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Logistics - 1

Course will last 16 weeks, Lectures by 

Two lectures/week

Slides will be made available soon 

after the lecture at

http://cicpi.ustc.edu.cn/indico/.... Will 

be defined soon

Each Lecture will be preceded by a 

short recap of the lecture before

Attending a course in English is difficult for young persons who are not too familiar with foreign languages

I understand your difficulty and appreciate your effort

The world of HEP (High Energy Physics) is a world-wide collaboration and English is the standard tool of communication. 

Attending these lectures will help you to improve your foreign language skills (… and studying abroad?)

• Monday, 3 slots, 15:55-18:20

• Wednesday 2 slots, 14:00-15:35

• me, (Antonio) Toni Baroncelli from February 23rd to April 16th

• Prof. Haiping Peng from April 21st to June 11th

http://cicpi.ustc.edu.cn/indico/
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Logistic - 2

First part

• Overall picture of how we see (today!) the microscopic world;

• How laws and structure of nature can be represented by models / mathematical formalism;

• Little formalism, just main ideas. Much more material can be found in the reference book.

Second part

• Instruments and tools of the research in High-Energy Particle Physics (HEP)

• Accelerators

• Detectors and Analysis
• Analysis of discoveries of the past 50 years

The course is not historically-organised
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Reference Textbook

Lectures of the first 

part: recent book 

including much more 

than in these lectures

• Standard Model

• Discovery of the 

Higgs Boson

• …

Formalism well 

documented

Mark Thomson was recently 

elected as Director of CERN
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Introduction

Very Basic Ideas
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Macroscopic world

Micro to Macro world

?
Incoming 

beam

Target

Microscopic
world

Experiment

Macroscopic world

No way to ‘see’ what is in the 

microscopic world → can only see 

the effect of sending a projectile on 

your target

Physics

‘Incoming beam’ and ‘Target’ may be not 

point-like, 

it may have a structure, 
like a proton 

(or a nucleus)
7

Make BASIC assumptions (Einstein special relativity, 

Lorentz invariance) and use models. Are they OK?
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Prologue: Many Order of Magnitude

bacteria
0.5-5 m,

cells
1-100 m

nuclei
> 10-15 m

W, Z, H
80-130 GeV

molecules,
atoms

> 10-10 m

visible light 
=380-750 
10-9 m ?

wo/men, 
dogs, cats, 

...

ℏc  =   197.3 MeV fm →
2 × 108 eV "=" 10-15 m

c = 2.998108 m s-1 →
3 × 10-9 s "=" 1 m

LEP

LHC

E = 3×1020 eV 
(highest energy 
ever, University 
of Utah's Fly's 
Eye Cosmic Ray 

Detector, 1991).

0 -3 -6 -9 -12 -15 -18 -21 Log10 d (m)

-6 -3 0 3 6 9 12 15 Log10 E,p (eV)

-9 -12 -15 -18 -21 -24 -27 -30 Log10 t (s)

The uncertainty principle: 

“position x (uncertainty x) 

and momentum px (with 

uncertainty px) cannot 

simultaneously be known to 
better than

xpx ~ℏ/2. 

A relation for the energy is 
obtained by multiplying c, 

xE ~
ℏ𝑐

2

which gives numerically,

∆𝐸 𝑀𝑒𝑉 =
1.973−11(𝑀𝑒𝑉 𝑐𝑚)

2∆𝑥(𝑐𝑚)

Also  x=ct → tE ~
ℏ

2

1fm = 10-15m  ~ 

size of proton

(Reduced) Planck’s Constant (ℏ = ℎ/2𝜋) ℎ
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First Part: Preview of Lectures

Content of the lectures

• Calculation of cross sections and decay rates

• Fermi’s golden rule

• Phase space
• Spin ½ particles (Dirac equation)

• Klein-Gordon equation

• Dirac equation

• Antiparticles

• Spin & helicity
• Parity of Dirac Particles

• Interaction by particle exchange

• Perturbation theory

• Feynman diagrams & virtual particles 

• QED
• Deep Inelastic Scattering

• Electron-proton scattering

• Electron-quark scattering

• PDFs

Feynman diagrams for 𝑒+𝑒− →
𝜇+𝜇−and 𝑒−𝑞 → 𝑒−𝑞 scattering

Probe proton 

structure

LHC: protons 

against protons

Exchange 

of particles
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Second Part: Preview of Lectures

Content of the lectures

• Accelerators (basic ideas, future 

accelerators?)

