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Why EFT
• Higgs and nothing in direct search of new particles.
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Supersymmetry Public Results

1. Colliders of higher luminosity, higher energy, e.g. CEPC, muon collider.

2. Indirect effects,  e.g.  formalism, EFT.κ

New particles “seems” heavy. 



Two EFTs: SMEFT and HEFT

• SMEFT, linear realization of the Higgs and Goldstones, canonical dimension


• HEFT, nonlinear realization, chiral dimension
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Both are invariant under   symmetry and contains SM fields. SU(3)c × SU(2)L × U(1)Y

HEFT is similar to chiral perturbation theory (  ) in scalar sector.χPT

Goldstones are embedded in the  matrix.

Power counting use chiral dimension. e.g. .

However, Higgs is a general scalar, not necessarily composite.
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h, U ≡ exp ( iπiσi
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[H. Sun, M.-L. Xiao, and J.-H. Yu, 2206.07722]



A Geometric Picture
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Reminder: only worrying about scalars up to 2 derivatives…
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HEFT
SMEFT

SM

H =
1

2 (ϕ1 + iϕ2

ϕ3 + iϕ4) ⃗ϕ =

ϕ1

ϕ2

ϕ3

ϕ4

, ⃗ϕ → O ⃗ϕ , where O ∈ O(4) ⊃ SU(2) × U(1)

HEFT encompasses SMEFT 
R. Alonso, E. Jenkins, A. Manohar [1511.00724,1605.03602]

A Geometric Perspective
(Think O(4), but O(2) is easier to illustrate)
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SMEFT if O(4) fixed point on manifold → F(h) = 0 somewhere (say, h = -v)

2⇡vF
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2⇡vF

HEFT not SMEFT: Case I
When there’s a hole s.t. h = -v is not on the manifold  

(no O(4) fixed point about which to expand in SMEFT coordinates)

[Alonso, Jenkins, Manohar 1605.03602]
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F (h) 6= 0Corresponds to everywhere
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SMEFT/HEFT 

only HEFT 
from N. Craig, HEFT2021

vEW



Matching 
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data analysis UV models
EFT
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Matching

Matching is a procedure that relate the Wilson 
coefficients to the masses and couplings of UV 
models.

• Any EFT deviations from the SM should be explained 

by a UV model.

• Could we match a same UV model to two EFTs? 

•  The matching of SMEFT is mature at one-loop level 

(diagrammatic method and functional method). How 
to make the matching of HEFT simply and 
programmable?  


Simulation, fitting



Matching UV Model to EFT (Functional Method)

is calculable, one can “match” it onto an EFT by “integrating out” the heavy states.
This relates the Wilson coefficients in the EFT to the microscopic parameters of
the UV theory, and enables the interpretation of experimental measurements and/or
constraints on the Wilson coefficients in the context of specific UV models.

Our focus here is on the methodology for matching a UV theory onto an EFT in
this top-down approach. Concretely, we consider a UV theory LUV['] with a mass
hierarchy among the fields ':

' = (�,�) , with m� � m� , (1.1)

where we are denoting the heavy (light) fields with � (�). We would like to integrate
out the heavy fields � to obtain LEFT[�]. In this case, the EFT power counting is
simply set by the mass ratio m�/m�. More generally, the discussion that follows may
be extended to other cases where the power counting parameter is set by a kinematic
restriction, provided there is a clear separation between “hard” and “soft” modes.

A familiar strategy to derive LEFT[�] is to match low-energy amplitudes between
the UV theory and the EFT, as illustrated in the left panel of Fig. 1. In this ap-
proach, one must first work out all the EFT operators, leaving only their coefficients
{ci} to be determined, and then identify a set of amplitudes to compute (typically
via Feynman diagrams) that can be used to solve for all these coefficients. This
procedure is computationally expensive, and typically requires significant human in-
tervention. Furthermore, it critically relies on performing amplitude calculations,
which is conceptually a separate task and requires keeping track of IR details.

In this work, we use functional methods to tackle the problem of EFT matching.
Instead of matching individual amplitudes, the idea is to equate their generating
functionals, the one-(light-)particle-irreducible (1(L)PI) effective actions:

�EFT[�] = �L, UV[�] . (1.2)

At tree-level, this yields the familiar result:

�(tree)
L, UV[�] = SUV[�,�]

��
�=�c[�]

�(tree)
EFT [�] = S

(tree)
EFT [�]

9
=

; =) L
(tree)
EFT [�] = LUV[�,�]

��
�=�c[�]

, (1.3)

where S ⌘
R
dd
xL denotes the action, and �c[�] solves the classical equations of

motion (EOMs) for the heavy fields:

�SUV[']

��

����
�=�c[�]

= 0 . (1.4)

Obviously, solving the EOMs provides a more direct route to obtain L
(tree)
EFT [�] than

computing amplitudes.
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For tree level matching, solve EoM to get  and put it back to the Lagrangian.  Φc[ϕ]

B. Henning, X. Lu, H. Marayana, [1604.01019]

T. Cohen, X. Lu, Z. zhang, [2011.02484]

SMEFT matching procedure (Covariant Derivative Expansion)
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 Real Higgs Triplet Extension of the SM (RHTE)
• A singlet extension, a second doublet extension (2HDM), 

next is triplet. 


