p— P

217



Toni Baroncelli: Introduction to Particle Physics

Helicity

» Cross sections calculation depends on spin states;
» The z component of the Spin operator is of limited use;
* The z component of the Spin operator does not commute with the Dirac Hamiltonian;

— introduce

S-p

Helicity: projection of the spin along the direction of motion h =

. . .~ EZp 1l{o-p O
The corresponding helicity operatoris h = — = — "
P J yop g 2p 2p( 0 ‘T'P)

It can be shown that the Dirac Hamiltonian commutes with A [Hp,£-p1=0

simultaneous eigenstates of the free particle Dirac Hamiltonian
and the helicity operator.

For a fermion the eigenvalues of the helicity operator +1. These
states called

* right-handed and
» left-handed helicity states

28



Helicity Eigenstates

Need explicit solutions of Dirac Equations that are also eigenstates of Helicity

1 (fo-p O
2p\ 0 o-p

Up

Up

uy = VE +m

vy = VE+m

Toni Baroncelli: Introduction to Particle Physics

0
2

§= sin(—) and ¢ = cos (Q)

( C
se'®
p

E+mc

p i
\E+mse

p
E+mS
= P i)
E+mce
=8y

ce'®

2

u = VE+m

vy = VE+m

Particles, right-handed spinor uy left-handed spinor uy

(0' . p)uA = 2p /UAA,
(o -plug = 2p Aug.

)(uA ) B /l( MA) p = (psinfcos ¢, psindsin g, pcosb).

1 1 ( Pz Dx — ipy )
— (o - e )
ZP( P) 20\ px+ip, —p
cos@ sinfe

1
) ( sin Qe'?

—Cosd

)

— 0 iy
ce'¢
P
E+mS
D
~pne? )

Antiparticles, right/left-nanded spinor vy vy

P
E+mc
_P_ cyid
E+mse
C

se'd

ur

~
~

In the ultra-relativistic region, E > m, the

c
se'?
VE R

se'®

i —ce'?
AE| % |, B

4 spinors can be approximated as

) S

—ce'? ce'?
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Helicity Eigenstates

cos (3) —sin(3)
esin () | €Peos(B)
TN e () | T ()
Eeean) |\ Howy
%sin(%)e #ﬁ’?'mm(%g
=N #;ﬁ’g;(z) _N Ei,ﬁ:(sg)(f)
, 2 , 2
e cos (%) e sin (%)

u

particles

T uj

—1

30
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