• Experiments
• Assembly of detectors

• Analysis techniques

• Precision measurements 

• Resonances

• The discovery of 
𝑐ℎ𝑎𝑟𝑚 𝑎𝑛𝑑 𝑏𝑜𝑡𝑡𝑜𝑚 quarks

• The discovery of the 𝑡𝑜𝑝 quark

• The 𝑍 − 𝑙𝑖𝑛𝑒 𝑠ℎ𝑎𝑝𝑒 & number of 

neutrinos @ LEP (𝑒+𝑒− collider at 

CERN)
• The discovery of the 𝐻𝑖𝑔𝑔𝑠 𝑏𝑜𝑠𝑜𝑛 (pp 

collider at CERN)

LEP: 𝑒+𝑒−𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟

Z resonance → Z 

boson exchange
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Fundamental Particles & Forces

Our world seems to be populated by few objects/particles:

• Atoms p,n & electrons (kept together by em forces)

• Nuclei p,n kept together by strong forces

• Radioactive decays → weak forces

• Gravity → large scale structures in the Universe
• Protons & neutrons → quarks

More structures

• Quarks & leptons are 

~point-like, no structure 

inside; spin 1/2

• Organised into three 

generations, differing 
only in mass, same 

properties;

• Apparently, no more 

generations;

• → 4 particles x 3 
generations

1
2

 p
a

rt
ic

le
s

Elementary particles + Forces → Standard Model 

QED QCD

Weak 

Force
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Quarks & Leptons - 2

Masses ~ similar

Spin ½ particles → Dirac 

particles 

→ anti-particles (same 

mass but different charge) 

appear naturally 

4 forces; 

• Gravity (neglect, no role 

in particle-interactions) 

• Weak force

• EM force
• Nuclear (strong) force

no charge
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Forces: potential?

In Classical Mechanics (EM) forces can be described 

by means of a scalar potential.

Unsatisfactory! Transfer of momentum without 

mediating body!

In QFT each force acts via virtual mediators.

No action at a distance!

Virtual photon, not seen

time →

emission

absorptionTransfer of momentum: natural !

Each of the three forces (not gravity) is 

mediated by a

spin-1 force-carrying particle

Relative strength very different (we 

do not know why …!)
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The Higgs Boson

Discovered in 2012 by ATLAS & CMS Experiments at the LHC;

• Fundamental fermions: spin ½ particles;

• Gauge bosons: spin-1 particles; 

Higgs boson is a spin-0 scalar particle. As conceived in the Standard Model, the

Higgs boson is the only fundamental scalar discovered to date.

The Higgs boson, in the SM of particles, has the role of ‘giving mass’ to all particles
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Forces: mediators

Graphical representation: 3-point vertex, one gauge boson + incoming fermion + outgoing fermion

Rule:

Particle couples to a force

carrying mediator only if it

carries the charge of the
interaction

Strength of Weak 

force is greatest for 

transitions same 

generation

Change of 

flavour

• Interaction probability: ℳ (one state to another) 

• Coupling constant: ℊ (probability spin ½ 

fermion emits or absorbs the interaction boson)

Charged Current Neutral Current

Mass of W,Z
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Interactions

The matrix element ℳ includes a factor ℊ for each vertex

ℳ ∝ ℊ2

→ interaction probability is the square of ℳ

|ℳ|2 ∝ ℊ4

Scattering of two fermions via 

exchange of a vector boson X
Each vertex 𝑓𝑓𝑋 is described by ℊ

• Feynman diagrams give a 

graphical representation of 

an interaction;

• Shows possible time 

orderings of the interaction
• The interaction is the sum of 

possible time orderings

Time
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Feynman Diagrams

Example: scattering of two electrons 
via the exchange of one or two 

photons.

• Same initial and final state;

• Use 𝛼 (contains 𝑒2) ≈ Τ1 137

• First diagram (one photon) 
ℳ ∝ 𝛼2

• Second diagram (two photons) 

ℳ ∝ 𝛼4 → 2𝑛𝑑 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑖𝑠 ≈
10−4 𝑡𝑖𝑚𝑒𝑠 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑎𝑛 1𝑠𝑡 𝑜𝑛𝑒

One process = superposition 

of infinite Feynman diagrams.

 at each vertex! 

Particles ‘travel’ forward in time

Anti-particles ‘travel’ backward in time

• particles and antiparticles created/annihilated only in 

pairs. 