• The custodial violation appears at tree level with a non-
zero VEV.  
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 [G. Buchala et al, 1608.03564, 2312.13885],  [S. Dawson et al, 2205.01561, 2311.16897],[F. Arco et al, 2307.15693]

The Model:   the SM plus a real  triplet with  SU(2)L Y = 0
Linear form

extension of custodial-symmetry-violation model. In this section, firstly we introduce linear
forms of the Lagrangian, which describe same UV model but have distinctions for matching.
Then we give a non-linear form, U representation, which separate out U matrix explicitly
and thus is feasible for HEFT matching. We further show a complete matching procedure.
Finally we introduce the tensor notation and generalize U representation to general scalar
multiplet extensions.

3.1 Linear forms

3.1.1 Doublet

Usually the Lagrangian of RHTE in scalar sector can be expressed as [55, 66, 101]

LRHTE(H,!) → (DµH)
†
(Dµ

H) + ↑Dµ!
†Dµ

!↓ ↔ V (H,!) , (3.1)

with

V (H,!) = Y 2

1 H
†
H+ Z1(H

†
H)

2
+ Y 2

2 ↑!
†
!↓+ Z2↑!

†
!↓

2

+Z3H
†
H↑!

†
!↓+ 2Y3H

†
!H , (3.2)

where ↑...↓ denotes the trace, Yis, i = 1, 2, 3 are dimensional parameters while Zis, i = 1, 2, 3

are dimensionless. H is the SM Higgs doublet and ! is the real triplet, which could be
expressed as

H =

(
G+

1→
2

(
vH + h+ iG0

)
)
, ! =

1

2
!iωi =

1

2

(
v! + !

0
↗
2!

+

↗
2!

↑
↔v! ↔ !

0

)
, i = 1, 2, 3,

(3.3)

where vH, v! are vacuum expectation values (VEVs) after spontaneously symmetry breaking
(SSB). G0 is a pseudoscalar which does not mix with the scalar h except for CP violation.
G+ is a charged scalar. !is constitute 3 triplet components, ωis are Pauli matrices. !

0
=

↔v! + !3 is the shifted field along VEV, !±
=

1→
2
(!1 ↘ i!2) are canonically normalized

charged scalars.
Due to two VEVs, G± and !

± should be mixed and give massless Goldstones and
massive charged Higgs, which are

(
G+

EW

H+

)
=

(
cos ε ↔ sin ε

sin ε cos ε

)(
G+

!
+

)
, (3.4)

where G+

EW
represents Goldstone “perpendicular” to electroweak vacuum, the tangent of

rotation angle is

tan ε = 2v!/vH. (3.5)

Under SU(2)L≃U(1)Y gauge symmetry, the doublet H and the real triplet ! transform
as

H ⇐ gL(ω) exp(
i

2
ϑY ) H , ! ⇐ gL(ω) ! gL(ω)

† , gL(ω) = exp(
i

2
ϑiωi), (3.6)

which explain why the potential has the trilinear interaction H
†
!H in Eq. (3.2) .
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denotes trace< . . . > are dimensionless,  are dimensionalZis Yis

ℒRHTE(H, Σ) ⊃ DμH†DμH + ⟨DμΣ†DμΣ⟩ − V (H, Σ),

V (H, Σ) = Y2
1H†H + Z1(H†H)2 + Y2

2⟨Σ†Σ⟩ + Z2⟨Σ†Σ⟩2 + Z3H†H⟨Σ†Σ⟩ + 2Y3H†ΣH



Matching RHTE to SMEFT
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EoM of :   Σ

ℒΣ =
1
2

⃗Σ T(−DμDμ − Y2
2 − Z3 H†H) ⃗Σ + Y3

⃗Σ ⋅ H† ⃗σH −
1
4

Z2( ⃗Σ ⋅ ⃗Σ )2

⃗Σ c = −
1

−DμDμ − Y2
2 − Z3 H+H

Y3H+ ⃗σH +
1

−DμDμ − Y2
2 − Z3 H+H

Z2( ⃗Σ c ⋅ ⃗Σ c) ⃗Σ c

Expansion with 1/Y2
2

T. Corbett, A. Helset, A. Martin, M. Trott, [2102.02819]
J. Ellis, K. Mimasu, F. Zamperdri, [2304.06663]

(−DμDμ − Y2
2 − Z3 H†H) ⃗Σ c = − Y3H† ⃗σH + Z2( ⃗Σ c ⋅ ⃗Σ c) ⃗Σ c

ℒSMEFT =
1

2Y2
2

Y2
3H† ⃗σH ⋅ H† ⃗σH +

1
2

(H† ⃗σH)T 1
Y2

2
(−DμDμ − Z3H†H)

