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Analytic infinite derivative gravity  ,.xi:2211.02070, arxiv:2209.02515]

Modified action capturing the propagator in 4D Minkowski spacetime
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Box is the d’Alembertian operator
coming with a new scale:
scale of non-locality

Spin-2 graviton propagator
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We should expect only 1 massless graviton in Minkowski spacetime

1+ %D(FQ(D) +2F,(0)) = e¢® w([]) is an entire function
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Analytic infinite derivative!

In a curved spacetime, new poles will appear in the propagator.



Background induced states (BIS-s)

Single Box modification can aIready generate BIS-s
S = f d*z/—g [ PR + (RIZ]R + R, O0R"))

the trace of the metric tensor perturbations h

SR, 6R* ~= h(30° + D*R%,,D*D,8 + D*DR?,

pov Qo

D,8")h

Degrees of freedom with curvature-dependent complex masses appear!
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Inflation aspects of BIS-s were widly discussed. But not much is done about black holes (BH).

We will focus on QNM-s, the excitation signatures of BH-s, generated by BIS-s



Quasi-normal modes A review [arXiv:1102.4014]

Scalar perturbations in a nearly Schwarzschild BH background 7 dr
v 2 Fs = 2GM
(V'V, — u2)®(t,7,0,8) =0 1 — 26
In tortoise coordinate, it becomes a wave equation
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Boundary e , Ty — —0O0 pure ingoing wave at the horizon

conditionsqj(t’ i) ~ 8 p—iwttin/w?—pr pure outgoing wave at spatial infinity
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O? 5 QNM problem can be seen as finding quantum
argql(r*) + (W = V(r)¥(r.) =0 bound states in a flipped potential.
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( ) A discrete set of complex eigenvalues w
BIS-s introduce complex, generically radius dependent masses
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Restrictions from causality

Green’s function formalism

U(r,,t) = /[G’(’r*,’ri, t)Wy(r,,0) + Gi(rs, 7., 1) ¥ (7,,0)]dr,
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BIS-s introduce a complex variable mass p = p(r)
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So, Moo must be real to preserve causality!
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Possible unstable modes “The mathematical theory of black holes” by Chandrasekhar

e—iwt—iwr*, r., — —00 Im(w) > 0
U(t,ry) ~ o
e Wwttin/wi—pire .y 4 oo Fromthe boundary condition, the solution will grow if w has
Assume: Im(w) > 0 positive imaginary part
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W — W + V(T)‘I/ =0 (1) However:
s In the presence of complex mass,
l multipy by % and integrate over r« the potential will be complex.
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Unstable modes are possible

2
+ V('r‘)|\Il|2) dr, =0 (3) in the presence of BIS-s
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A constant contradicts with a growing W (¢, fr*)




: 2 2
Numerical results e consider (1) = a* +
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Unstable modes!
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We use Leaver’s method of continued

fraction
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Big real mass could restore stability
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Plot of the relation between critical values of a and c, d

For a fixed M, the BIS-s mass can’t exceed a critical value. This constrains parameters

and form-factors of this gravity model.



Summary:

e Background induced modes will appear in a non-trivial background in the analytic
infinite derivative gravity theory. Masses of such excitations are complex and depend

on the curvature.

* From causality constraints, the complex, radius dependent mass must be real at
spatial infinity in an asymptotically Schwarzschild black hole background.

* Unstable modes are possible in the presence of BIS-s with complex mass. We can
formulate constraints to the modified gravity theory by requiring stability of QNM-s.

Outlook:

e Similar computations can be done for other BH configurations like Kerr BH and a
more general radius dependence of the mass.

 More detailed constraints to the modified gravity theory can be found from stability
of QNM-s.



Thank you for your attention!
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