• arrows on the incoming and outgoing fermion in the same 

sense and flow through the vertex;

• they never both point towards or away from the vertex.
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Unstable Particles

Most particles decay with a very short lifetime → few long-lived or stable particles detected in experiments

The decay of a particle can always be described in 

terms of a Feynman diagram 

• the decay products must have a rest mass lower 

than the initial state:

• Weak force: all particles (and change of flavour)
• Coupling Constant increases → Lifetime decreases

• Hadrons exist as Baryons, Antibaryons, Mesons;

• Strong force, QCD interactions: 
• quarks cannot exist as free particles 

• → only bound states 

• → decays to be interpreted as transitions 

between bound states

𝑚𝑒 < 𝑚𝜇 Lightest 

charged lepton 

→ cannot decay
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Unstable Particles – continued

Two diagrams account 

for the same decay

|ℳ𝑔|
2 ∝ 𝛼𝑠

2 ≫ |ℳ𝛾|
2 ∝ 𝛼2

Exchange of gluon dominates

𝜏𝑠𝑡𝑟𝑜𝑛𝑔 ≪ 𝜏𝐸𝑀 ≪ 𝜏𝑤𝑒𝑎𝑘

Strong decays dominates over EM decays

EM decays dominate over weak decays

Secondary vertices 

may be detected
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Anticipation → why electron scattering?

Nuclear sizes and shapes → use scattering technique → use a projectile (accelerated or from radioactivity) that 

hits a target

Protons are extended and complex objects

nuclear forces 

between the projectile 

and the target are 

complex and complex 
to describe

• The interactions between an electron and a nucleus, nucleon or quark takes place via the exchange of a 

virtual photon — this may be very accurately calculated in quantum electrodynamics (QED). 

• These processes are in fact manifestations of the well known electromagnetic interaction, whose coupling 
constant α ≈ 1/ 137 is much less than one. This last means that higher order corrections play only a tiny role

Use electrons! Point-like 

projectiles!
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Kinematics & Co

Kinematics & Co
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Reminder: Special Relativity

Consider two inertial frames: Σ 𝑎𝑛𝑑 Σ′, Σ′ moving with velocity 

v 𝑎𝑙𝑜𝑛𝑔 𝑧: 𝛽 = Τ𝑣 𝑐 𝛾 = (1 − 𝛽2)1/2

Einstein: r and r’ are the same in all systems →

When v ≪ 𝑐 → 𝛽 = 0, 𝛾 = 1

In matrix form:

4-vector 𝑡, 𝒙 , 𝑿′= 𝜦𝑿, 𝑿 = 𝜦−𝟏𝑿′, 𝜦𝜦−𝟏 = 𝑰. 

𝜦 𝜦−𝟏

𝑿′𝑿

Small velocity → Galilean transformation 

r, r’:  

space-time 

interval
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4-Vectors and Lorentz Invariance

A fundamental idea in Physics is that laws of Nature do not depend on the frame where they are measured. 

This translates into 

• Introducing contravariant and covariant 4 vectors and

• Requiring space-time interval to be Lorentz invariant

Lorentz transformation 

of covariant 4-vector

contravariant 4-vector 

to a covariant 4-vector

Only quantities with Lorentz transformation properties 

are such that.          are Lorentz invariant  

If 𝑎𝜇𝑎𝑛𝑑 𝑏𝜇are contravariant then the scalar 

product is also invariant 



To
n
i 
B

a
ro

n
c
e

lli
: 
In

tr
o

d
u
c
ti
o

n
 t

o
 P

a
rt

ic
le

 P
h
ys

ic
s

24

Four Momentum and Four Derivatives

Relativistic momentum and energy of a particle with mass m

Momentum and energy are conserved 

separately → also 4-momentum is
the scalar product

Lorentz 

transformation of a 

4-derivative  from 

frame Σ to Σ′

(Use 𝑐 = 1)

In matrix notation → transforms as a 

covariant four-vector
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Laplacian

The corresponding contravariant four-derivative is 

The Laplacian for the four-derivative

Notations

Quantities written as

𝑥, 𝑝
are four-vectors

Quantities written in bold as

𝒙, 𝒑
Are three-vectors

Four-vectors scalar product is 

The Einstein energy-momentum relationship → 𝑝2 = 𝑚2 𝑠𝑖𝑛𝑐𝑒 𝑝2 = 𝑝 ∙ 𝑝 = 𝐸2 − 𝒑𝟐

A quantity in the Center of Mass System (cms) of a group of particles is labelled with a * , example q* 
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Mendelstam Variables

𝑠 = (𝑝1 + 𝑝2)
2 = (𝑝3 + 𝑝4)

2

t = (𝑝1 − 𝑝3)
2 = (𝑝2 − 𝑝4)

2

u = (𝑝1 − 𝑝4)
2 = (𝑝2 − 𝑝3)

2

𝑠 + 𝑢 + 𝑡 = 𝑚1
2 +𝑚2

2 +𝑚3
2

Only relevant 

when there are 

identical particles 

in the final state

In reaction 1 + 2 → 3 + 4 one mediating particle 

is emitted/absorbed in different ways

• s-channel: particle 1 emits a mediator 

absorbed by particle 3
• t-channel: particle 1 emits a mediator 

absorbed by particle 2

s-channel t-channel

These variables are equivalent to the four-momentum squared 𝑞2 of the exchanged particle