1
Y2

2
H† ⃗σH + ⋯

ℒRHTE(H, Σ) ⊃ DμH†DμH + ⟨DμΣ†DμΣ⟩ − V (H, Σ),

V (H, Σ) = Y2
1H†H + Z1(H†H)2 + Y2

2⟨Σ†Σ⟩ + Z2⟨Σ†Σ⟩2 + Z3H†H⟨Σ†Σ⟩ + 2Y3H†ΣH



Matching RHTE to HEFT
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extension of custodial-symmetry-violation model. In this section, firstly we introduce linear
forms of the Lagrangian, which describe same UV model but have distinctions for matching.
Then we give a non-linear form, U representation, which separate out U matrix explicitly
and thus is feasible for HEFT matching. We further show a complete matching procedure.
Finally we introduce the tensor notation and generalize U representation to general scalar
multiplet extensions.
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3.1.1 Doublet
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†
(Dµ
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!↓ ↔ V (H,!) , (3.1)

with

V (H,!) = Y 2
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†
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+Z3H
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!H , (3.2)

where ↑...↓ denotes the trace, Yis, i = 1, 2, 3 are dimensional parameters while Zis, i = 1, 2, 3

are dimensionless. H is the SM Higgs doublet and ! is the real triplet, which could be
expressed as
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)
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where vH, v! are vacuum expectation values (VEVs) after spontaneously symmetry breaking
(SSB). G0 is a pseudoscalar which does not mix with the scalar h except for CP violation.
G+ is a charged scalar. !is constitute 3 triplet components, ωis are Pauli matrices. !

0
=
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=
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charged scalars.
Due to two VEVs, G± and !
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(
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EW

H+

)
=

(
cos ε ↔ sin ε
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)(
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)
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†
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1. Solve EoMs of .  

2.  Embed  into an exponential matrix form. ?!  It must be 

complicated.  

H±, K
G±

EW, G0

h, U ≡ exp ( iπiσi

vEW ), ℒLO
HEFT ⊃

1
2

DμhDμh − V(h) +
v2

EW

4
F(h)Tr(DμU†DμU) + ⋯

V(h) =
1
2

m2
hh2[1 + (1 + Δκ3)

h
vEW

+ ⋯], F(h) = 1 + 2(1 + Δa)
h

vEW
+ ⋯

RHTE in linear form

(h
K) = (cos γ −sin γ

sin γ cos γ ) (h0

Σ0)



Find a non-linear representation of the UV model for 
HEFT matching
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Non-linear Form
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extension of custodial-symmetry-violation model. In this section, firstly we introduce linear
forms of the Lagrangian, which describe same UV model but have distinctions for matching.
Then we give a non-linear form, U representation, which separate out U matrix explicitly
and thus is feasible for HEFT matching. We further show a complete matching procedure.
Finally we introduce the tensor notation and generalize U representation to general scalar
multiplet extensions.
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LRHTE(H,!) → (DµH)
†
(Dµ

H) + ↑Dµ!
†Dµ

!↓ ↔ V (H,!) , (3.1)

with

V (H,!) = Y 2

1 H
†
H+ Z1(H

†
H)

2
+ Y 2

2 ↑!
†
!↓+ Z2↑!

†
!↓

2

+Z3H
†
H↑!

†
!↓+ 2Y3H

†
!H , (3.2)

where ↑...↓ denotes the trace, Yis, i = 1, 2, 3 are dimensional parameters while Zis, i = 1, 2, 3

are dimensionless. H is the SM Higgs doublet and ! is the real triplet, which could be
expressed as

H =

(
G+

1→
2

(
vH + h+ iG0

)
)
, ! =

1

2
!iωi =

1

2

(
v! + !

0
↗
2!

+

↗
2!

↑
↔v! ↔ !

0

)
, i = 1, 2, 3,

(3.3)

where vH, v! are vacuum expectation values (VEVs) after spontaneously symmetry breaking
(SSB). G0 is a pseudoscalar which does not mix with the scalar h except for CP violation.
G+ is a charged scalar. !is constitute 3 triplet components, ωis are Pauli matrices. !

0
=

↔v! + !3 is the shifted field along VEV, !±
=

1→
2
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charged scalars.
Due to two VEVs, G± and !

± should be mixed and give massless Goldstones and
massive charged Higgs, which are

(
G+

EW

H+
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=

(
cos ε ↔ sin ε

sin ε cos ε

)(
G+

!
+

)
, (3.4)

where G+

EW
represents Goldstone “perpendicular” to electroweak vacuum, the tangent of

rotation angle is

tan ε = 2v!/vH. (3.5)

Under SU(2)L≃U(1)Y gauge symmetry, the doublet H and the real triplet ! transform
as

H ⇐ gL(ω) exp(
i

2
ϑY ) H , ! ⇐ gL(ω) ! gL(ω)

† , gL(ω) = exp(
i

2
ϑiωi), (3.6)

which explain why the potential has the trilinear interaction H
†
!H in Eq. (3.2) .

– 5 –

1.

 The mass mixing between Goldstones  and  still exists.   π± Σ±

H = U
1

2 ( 0
vH + h0) , U ≡ exp ( iπiσi

vH )
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Under SU(2)L≃U(1)Y gauge symmetry, the doublet H and the real triplet ! transform
as

H ⇐ gL(ω) exp(
i

2
ϑY ) H , ! ⇐ gL(ω) ! gL(ω)

† , gL(ω) = exp(
i

2
ϑiωi), (3.6)

which explain why the potential has the trilinear interaction H
†
!H in Eq. (3.2) .

– 5 –

1.

 The mass mixing between Goldstones  and  still exists.   π± Σ±

H = U
1

2 ( 0
vH + h0) , U ≡ exp ( iπiσi

vH )

Good news:  disappears in potential, the mass mixing disappears. 

Bad news:  a term of kinetic mixing appears.

