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BH in non-perturbative QG Introduction

Breakdown of the problem

UV complete gravity – already a challenge for more than a
century

• Many attempts, no complete satisfaction yet

Infinite derivatives

• General considerations and, for example, Asymptotic Safety
suggest infinite derivative Lagrangians

Strings

• Strings and especially string field theory strongly suggest
non-local interactions in the form of infinite-derivative form
factors

Aref’eva, Barvinsky, Biswas, Dragovich, Koivisto, Krasnikov, Kuz’min, Mazumdar,

Modesto, Percacci, Platania, Saueressig, Sen, Siegel, Shapiro, Tomboulis, Weinberg,

Witten, Zwiebach, . . .
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BH in non-perturbative QG Introduction

Some old references

• Classic one:
M. Ostrogradski, Mem. Ac. St. Petersburg, VI 4, 385–517 (1850)

• Mathematical:

• H.T. Davis, Ann. of Math. 2, no. 4, 686–714 (1931)

• H.T. Davis, The Theory of Linear Operators from the Standpoint of Differential

Equations of Infinite Order (Indiana, the Principia Press, 1936)

• R.D. Carmichael, Bull. Amer. Math. Soc. 42, 193–218 (1936)

• L. Carleson, Math. Scand. 1, 31–38 (1953)

• Physical:

• A. Pais and G.E. Uhlenbeck, Phys. Rev. 79, 145–165 (1950)

“Convergence” (renormalizability), “definite norm” (uni-
tarity) and causality – cannot be achieved simultaneously.
Fine, but what if violation of microcausality is hidden under
the uncertainty scale? de Rham, Tokareva, Tolley, . . .
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BH in non-perturbative QG Introduction

Action to study [1602.08475, 1606.01250, 1711.08864]

S =

∫
d4x

√
−g
(
M2
PR

2
− Λ

+
λ

2

(
RF1(□)R+RµνF2(□)Rµν +WµνλσF4(□)Wµνλσ

))

Here FX(□) =
∑
n≥0 fXn□

n with all fXn constants

We assume that □ enters form-factors in a combination
□/M2

s where the mass parameter is the non-locality scale.
We put Ms = 1 for a while.

This is the most general action (still redundant, F2 can
be zero in D = 4 or a constant in D > 4) to study linear
perturbations around MSS.

We name it Analytic Infinite Derivative (AID) gravity.
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BH in non-perturbative QG Quadratic action

Covariant spin-2 propagator on MSS:

S2 =
1

2

∫
d4x

√
−ḡ h⊥νµ

(
□̄ −

R̄

6

) [
P(□̄)

]
h⊥

µν

P(□̄) = 1 +
2

M2
P

λf10R̄+
2

M2
P

λF4

(
□̄ +

R̄

3

)(
□̄ −

R̄

3

)
→ e2ω(□̄)

We require P(□̄) = e2ω(□̄) and ω(□̄) must be an entire func-
tion to avoid new poles.

The Stelle’s case (and any finite degree polynomial F4(□̄))
results in ghost poles.
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BH in non-perturbative QG More real world

Recap on infinite derivative gravity theories

• Graviton propagator in general is modified to

Π = e2ω(k
2)ΠGR ∼

e2ω(k
2)

k2

and ω(k2) must be an entire function.

• We thus must have an infinite number of derivatives

• Wick rotation is a problem but it got a resolution thanks
to Pius, Sen, and also [arxiv:2103.01945]

• Theory is renormalizable and unitary.

• Full propagator yet to be computed.

• Many interesting solutions can be accommodated.

• In particular, Starobinsky inflation can be explicitly em-
bedded.
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BH in non-perturbative QG More real world

Action again

S =

∫
d4x

√
−g
(
M2
PR

2

+
λ

2

(
RF1(□)R+RµνF2(□)Rµν +WµνλσF4(□)Wµνλσ

))

If F4 ̸= 0 than a Schwarzschild BH is not a solution.

Even if F4 = 0 we claim it is not!

WHY?
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BH in non-perturbative QG BH in AID gravity

Equations and BH-s

Typical terms in EOM-s (trace equation):

M2
PR− 6λ□F1(□)R

−2λ
∞∑
n=1

fn

n−1∑
l=0

□lR□n−lR+ {8 terms} = −T

and T is the trace of the stress tensor.

ds2 = −A(r)dt2 +
dr2

A(r)
+ r2dΩ2

Schwarzschild metric

A(r) = 1 −
2GM

r

Without the Weyl (or Riemann) tensor in equations
Schwarzschild BH is naively a solution.

Then why not?
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BH in non-perturbative QG BH in AID gravity

Schwarzschild BH: to be or not to be?

We cannot substitute the Schwarzschild metric like in GR
as we need to give a meaning for instance for R(r = 0)

Regularization

A(r) = 1 −
2GM

r
→ A(r) = 1 −

2GM

r
Ã(r, α), Ã = e−α/r

p

such that Ã(∞) = 1, Ã(r)/r → 0 at zero and Ã(r, 0) = 1.

We plug a regularized function in EOM-s and compute T –
the stress tensor trace.

And then we compute
∫
d3x

√
−gT = E which is related to

the energy of the object. In static case it is related to its
mass.
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BH in non-perturbative QG BH in AID gravity

What is a BH mass?

What we compute is E =
∫
d3x

√
−g(T ii + T 0

0 ).

Tolman mass is defined as MT =
∫
d3x

√
−g(T ii − T 0

0 ).