In the cms 𝑝1 = (𝐸1
∗, 𝒑∗ ) and 𝑝2 = 𝐸2

∗, −𝒑∗ → 𝑠 = (𝑝1 + 𝑝2)
2 = (𝐸1

∗ + 𝐸2
∗)2 − (𝑝∗ − 𝑝∗)2 = (𝐸1

∗ + 𝐸2
∗)2

→ 𝑠 is the total available energy in the cms system
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Non Relativistic Quantum Mechanics

Non Relativistic 
Quantum Mechanics

Short reminder, define notations
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Wave Mechanics & Schrödinger Equation

Free particles: Fourier superposition of plane waves (𝒌 = 𝒑,𝜔 = 𝐸)

Classical physics: energy & momentum of a particle time-dependent real numbers;

Quantum Mechanics (Schrödinger view): 

• Wave function completely defines a state;

• time-dependent wavefunction;

• Dynamical variables (energy & momentum): time-independent operators acting on the wavefunction:

መ𝐴𝜓 = 𝑎𝜓

Identify: 
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Wave Mechanics

In classical mechanics: total energy = kinetic energy + potential energy (Hamiltonian)

Time-dependent Schrödinger Equation
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Time Dependence and Conserved Quantities

Time dependence of a system If 𝜓 𝑥, 𝑡 is eigenstate of 𝐻 with energy E

Consider an observable corresponding to an operator መ𝐴𝜓 = 𝑎𝜓 is 𝑎 a conserved quantity? Expectation value

If the Hamiltonian and the operator commute, then the corresponding observable does not change with time

If two operators commute መ𝐴, 𝐵 = 0 then they can be simultaneously measured



To
n
i 
B

a
ro

n
c
e

lli
: 
In

tr
o

d
u
c
ti
o

n
 t

o
 P

a
rt

ic
le

 P
h
ys

ic
s

31

Time Dependence and Conserved Quantities

The expectation value of an operator መ𝐴 is given by

መ𝐴 = 𝜓 መ𝐴 𝜓 = න𝜓† መ𝐴𝜓𝑑3𝒙

𝜓† = (𝜓∗)𝑇

𝑑 መ𝐴

𝑑𝑡
= 𝑖 𝐻, መ𝐴

If 𝐻 commutes with መ𝐴 then the derivative with respect to 

time is 0 and the corresponding observable does not 

vary with time → conserved quantity
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Schrödinger Equation & Co (Sec.2.3)

Non-relativistic Quantum Mechanics (QM), free particles = superposition of wave-packets (Fourier decomposition) 

𝜓 𝒙, 𝑡 ∝ 𝑒𝑖(𝒌∙𝒙−𝜔𝑡)

Use 𝜆 = ℎ/𝑝 or 𝒌 = 𝒑/ℏ and 𝐸 = ℏ𝜔 and put ℏ = 1

𝜓 𝒙, 𝑡 = 𝑁 ∙ 𝑒𝑖 𝒑∙𝒙−𝐸𝑡

The result of an observation is the result of an operator መ𝐴 on the wavefunction resulting in a real eigenvalue 𝑎:

መ𝐴𝜓 = 𝑎𝜓

In classical mechanics

𝐸 = 𝐻 = 𝑇 + 𝑉 =
𝒑𝟐

2𝑚
+ 𝑉

𝑖
𝜕𝜓 𝒙, 𝑡

𝜕𝑡
= −

1

2𝑚

𝜕2𝜓 𝒙, 𝑡

𝜕𝑥2
+ 𝑉𝜓 𝒙, 𝑡

𝜓 𝒙, 𝑡 contains all 

the information 

about a state

We want that ෝ𝒑 and 𝐸 applied on 

𝜓 𝒙, 𝑡 return  p  and E →

ෝ𝒑 = −𝑖𝛁 and 𝐸 = 𝑖
𝜕

𝜕𝑡
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Commutation Relations

In general, any state can be described as a 

superposition of states

If at time 𝑡 = 0 the system is in the state 

| ۧ𝜑 𝒙, 𝑡 = | ۧ𝜑 𝒙
then the evolution of the system is determined by the 

evolution of the different components.

If መ𝐴, 𝐵 = 0 then the observables can be determined at the same time: 

Example: position and momentum:

If መ𝐴, 𝐵 ≠ 0 then the observables cannot be determined at the same time to better than : 
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Cross Sections and Decay Rates

Cross Sections and 
Decay Rates
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Fermi’s Golden Rule

Particle Physics:

• Study of decays (→ measure decay rates, how often 𝑎 → 1 + 2?);

• Study of cross-sections (→ measure reaction rates, how often 𝑎 + 𝑏 → 1 + 2?).