U

⟨DμΣ†DμΣ⟩ ⊃ − vΣϵ3jkDμϕjDμπk

2. H = U
1

2 ( 0
vH + h0) , U ≡ exp ( iπiσi

vH ) Σ = UΦU†, Φ =
1
2

ϕiσi =
1
2

vΣ + ϕ0 2ϕ+

2ϕ− −vΣ − ϕ0

2Y3H†ΣH

Non-linear Form
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extension of custodial-symmetry-violation model. In this section, firstly we introduce linear
forms of the Lagrangian, which describe same UV model but have distinctions for matching.
Then we give a non-linear form, U representation, which separate out U matrix explicitly
and thus is feasible for HEFT matching. We further show a complete matching procedure.
Finally we introduce the tensor notation and generalize U representation to general scalar
multiplet extensions.

3.1 Linear forms

3.1.1 Doublet

Usually the Lagrangian of RHTE in scalar sector can be expressed as [55, 66, 101]

LRHTE(H,!) → (DµH)
†
(Dµ

H) + ↑Dµ!
†Dµ

!↓ ↔ V (H,!) , (3.1)

with

V (H,!) = Y 2

1 H
†
H+ Z1(H

†
H)

2
+ Y 2

2 ↑!
†
!↓+ Z2↑!

†
!↓

2

+Z3H
†
H↑!

†
!↓+ 2Y3H

†
!H , (3.2)

where ↑...↓ denotes the trace, Yis, i = 1, 2, 3 are dimensional parameters while Zis, i = 1, 2, 3

are dimensionless. H is the SM Higgs doublet and ! is the real triplet, which could be
expressed as

H =

(
G+

1→
2

(
vH + h+ iG0

)
)
, ! =

1

2
!iωi =

1

2

(
v! + !

0
↗
2!

+

↗
2!

↑
↔v! ↔ !

0

)
, i = 1, 2, 3,

(3.3)

where vH, v! are vacuum expectation values (VEVs) after spontaneously symmetry breaking
(SSB). G0 is a pseudoscalar which does not mix with the scalar h except for CP violation.
G+ is a charged scalar. !is constitute 3 triplet components, ωis are Pauli matrices. !

0
=

↔v! + !3 is the shifted field along VEV, !±
=

1→
2
(!1 ↘ i!2) are canonically normalized

charged scalars.
Due to two VEVs, G± and !

± should be mixed and give massless Goldstones and
massive charged Higgs, which are

(
G+

EW

H+

)
=

(
cos ε ↔ sin ε

sin ε cos ε

)(
G+

!
+

)
, (3.4)

where G+

EW
represents Goldstone “perpendicular” to electroweak vacuum, the tangent of

rotation angle is

tan ε = 2v!/vH. (3.5)

Under SU(2)L≃U(1)Y gauge symmetry, the doublet H and the real triplet ! transform
as

H ⇐ gL(ω) exp(
i

2
ϑY ) H , ! ⇐ gL(ω) ! gL(ω)

† , gL(ω) = exp(
i

2
ϑiωi), (3.6)

which explain why the potential has the trilinear interaction H
†
!H in Eq. (3.2) .
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1.

 The mass mixing between Goldstones  and  still exists.   π± Σ±

H = U
1

2 ( 0
vH + h0) , U ≡ exp ( iπiσi

vH )

Good news:  disappears in potential, the mass mixing disappears. 

Bad news:  a term of kinetic mixing appears.

U

⟨DμΣ†DμΣ⟩ ⊃ − vΣϵ3jkDμϕjDμπk /vEW

2. H = U
1

2 ( 0
vH + h0) , U ≡ exp ( iπiσi

vH ) Σ = UΦU†, Φ =
1
2

ϕiσi =
1
2

vΣ + ϕ0 2ϕ+

2ϕ− −vΣ − ϕ0

2Y3H†ΣH

H = U
1

2 ( χ±

vH + h0 + iχ0), U ≡ exp ( iπiσi

vEW )3. Σ = UΦU†, Φ =
1
2

ϕiσi =
1
2

vΣ + ϕ0 2ϕ+

2ϕ− −vΣ − ϕ0

χ± = 2
vΣ

vH
ϕ±, χ0 = 0 DμH†DμH ⊃ vHϵ3jkDμχjDμπk /(2vEW)

Both mass mixing and kinetic mixing disappear!

Non-linear Form

The  matrix is separated from heavy states, to “integrate out” heavy states and leave  in HEFT 
become straightforward.

U U
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A Diagrammatic View: Find the Correct U

Σ = UΦU†, Φ =
1
2

ϕiσi =
1
2

vΣ + ϕ0 2ϕ+

2ϕ− −vΣ − ϕ0

χ± = 2
vΣ

vH
ϕ±, χ0 = 0

vΣ ≠ 0

vEW : ̂eρ

U : ̂eθ

vH

vΣ

H = U
χ±

1

2
(vH + h0 + iχ0) , U ≡ exp ( iπiσi

vEW )

• Use “rotated” scalars.

• Cancel out kinetic mixing. 

(πis, h0, ϕ±, ϕ0)

Does these two rules suitable for a general  representations? 
E.g. a quadruplet, a quintet.