ADM mass is a coefficient of 1/r term in a series expan-
sion of grr metric component at infinity divided by 2G, or
equivalently MADM = −

∫
d3x

√
−gT 0

0 .

Thus E is nothing but MT − 2MADM and should corre-
spond to −MADM .

It is naturally expected to be a finite quantity.

To simplify computations we actually compute

lim
∆t→∞

1

2∆t

∫ ∆t

−∆t
dtd3x

√
−gT
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BH in non-perturbative QG BH in AID gravity

Schwarzschild BH in higher-derivative theories

Computing E we yield

−E = M

− 4πλ

∫ ∞

0
r2dr

(
R□F ′

1(□)R+Rµν□F ′
2(□)Rµν

+Wµνλσ□F ′
4(□)Wµνλσ

)
If F(□) = const (Stelle gravity) then it does not contribute.
Schematically

−E = M − 4πλ(E0 + E1 + E2 + . . . )

Here En corresponds to □n and for p = 1

E0 ∼ 1/α3, E1 ∼ 1/α6 + 1/α5, . . .

E0 comes from F(□) ∼ log(□)
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BH in non-perturbative QG BH in AID gravity

Convergence analysis

We can deduce for the quantity E

−E = M

− 4πλM2(2α)
−3
p

 ∞∑
n=0

(−1)nf̂nβn(p)(2α)
−2n
p + {2 terms}


+ O(M3)

Here f̂n = nfn and f̂0 comes from a log.
Recall that F(□) =

∑
n≥0 fn□

n.
The above series can converge if it is alternating with rapidly

falling coefficients. Example∑
k≥0

(−1)k

k!αk
= e−1/α α→0−−−→ 0
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BH in non-perturbative QG BH in AID gravity

Convergence analysis continued

By direct computations we can see that βn grow rapidly.
The series for E will converge for any p if

lim
n→∞

|f̂n|
eqn logn

= 0, for any q > 0

For an entire function its maximal grows rate for large z is
given by esz

ρ
. ρ is the order and s is the type.

Computing βn we find an acceptable order of F(□) is ρ < 3/2

However, from the perspective of QFT for renormalizbility
and unitarity we need that F(□) grows at most polynomially
along the positive real axis and this implies that the order of
F(□) is infinite.
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BH in non-perturbative QG Summary

BH results briefly and what about micro-BH?

• Regularization approach is motivated by a collapse consid-
eration. You must be able to form a BH starting with a
regular matter distribution.

• Regularization of a Schwarzschild BH can be removed only
in 2 and 4 derivative gravity. Any higher (finite) derivative
gravity cannot have this solution.

• Infinite derivative case results in infinitely many terms like
1/αn and in principle a summation over nmay have a good
α → 0 limit.
BUT this is NOT compatible with a viable propagator for
a UV complete unitary gravity.

• We thus must accept that a UV complete gravity not only
resolves the BH singularity but also limits the micro-BH
mass from below to Ms which obeys Minf ≪ Ms < MP
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BH in non-perturbative QG Summary

Conclusions

• A class of analytic infinite derivative (AID) theories has
been considered targeting the goal of constructing a UV
complete and unitary gravity. These models have clear
connection with SFT.

• This gravity model features many nice properties, like na-
tive embedding of the Starobinsky inflation, finite New-
tonian potential at the origin, presence of a non-singular
bounce, etc.

• We argue that these theories disregard singular BH solu-
tions on the example of Schwarzschild BH.
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BH in non-perturbative QG Summary

Future directions

• Other BH solutions (charged, extremal, rotating) should
be analyzed.

• BH regularity as a given feature implies that QNM may
be modified.

• QNM will not test the interior of a BH as such, but higher
derivatives in the action will result in new QNM shapes
which is a very interesting way to support the idea that a
UV complete gravity resolves BH singularities. [arxiv:2412.02678]

• Mass inflation problem should be addressed
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Thank you for listening!



BH in non-perturbative QG Non-local scalar field

Let it be a Non-local scalar field [arxiv:2103.01945]

Consider Analytic Infinite Derivative (AID) scalar field ac-
tion:

L =
1

2
ϕ(□ −m2)f−1(□)ϕ− V (ϕ)

We demand the form-factor to be an exponent of an entire
function σ(z)

f(z) = exp(2σ(z))

This is required to have no extra poles in the perturbative
vacuum.
We also normalize it as f(0) = f(m2) = 1 to preserve the

local answers in the IR limit.
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BH in non-perturbative QG Non-local scalar field

Non-local scalar field, continued

Several arguments to consider the above action:

• It naturally appears in SFT and in p-adic strings

• It was proven to be unavoidable in order to build unitary
and renormalizable diffeomorphism invariant gravity

• This construction can make any arbitrary potential renor-
malizable

• Surely, some other benefits

Namely, we can adjust the fall rate of the propagator for
large momenta by choosing the form-factor. Power-counting
convergence requires the fall faster than ∼ 1/p2.
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BH in non-perturbative QG

New excitations – Half of them are ghosts!
Linearization around a background solution ϕ0:

L =
1

2
ψ
[
(□ −m2)f−1(□) − V ′′(ϕ0)

]
ψ

Let’s assume V ′′(ϕ0) = v ≈ const ̸= 0.

• In general there is an infinite number of new excitations
with perhaps complex conjugate masses squared

• The kinetic operator is again an entire function and obeys
the Weierstrass decomposition

(□ −m2)f−1(□) − v2 ∼
∏
i

(□ − µ2i )e
σv(□)

• Each µi corresponds to a mass of a distinct excitation.
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