These processes correspond to transitions between states.

Non-relativistic quantum mechanics, | ۧ𝑖 → | ۧ𝑓 : Fermi’s golden rule

Γ𝑓𝑖 = 2𝜋 ∙ |𝑇𝑓𝑖 |
2𝜌 𝐸𝑖

Elaborate technicalities in next slides

• If interaction potential is known or calculable → compute the cross section

• if Tfi is not known one can measure  and derive Tfi from it.

The Golden Rule applies both to scattering and decay processes. In the second case the lifetime of the process 

will be

τ =
1

W
• if the lifetime is (can be) measured then Tfi can be derived. 
• If  cannot be measured then the uncertainty principle can be used and  we can take ∆𝐸 = ℏ/𝜏

Non relativistic!
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The Fermi Golden Rule - continued 

According to the (second) Fermi golden rule, 

• the reaction rate Γ𝑓𝑖 from the initial state | ۧ𝑖 to a final state | ۧ𝑓 is given by

Γ𝑓𝑖 = ‘transition rate’

Your Experiment

𝜌 𝐸𝑖 = density of states

Kinematics

𝑇𝑓𝑖 = Matrix element

Physics

Γ𝑓𝑖 = 2𝜋 ∙ |𝑇𝑓𝑖 |
2𝜌 𝐸𝑖

Problem: this expression is NOT Lorentz invariant

Τ𝑓𝑖 = 𝑓 ℋ′ 𝑖 +

𝑗≠𝑖

𝑓 ℋ′ 𝑗 𝑗 ℋ′ 𝑓

𝐸𝑖 − 𝐸𝑗
+′ ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑠′
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The Density of States

ρ 𝐸𝑖 = |
𝑑𝑛

𝑑𝐸
|𝐸𝑖 𝑑𝑛 is the number of states in the interval  𝐸 → 𝐸 + 𝑑𝐸

in how many ways we can construct the final state (and conserve energy and momentum  of the initial state 𝐸𝑖).

Alternative: counting of all possible final states but imposing the energy conservation by means of a 𝛿 function:

ρ 𝐸𝑖 = |
𝑑𝑛

𝑑𝐸
|𝐸𝑖 = න

𝑑𝑛

𝑑𝐸
𝛿(𝐸 −𝐸𝑖) 𝑑𝐸

Giving a new expression for the Fermi Golden Rule

Γ𝑓𝑖 = 2𝜋 ∙ |𝑇𝑓𝑖 |
2𝜌 𝐸𝑖 →

Γ𝑓𝑖 = 2𝜋න 𝑇𝑓𝑖 2 δ 𝐸𝑖 − 𝐸𝑛 𝑑𝑛

Transition matrix depends on

• 𝑇𝑓𝑖 this term contains physics;

• ρ 𝐸𝑖 this tern describes the kinematics of the event
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Normalisation of States (nonrelativistic)

Example: two body decay of particle a
a → 1 + 2

Γ𝑓𝑖 = 𝜓1𝜓2
𝐻′ 𝜓𝑎 = න

𝑉

𝜓1
∗𝜓2

∗𝐻′𝜓𝑎𝑑
3𝒙

In the Born approximation & perturbation is small

𝜓 𝒙, 𝑡 = 𝐴𝑒𝑖(𝒑∙𝒙−𝐸𝑡) 𝐴 → 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛

1 particle in a cube of side a →

𝐴2 = ൗ1 𝑎3
= ൗ1 𝑉

The normalisation of one particle in a volume 𝑎3 implies periodic conditions (wave 

function is zero at boundaries)

𝜓 𝑥 + 𝑎, 𝑦, 𝑧 = 𝜓 𝑥, 𝑦, 𝑧 → 𝑒𝑖(𝑝𝑥𝑥) = 𝑒𝑖(𝑝𝑥(𝑥+𝑎)) → 𝑝𝑥, 𝑝𝑦, 𝑝𝑧 = 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 Τ2𝜋
𝑎

Where 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 are integers → momenta are quantised as shown in the figure here

A …

A …
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Normalisation of States - 2

Each state occupies a cubic volume

𝑑3𝒑 = 𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 = (
2𝜋

𝑎
)3 =

(2𝜋)3

𝑉
Density of States: how many states can I put inside this normalisation volume?

The number of available states 𝑑𝑛 in the momentum interval 𝑝 → 𝑝 + 𝑑𝑝 is given by

𝑝 = 𝛽𝐸
𝑑𝑝

𝑑𝐸
= 𝛽

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑠ℎ𝑒𝑙𝑙

Τ2𝜋 3 𝑉
→ 𝜌 𝐸 =

𝑑𝑛

𝑑𝐸
=
𝑑𝑛

𝑑𝑝

𝑑𝑝

𝑑𝐸
=
4𝜋𝑝2

(2𝜋)3
∙ 𝛽

Comment: “V” appears in 
𝑑𝑛

𝑑𝑝
but will 

cancel with wavefunction normalisation 

→ use V=1  

All above for ONE 

particle!