SU(2)



Quadruplet with Y = 3/2
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Θ111

3Θ112

3Θ122

Θ222

→

Θ3+

Θ++

Θ+

Θ0 Θijk = Ul
iU

m
j Un

k ϕlmn

Hi = Uj
i 𝔥j, 𝔥 =

χ+

1

2
(vH + h0 + iχ0)

ℒmix
Θ = 3⟨ϕ222⟩((U†DμU )2

1Dμϕ*122 − (U†DμU )1
2Dμϕ122 + (U†DμU )2

2(D
μϕ*222 − Dμϕ222)),

ℒmix
H = ⟨𝔥2⟩((U†DμU)2

1Dμ𝔥*1 − (U†DμU)1
2Dμ𝔥1 + (U†DμU)2

2(D
μ𝔥*2 − Dμ𝔥2)),

vH / 2

vΘ/ 2

⟨ϕ222⟩ = ⟨ϕ*222⟩ = vΘ/ 2, Im(ϕ222) = η4/ 2, ϕ122 = ϕ+/ 3

χ+ = −
3vΘ

vH
ϕ122 = −

3vΘ

vH
ϕ+, χ0 = −

3vΘ

vH
η4



General Scalar Extensions
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Neutral

+

In this non-linear representation,  and heavy states are separate. 
As HEFT matching is to “integrate out” heavy states and leave 
Goldstones in  form, under this representation the matching 
become straight and simple, further programmable.

U

U



HEFT matching of the real Higgs triplet extension (RHTE)

18



19

HEFT Matching of the real Higgs triplet extension

Y2
1 = − Z1v2

H − Z3v2
Σ /2 + Y3vΣ, Y2

2 = − Z3v2/2 − Z2v2
Σ +

Y3v2

2vΣ
.

Non-linear representation

Minimum condition

(h
K) = (cos γ −sin γ

sin γ cos γ ) (h0

ϕ0)

Σ = UΦU†, Φ =
1
2

ϕiσi =
1
2

vΣ + ϕ0 2ϕ+

2ϕ− −vΣ − ϕ0

extension of custodial-symmetry-violation model. In this section, firstly we introduce linear
forms of the Lagrangian, which describe same UV model but have distinctions for matching.
Then we give a non-linear form, U representation, which separate out U matrix explicitly
and thus is feasible for HEFT matching. We further show a complete matching procedure.
Finally we introduce the tensor notation and generalize U representation to general scalar
multiplet extensions.

3.1 Linear forms

3.1.1 Doublet

Usually the Lagrangian of RHTE in scalar sector can be expressed as [55, 66, 101]

LRHTE(H,!) → (DµH)
†
(Dµ

H) + ↑Dµ!
†Dµ

!↓ ↔ V (H,!) , (3.1)

with

V (H,!) = Y 2

1 H
†
H+ Z1(H

†
H)

2
+ Y 2

2 ↑!
†
!↓+ Z2↑!

†
!↓

2

+Z3H
†
H↑!

†
!↓+ 2Y3H

†
!H , (3.2)

where ↑...↓ denotes the trace, Yis, i = 1, 2, 3 are dimensional parameters while Zis, i = 1, 2, 3

are dimensionless. H is the SM Higgs doublet and ! is the real triplet, which could be
expressed as

H =

(
G+

1→
2

(
vH + h+ iG0

)
)
, ! =

1

2
!iωi =

1

2

(
v! + !

0
↗
2!

+

↗
2!

↑
↔v! ↔ !

0

)
, i = 1, 2, 3,

(3.3)

where vH, v! are vacuum expectation values (VEVs) after spontaneously symmetry breaking
(SSB). G0 is a pseudoscalar which does not mix with the scalar h except for CP violation.
G+ is a charged scalar. !is constitute 3 triplet components, ωis are Pauli matrices. !

0
=

↔v! + !3 is the shifted field along VEV, !±
=

1→
2
(!1 ↘ i!2) are canonically normalized

charged scalars.
Due to two VEVs, G± and !

± should be mixed and give massless Goldstones and
massive charged Higgs, which are

(
G+

EW

H+

)
=

(
cos ε ↔ sin ε

sin ε cos ε

)(
G+

!
+

)
, (3.4)

where G+

EW
represents Goldstone “perpendicular” to electroweak vacuum, the tangent of

rotation angle is

tan ε = 2v!/vH. (3.5)

Under SU(2)L≃U(1)Y gauge symmetry, the doublet H and the real triplet ! transform
as

H ⇐ gL(ω) exp(
i

2
ϑY ) H , ! ⇐ gL(ω) ! gL(ω)

† , gL(ω) = exp(
i

2
ϑiωi), (3.6)

which explain why the potential has the trilinear interaction H
†
!H in Eq. (3.2) .
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χ± = 2
vΣ

vH
ϕ±

H = U
χ±

1

2
(vH + h0 + iχ0) , U ≡ exp ( iπiσi

vEW )

m2
h,K = Z1v2

H + Z2v2
Σ +

Y3v2
H

4vΣ
∓ (Z1v2

H − Z2v2
Σ −

Y3v2
H

4vΣ )
2

+ v2
H(Z3vΣ − Y3)2

m2
ϕ± = (v2

H + 4v2
Σ)

Y3

2vΣ

Z1, Z2 ≥ 0, |Z3 | ≥ − 2 Z1Z2

max(0,Y−
3 ) < Y3 < Y+

3 Y±
3 =

1
2vΣ (Z1v2

H + 2Z3v2
Σ ± Z2

1 v4
H + 4Z1Z3v2

Hv2
Σ + 16Z1Z2v4

Σ)

Theoretical constraints



Power Counting 
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(Z1, Z2, Z3, Y3, vEW, ξ)

• Custodial symmetry breaking is constrained by the 
 parameter.  


• 


•

ρ = m2
W /(m2

Z cos2 θW) ξ ≡
vΣ

vH
≲ 0.02

vEW = 246 GeV
mh = 125 GeV

Experiment  constraints

Parameter set 
Power counting  

K = K0 + ξK1 + ξ2K2 + . . .
ϕ1 = ϕ10 + ξϕ11 + ξ2ϕ12 + . . .
ϕ2 = ϕ20 + ξϕ21 + ξ2ϕ22 + . . . ,

 
corresponds to a 
decoupling limit.

ξ → 0

m2
h = 2Z1v2

H − 2ξY3vH − 4ξ2v2
H(2Z1 − Z3) + O(ξ3)

m2
K =

Y3vH

2ξ
+ 2ξY3vH + 4ξ2v2

H(2Z1 − Z3) + 2ξ2v2
HZ2 + O(ξ3) ,

m2
ϕ± =

Y3vH

2ξ
+ 2ξY3vH



The HEFT ( )ξ2
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ℒ(ξ0) =
1
2

DμhDμh +
1
4

v4
HZ1 − h2v2

HZ1 − h3vHZ1 −
1
4

h4Z1 −
1
4 (v2

H + 2hvH + h2)⟨VμVμ⟩

ℒ(ξ1) =
ξY3

4vH
(−v4

H + 4h2v2
H + 4h3vH + h4)

ℒ(ξ2) =
ξ2

4v2
H

{8h2DμhDμh + v6
HZ3 + 8h2v4

H(2Z1 − Z3) + 8h3v3
H(5Z1 − 2Z3)

+2h4v2
H(16Z1 − 7Z3) + 2h5vH(4Z1 − 3Z3) − h6Z3

−4 (v4
H + 3hv3

H + 4h2v2
H + 3h3vH + h4)⟨VμVμ⟩

+2 (v4
H + 4hv3

H + 6h2v2
H + 4h3vH + h4)⟨Vμσ3⟩⟨Vμσ3⟩}

Vμ = U†DμU

Custodial symmetry breaking



The HEFT ( )ξ3
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p4

p2
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The Standard HEFT 



SMEFT Matching (Warsaw basis)
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ℒSMEFT =
1

2Y2
2

Y2
3H† ⃗σH ⋅ H† ⃗σH +

1
2

(H† ⃗σH)T 1
Y2

2
(−DμDμ − Z3H†H)

1
Y2

2
H† ⃗σH + ⋯

(H†H)3

(DμH†H )(H†DμH )

(H†H) □ (H†H)



Numerical Results (When  is Large)Y2
2
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V (H, Σ) = Y2
1H†H + Z1(H†H)2 + Y2

2⟨Σ†Σ⟩ + Z2⟨Σ†Σ⟩2 + Z3H†H⟨Σ†Σ⟩ + 2Y3H†ΣH

NOT FOR DISTRIBUTION JHEP_076P_0325 v1
of the BSM states can be as low as 495 GeV, or the equivalent value of Y2 → 470 GeV , when
ω approaches 0.02, indicating that the SMEFT converges slowly to the full model. This is
clearer in the right panel of Fig. 1. The divergence of the UV model (the black vertical
line) at around ω = 0.0196 is due to the presence of heavy scalars with masses below the
center-of-mass energy. Both the SMEFT and the HEFT lose the predictive power there.
Away from such a value of ω, both EFTs give similar approximations at the same order and
the second order, SMEFT-8 and HEFT(ω3), is a very good replication of the RHTE.

UV Model

HEFT(ξ2)

HEFT(ξ3)

SMEFT-6

SMEFT-8

0.005 0.010 0.015 0.020
ξ34.90

34.92

34.94

34.96

34.98

35.00

dσ/dθθ=θ0
hh→hh (pb)

s =300 GeV
θ0=π/4

UV Model

HEFT(ξ2)

HEFT(ξ3)

SMEFT-6

SMEFT-8

0.005 0.010 0.015 0.020
ξ

0.042

0.043

0.044

0.045

dσ/dθθ=θ0
hh→hh (pb)

s =800 GeV
θ0=π/8

Figure 2. Comparison between the UV model and the HEFT, the SMEFT dim-6 (SMEFT-6) and
the SMEFT dim-8 (SMEFT-8) approaches to it in the di!erential cross-section of hh ↑ hh, for a
center-of-mass energy

↓
s and a scattering angle ε0. On both panels, we take Y3 = 730.14 GeV,

Z2 = 1 and Z3 = 0.758, while all other parameters can be fixed by the SM inputs for a certain
value of ω.

We present similar plots but for a large value of Y3 (Y3 = 730.14 GeV) for di!erent
values of the center-of-mass energy (

↓
s = 300 GeV for the left panel and

↓
s = 800 GeV for

the right panel) in Fig. 2. In this case, both EFTs are still good replications of the RHTE
while the HEFT O(ω3) shows a better description for larger values of ω. The improvement
of the SMEFT can be understood by noticing that the lowest value of Y2 is around 2115

GeV, which is far above both the electroweak scale and collision energy, and makes the
SMEFT expansion under control.