Spherical shell

Integrating over the shell

𝑑3𝑝 = 4𝜋𝑝2𝑑𝑝

𝑑𝑛

𝑑𝑝
=
4𝜋𝑝2

(2𝜋)3
𝑉
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Normalisation of a System with N Particles

• Decay to two particles 𝑎 → 1 + 2 the phase space is determined by one particle, the other is constrained by 

p conservation →  function;

• When there are more than two particles, N particles → N-1 are ‘free’ 

 Function →

Momentum 
conservation

→

𝑑3𝒑 = 𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 = (
2𝜋

𝑎
)3 =

(2𝜋)3

𝑉
Always non-

relativistic case!
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Make Golden Rule Lorentz Invariant

We have to transform the Fermi Golden rule into a Lorentz invariant form:

• Phase space (kinematics)

• Tfi (Physics)

Γ𝑓𝑖 = 2𝜋 ∙ |𝑇𝑓𝑖 |
2𝜌 𝐸𝑖
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Lorentz Invariant Normalisation

Normalise V to one particle per unit volume → V=1? Unsatisfactory… 

The decay/interaction rate = f(Physics) doesn’t depend on normalisation volume 

2nd system moving 

with velocity v →

Lorentz contracted

𝜓 normalised to 1 

particle in volume V

𝜓′ normalised to 2E 

particle in volume V

For a process 𝑎 + 𝑏 → 1 + 2 +⋯

Lorentz Invarianceℳ𝑓𝑖 ∶ 𝐿𝑜𝑟𝑒𝑛𝑡𝑧 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

Τ𝑓𝑖 ∶ 𝐹𝑒𝑟𝑚𝑖
′𝑠 𝑔𝑜𝑙𝑑𝑒𝑛 𝑟𝑢𝑙𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

Lorentz 

Invariance!
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Decays & Cross Sections

Decays and 
Cross Sections
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Recap Without Formalities: what we did

1. Start from Fermi’s Golden Rule Γ𝑓𝑖 = 2𝜋 ∙ |𝑇𝑓𝑖 |
2𝜌 𝐸𝑖

2. Rewrite it using a  function Γ𝑓𝑖 = 2𝜋 𝑇𝑓𝑖
2 δ 𝐸𝑖 − 𝐸𝑛 𝑑𝑛

3. Compute number of states 𝜌 𝐸 =
𝑑𝑛

𝑑𝐸
=

𝑑𝑛

𝑑𝑝

𝑑𝑝

𝑑𝐸
=

4𝜋𝑝2

(2𝜋)3
∙ 𝛽

4. Rewrite 𝜌 𝐸 by introducing a  function 

5. Introduce Lorentz invariant normalization   

p conservation

(energy conservation)

𝑇𝑓𝑖
2 = Τ𝑀𝑓𝑖

2 (2𝐸1 ∙ 2𝐸1… . )

𝜌 𝐸 = 𝑑𝑛/𝑑𝐸

Γ𝑓𝑖 = න
𝑉

𝜓1
∗𝜓2

∗𝐻′𝜓𝑎𝑑
3𝒙
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2 Body Particle Decays 𝑎 → 1 + 2

ℳ𝑓𝑖 ∶ 𝐿𝑜𝑟𝑒𝑛𝑡𝑧 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝑒𝑙𝑒𝑚𝑒𝑛𝑡: contains physics and has to be computed for each type of process

For a decay process 𝑎 → 1 + 2

𝑇ℎ𝑒 𝑝ℎ𝑎𝑠𝑒 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡𝑦𝑝𝑒𝑠 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠, 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛𝑙𝑦 𝑜𝑛 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

Since Γ𝑓𝑖 is Lorentz invariant → can be computed in any reference system → cms where 

𝐸𝑎 = 𝑚𝑎, 𝒑𝟐= −𝒑𝟏

If we use polar coordinates

We arrive (few steps in the book) to an 

expression valid for all two bodies decays
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Cross Section Measurement

Interaction rate ⟺ Cross Section

The cross section can be defined through the relation

𝑟𝑏 = 𝜎𝜙𝑎

• Slightly more complicated than the calculation of decay rates: account for the flux of incoming particles hitting a 

target with Nb scattering centres;
• In modern experiments two beams colliding against each other; • One may think of 𝜎 as an 

“effective area”;

• Rarely it is the case 

(scattering of ‘big’ 

objects);
• More correct to think of 𝜎

as a Quantum Mechanics 

observable associated to 

the interaction probability.