We now discuss the scattering processes of WW ↑ hh and ZZ ↑ hh. The similar plots
are shown in Fig. 3 and Fig. 4. We only consider the longitudinal-mode scattering since 1)
the contributions from transverse modes can be neglected and 2) at the high energy limit
the longitudinal modes are just Goldstones required by the Goldstone equivalence theorem,
which are deeply related to the electroweak symmetry breaking. Similar characteristics hold
for WW ↑ hh and ZZ ↑ hh. The O(ω3) corrections significantly improve the quality of
the replication of the UV model in the HEFT and it provides the best approximation to
reproduce the UV predictions for both large and small values of the collision energy. it is
notable that the SMEFT yields a very poor replication when Y3 is small (top panels).

– 18 –

Y2 > 2TeV

HEFT converges faster,  which is same as in 
 processWW → hh, ZZ → hh

2504.02580, Yi Liao,  Xiao-Dong Ma, Yoshiki Uchida

The bare mass term of Σ



Numerical Results (When  is Small)Y2
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Y2 ∼ 500GeV

Both HEFT and SMEFT breaks  
down near the resonance

HEFT converges faster, 

NOT FOR DISTRIBUTION JHEP_076P_0325 v1

this scenario 9.

5.2 Numerical results

The results that follow are obtained via FeynArts [88] and FormCalc [89], as well as Feyn-
Rules [90] and SmeftFR [91–93] for generating Feynman rules in di!erent models. The
results shown are in the range allowed by the theoretical constraints but we do not check
whether they survive under the direct neutral and charged Higgs searches. However, the
masses of the extra scalars in the region of parameter space we considered are heavier than
O(500) GeV, which should be safe from the experimental detection. Further we only con-
sider values of ω less than 0.02, equivalent to the triplet VEV less than 4.9 GeV [87], which
does not conflict with the electroweak precision tests in a large portion of the parameter
space.

UV Model

HEFT(ξ2)

HEFT(ξ3)

SMEFT-6

SMEFT-8

0.005 0.010 0.015 0.020
ξ

34.95

35.00

35.05

35.10

dσ/dθθ=θ0
hh→hh (pb)

s =300 GeV
θ0=π/4

UV Model

HEFT(ξ2)

HEFT(ξ3)

SMEFT-6

SMEFT-8

0.005 0.010 0.015 0.020
ξ

2.10

2.12

2.14

2.16

2.18

2.20

dσ/dθθ=θ0
hh→hh (pb)

s =500 GeV
θ0=π/8

Figure 1. Comparison between the UV model and the HEFT, the SMEFT dim-6 (SMEFT-6) and
the SMEFT dim-8 (SMEFT-8) approaches to it in the di!erential cross-section of hh → hh, for
a center-of-mass energy

↑
s and a scattering angle ε0. On both panels, we take Y3 = 39.75 GeV,

Z2 = 1 and Z3 = 0.759, while all other parameters can be fixed by the SM inputs for a certain
value of ω.

In Fig. 1, we present the di!erential cross section hh → hh, for two di!erent values of
the total collision energy:

↑
s = 300 GeV (left panel) and

↑
s = 500 GeV (right panel), with

a low value of Y3 (Y3 = 39.75 GeV). In the left panel, we find that involving the e!ects of the
dim-8 operators could not reduce the absolute di!erence between the SMEFT and the full
model. Although the HEFT provides a comparable replication to the dimension 6 SMEFT
at the leading order of O(ω), the O(ω3) truncation of the HEFT successfully reproduces the
UV model. The failure of the SMEFT can easily be understood by noticing that the masses

9Up to our knowledge, there is no consistent method to obtain a SMEFT in this case, though people
never point out this explicitly. Even when one directly tries to calculate the physics observables in the UV
model, the correct way in quantum field theory might still be unclear. One can compare this scenario to
the classical coupled harmonic oscillators, in which collective modes are more suitable degrees of freedom
than normal mode in the strongly coupled region.

– 17 –



While Y2
2 ∼ 0
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 Y3 = 24.65 GeV, Z2 = 1, Z3 = 10

Power counting, 

SMEFT:  

HEFT:     

1/Y2
2

ξ or 1/m2
ϕ± Y2

2 = − Z3v2
H /2 + m2

ϕ± + 𝒪(ξ)
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UV Model

HEFT(ξ2)

HEFT(ξ3)

SMEFT-6(ξ2)

SMEFT-8(ξ3)

0.005 0.010 0.015 0.020
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dσ/dθθ=θ0
hh→hh (pb)

s =300 GeV
θ0=π/4

UV Model

HEFT(ξ2)
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SMEFT-6(ξ2)

SMEFT-8(ξ3)

0.005 0.010 0.015 0.020
ξ
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dσ/dθθ=θ0
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s =300 GeV
θ0=π/4

UV Model

HEFT(ξ2)

HEFT(ξ3)

SMEFT-6(ξ2)

SMEFT-8(ξ3)

0.005 0.010 0.015 0.020
ξ

17
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dσ/dθθ=θ0
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s =300 GeV
θ0=π/4

Figure 6. The same as in Fig. 5, but with the SMEFT coe!cients truncated at a certain order of
ω. SMEFT-6(ω2) and SMEFT-8(ω2) represent that the corresponding SMEFT Wilson coe!cients
upto dim-6 and dim-8 operators are truncated at order O(ω2) and O(ω3) respectively.

which can systematically be extended to higher orders. The matching equations for the
parameters of the HEFT Lagrangian were discussed and given analytically.

We then investigated how accurately the HEFT matching reproduces the RHTE results
in the tree-level scatterings hh → hh, WW → hh and ZZ → hh compared to the SMEFT.
Generally this is a non-trivial question due to the di!erent power counting rules used in the
two EFTs. We found that the HEFT at O(ω2) reproduces the RHTE results in all these
scatterings with our choice of input parameters and power counting rules for two EFTs
(1/! for SMEFT and ω for HEFT). Especially at low collision energy, the convergence to
the RHTE can be significantly improved if higher orders of ω’s e!ects are included in the
HEFT while the second order of the SMEFT expansion is not enough. We also show an
explicit failure of the SMEFT in both a phase transition occurring and the characteristic
scale changing in UV theory. The phase transition is closely related to the fundamental
symmetry that should be used to build the EFT, which is already well known. That the

– 23 –

After a second expansion with   1/m2
ϕ±

The SMEFT’s regular part is 
consistent with the HEFT’s
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 represents that there exists another source of spontaneously 
symmetry breaking, which cause the breakdown of SMEFT. Only HEFT 
works.

Y2
2 < 0

While  (A Geometrical View)Y2
2 < 0

T. Cohen, Nathaniel Craig, Xiaochuan Lu, Dave Sutherland 2008.08597

analytic at the invariant point, while HEFT results when m2 < 0 (right panel). The
simple intuition that new sources of electroweak symmetry breaking imply we must
match the theory onto HEFT has been demonstrated by each of our example UV
models.

0 .3 .6

-.6

-.3

0

.3

.6

0 .5 1

-1

-.5

0

.5

1

Figure 4: EFT submanifolds in the triplet model obtained by matching in the uni-
tary basis for two representative sets of parameters, one with m2 > 0 (left panel)
and the other with m2 < 0 (right panel). In each panel, contours of the potential
Eq. (7.48) are shown in the (r, f) plane in arbitrary mass units with the indicated
choice of parameters. We fix �i

= 0. The location of the global minimum is denoted
by a black dot, while the fixed point corresponds to (r, f) = (0, 0). The EFT sub-
manifolds are shown in blue and orange; blue corresponds to solution(s) of @V

@f
= 0

in regions where the UV fluctuations (in f and �i) have a positive definite mass
matrix, and the curve is orange otherwise. The region in which the UV fluctuations
do not have a positive definite mass matrix is shown in light gray, with a dashed
green boundary. In the left panel, the choice of parameters (namely m2 > 0) admits
a SMEFT, as illustrated by the existence of an EFT submanifold connecting the UV
fixed point to the global minimum through a region of positive definite mass matrix.
In the right panel, the choice of parameters (namely m2 < 0) requires a HEFT, as
none of the EFT submanifolds connect the fixed point to the global minimum.

– 60 –

Y2
2 > 0 Y2

2 < 0

∼ H

∼ Σ

SMEFT/HEFT HEFT



Summary
• HEFT encompasses SMEFT.  Through matching a UV model 

to both HEFT and SMEFT, we study their distinction.


• We build a non-linear representation of general scalar 
extensions of the SM, which is great for HEFT matching in 
functional method. The key point is that by using “rotated” 
scalars, we separate the Goldstones’  matrix and heavy 
states in the UV model.


• We match the real Higgs triplet extension (RHTE) to both 
HEFT and SMEFT in the decoupling scenario. HEFT 
converges faster than SMEFT in the region of .  In the 
parameter region of  (there exists another source of 
spontaneously symmetry breaking), only HEFT is suitable.

U

Y2
2 > 0

Y2
2 < 0
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Thanks for your 
attention!



backups
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Y2
2 = − Z3v2

H /2 − Z2v2
Hξ2 +

Y3vH

2ξ



Next Plan
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(Z1, Z2, Z3, Y3, vEW, ξ)Parameter set  1 m2
ϕ± =

Y3vH

2ξ
+ 2ξY3vH

Decoupling case  

(Z1, Z2, Z3, m2
ϕ±, vEW, ξ)Parameter set  2

While  approaches infinity,  could be kept as a 
constant, the real model triplet model will not decouple to 
the SM.


m2
ϕ± ξ

Non-decoupling case



Next Plan
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 1-loop
ℒRHTE ⊃

1
2 (K ϕ1 ϕ2) 𝒳

K
ϕ1

ϕ2



While Y2
2 = 0
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 Y3 = 24.65 GeV, Z2 = 1, Z3 = 10

Power counting, 

SMEFT:  

HEFT:     

1/Y2
2

ξ or 1/m2
ϕ±

(−DμDμ − Y2
2 − Z3 H+H) ⃗Σ c = − Y3H+ ⃗σH + Z2( ⃗Σ c ⋅ ⃗Σ c) ⃗Σ c

Y2
2 = − Z3v2

H /2 − Z2v2
Σ +

Y3v2
H

2vΣ

EoM of  for SMEFT matching⃗Σ
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