Experiment: 𝑟𝑏 Technique: 𝜙𝑎

Physics: 𝜎
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(Geometric) Cross Sections

Thin scattering 

target thickness d

Ideal Simplified Experiment:
Beam particles a bombard scattering centres b. 
• reaction occurred  when a hits b. 

• The beam particle a disappears after the interaction

𝑎 + 𝑏 → 𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔

Structure of the matter is studied with scattering 

experiments. Energetic projectiles → small equivalent 

wave length

𝜆 = ℏ/𝑝

Particle beam a coming from left with density na and velocity 

va The corresponding flux is

𝜙𝑎 = 𝑛𝑎 × 𝑣𝑎
Target with Nb scattering centres b and particle density nb

b
a

B
e

a
m

 c
ro

s
s 

s
e
c

ti
o

n
 a

re
a
 A

𝑵𝒂 beam rate ሶ𝑵𝒂 beam rate

𝜙𝑎 = 𝑛𝑎 × 𝑣𝑎 𝑁𝑏 = 𝐴 𝑑 𝑛𝑏
= (density x Volume)target

Calculation of interaction rates more complex: account for flux 

of incoming particles. You cannot do 𝑎 + 𝑏 → 1 + 2 +⋯
You do beam on target or beam against beam 
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(Geometric) Cross Sections

Thin scattering 

target thickness d
Ideal Simplified Experiment:

After the interaction beam particles disappear (we do 
not distinguish different final topologies, we sum elastic 

+ inelastic cross sections). Reaction rate is
ሶ𝑵 = 𝑵𝒂 − ሶ𝑵𝒂

Particle beam a coming from left with density na and velocity 

va The corresponding flux is

𝜙𝑎 = 𝑛𝑎 × 𝑣𝑎 =
𝑵𝒂

𝑨
(𝒂𝒓𝒆𝒂 × 𝒕𝒊𝒎𝒆)−𝟏

Target with Nb scattering centres b and particle density nb.

Target particles within the beam area A are
𝑁𝑏 = 𝐴 × 𝑑 × 𝑛𝑏

→ the reaction rate ሶ𝑵 is
ሶ𝑵 = 𝜙𝑎 × 𝑁𝑏 × 𝝈𝒃

𝝈𝒃 =
ሶ𝑵

𝜙𝑎 × 𝑁𝑏

=
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒓 𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒑𝒆𝒓 𝒖𝒏𝒊𝒕 𝒕𝒊𝒎𝒆

𝒃𝒆𝒂𝒎 𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔 𝒑𝒆𝒓 𝒖𝒏𝒊𝒕 𝒕𝒊𝒎𝒆 𝒑𝒆𝒓 𝒖𝒏𝒊𝒕 𝒂𝒓𝒆𝒂 × 𝒔𝒄𝒂𝒕𝒕𝒆𝒓𝒊𝒏𝒈 𝒄𝒆𝒏𝒕𝒓𝒆𝒔

b
a

B
e

a
m

 c
ro

s
s 

s
e
c

ti
o

n
 a

re
a
 A

𝑵𝒂 beam rate ሶ𝑵𝒂 beam rate


b

cross section

Limitations: HP, scattering centres 

do not overlap + only one scattering
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(Geometric) Cross Sections - 3 (Povh…)

• Energy dependence

• Particle types..

𝝈𝒃 =
ሶ𝑵

𝜙𝑎 × 𝑁𝑏
=

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒓 𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒑𝒆𝒓 𝒖𝒏𝒊𝒕 𝒕𝒊𝒎𝒆

(𝒃𝒆𝒂𝒎 𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔 𝒑𝒆𝒓 𝒖𝒏𝒊𝒕 𝒕𝒊𝒎𝒆 × 𝒔𝒄𝒂𝒕𝒕𝒆𝒓𝒊𝒏𝒈 𝒄𝒆𝒏𝒕𝒓𝒆𝒔) 𝒑𝒆𝒓 𝒖𝒏𝒊𝒕 𝒂𝒓𝒆𝒂

If beam is not uniform

The total cross section 𝜎𝑡𝑜𝑡 is as the sum of elastic and inelastic cross section 

𝜎𝑡𝑜𝑡 = 𝜎𝑒𝑙 + 𝜎𝑖𝑛𝑒𝑙
and has dimensions of area. a common unit to define cross sections is the barn

pp(10 GeV) ~ 40 mb, p(10 GeV) ~ 70 fb (ratio is → 10-12)

In the expression 

𝝈𝒃 =
ሶ𝑵

𝜙𝑎 × 𝑁𝑏

(𝜙𝑎 × 𝑁𝑏) = Luminosity, 𝓛 in this case

ሶ𝑵 = 𝓛 × 𝝈𝒃

Physics!

Experiment
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The Luminosity (~ Technology, not Physics)

Luminosity : [(area x time)−1 ]. From 𝜙𝑎 = 𝑛𝑎 × 𝑣𝑎 and 𝑁𝑏 = 𝑛𝑏∙ 𝑑 ∙ 𝐴 we have

Luminosity → defined as one of two products below

1. number of incoming beam particles per unit time Na, the target particle density in the scattering material nb, and 

the target’s thickness d; 

2. beam particle density na, their velocity va and the number of target particles Nb exposed to the beam.

j packets with Na or Nb particles, a ring of circumference U. velocity v ~ c in opposite directions and cross at an 

interaction point  

The luminosity is then:

A = beam cross-section at the collision point. For a Gaussian distribution of the beams (σx and σy respectively), 

→ beams must be focused at the interaction point into the smallest possible area possible. Typical beam diameters 

are of the order of tenths of millimetres or less.

ℒ = 𝜙𝑎 ∙ 𝑁𝑏

… and have to be well aligned: 

LHC ~27Km circumference!

ℒ = 𝜑𝑎 ∙ 𝑁𝑏 = ሶ𝑁𝑎 ∙ 𝑛𝑏 ∙ 𝑑 = 𝑛𝑎 ∙ 𝑣𝑎 ∙ 𝑁𝑏

Beam on a target

two beams in a storage ring. 
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A Simple Experiment

Tr
a

n
s
ve

rs
e

 a
re

a
 A

• 𝓋𝑎, 𝓋𝑏 velocities of particles of type a, b 

respectively;

• a, b travel opposite to each other;

•

Simplified Experiment: ONE particle ‘𝑎’ travels 

in a medium with a particle density 𝑛𝑏 of type 

‘𝑏’

𝑎

In time δt, traverses a volume with 𝛿𝑁 = 𝑛𝑏(𝓋𝑎 + 𝓋𝑏)𝛿𝑡𝐴;
The interaction probability will be, 

where 𝜎 can be 

considered as the 

‘effective area’ of 
the particle
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Interaction Cross Section

Consider the process 𝑎 + 𝑏 → 1 + 2; observed in a rest frame with 

• 𝜐𝑎, 𝜐𝑏 velocities;

• 𝑛𝑎, 𝑛𝑏 particle densities

• Cross section 𝜎
• Normalized in a volume V

The cross section can be expressed in a Lorentz invariant form as

The most convenient way is to express the cross section in the center of mass system

• 𝒑𝒂 = −𝒑𝒃. 𝒑𝟏 = −𝒑𝟐 = 𝒑𝒇
∗

• 𝑠 = 𝐸𝑎
∗ + 𝐸𝑏

∗

It may be shown to give 

Fermi Golden rule 

(non relativistic)

Lorentz invariant flux

In cms:

𝐹 = (𝑝𝑎𝑝𝑏)
2 − (𝑚𝑎𝑚𝑏)

2
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Differential and Doubly-Differential Cross Sections

Detector of area AD at a distance r and at an angle 

, it covers a solid angle equal to ΔΩ = 𝐴𝐷/𝑟
2.

E

E’ሶ
𝑁 𝐸, 𝜃, ΔΩ = ℒ

𝑑𝜎(𝐸, 𝜗)

𝑑Ω
ΔΩ

ሶ
𝜎𝑡𝑜𝑡(𝐸) = න

𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥

න
𝜃𝑚𝑖𝑛

𝜃𝑚𝑎𝑥 𝑑2𝜎(𝐸, 𝐸′, 𝜃)

𝑑Ω𝑑𝐸
𝑑Ω𝑑𝐸′

If the energy & direction of the products is measured then the doubly differential cross section is also measured 

𝑑2𝜎(𝐸, 𝐸′, 𝜃)/𝑑Ω𝑑𝐸′ . The total cross section, in this case, will be the integral over the solid angle and over the 

scattering energies

Acceptance!
detector

Real life: In all experiments only a fraction of all reactions are 

measured or accessible because of limited acceptance of 

the experimental set-up. 

The reaction rate (assumed to depend on the energy of the incoming beam and 

on the angle ) will be:

Only a part of 

𝜎𝑡𝑜𝑡(𝐸) measured 

due to acceptance 
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Differential Cross Sections

You measure the reaction rate in a solid angle element: but not only 

directions: single (E) or double differential cross-section (E & direction)

It may be important to measure the distribution of kinematic quantities, like angle and/or energy 

→ derive information on the nature of the interaction

Example: Electron on a proton → Measure the direction (energy?) of the scattered 

electron (in the laboratory frame)

Measure angle or energy of the scattered electron
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