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From EFT to EFT-hedron
• Top down EFT: integrate out the high energy d.o.fs.       a theory with higher dimension 

operators.

• Bottom-up EFT: write all possible terms in the Lagrangian with arbitrary Wilson 

coefficients allowed by symmetry.

• Not all of them are allowed to have a good UV completion if we assume “causality, 

locality, unitarity and Lorentz symmetry. N.Arkani-Hamed et al JHEP 10 (2006)

• The allowed region of Willson coefficients can form a non-trivial geometry called EFT-

hedron. N.Arkani-Hamed et al JHEP 05 (2021) 259
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UV and IR connected by dispersion relation

• Causality   Analyticity in the upper half-plane

• Locality  


•  

 
 
 

• The left-hand side can be computed using low-energy (IR) amplitudes. The arc at 
infinity vanishes for 

|A(s, t) | ≤ C s log2 s as s → ∞, t → 0
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M.Froissart Phys.Rev.123 (1961)  
A. Martin  Phys.Rev. 129 (1963)
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Partial wave expansion and unitarity
• Unitarity implies optical theorem 


• This implies, from the   dispersion relation, that . It is the first non-
trivial result from positivity condition. N.Arkani-Hamed et al JHEP 10 (2006) 


• Because of rotation symmetry, the amplitude can be expanded in partial waves:

 

• Restricting to  scattering and using the partial wave expansion: 
 

 or 

Im A(s, t = 0) = ∑
X

∫ dΠX A*(s → X) A(s → X)

n = 2 g2 > 0

A(μ, t) = 16π
∞

∑
j

(2j + 1) fj(μ)Pj (1 +
2t
μ )

2 → 2

Im fj > 2f2
j 0 < Im fj < 2
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The setup
• For a shift symmetric scalar: 


• the amplitude can be approximated by +…


• Substituting , we get + (loop part)…


• We expand both sides with respect to t and match their coefficients. (Be careful to account properly 
for loop effects.)


• For convenience, changing variable , we get: .


• It can also be written as ,   

1
2

(∂ϕ)2 + g2(∂ϕ)4+g3(∂∂ϕ)2(∂ϕ)2+g4(∂∂ϕ)4 + …

A(s, t, u) = ∑ g2(s2 + t2 + u2) + g3stu + g4(s2 + t2 + u2)2

u → − s − t A(s, t) = ∑
k−q≥2

gk,qsk−qtq

μ →
1
z

gk,q = ∑
j

vk,q,j ∫
1

0
ρj(z)zk−1dz 0 < ρj(z) < 2

gk,q = ∑
j

vk,q,jaj,k if we define aj,q = ∫
1

0
ρj(z)zk−1dz
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L-moment problem
• We first neglect the sum of j and  for illustration, then the problem becomes:




• It is a problem solved long time ago — L-moment problem. If we think  as  
mass density and  as length, then  is just the total mass, and  is the moment 
of inertia…

vk,q,j

ak = ∫
1

0
ρ(z)zk−1dz 0 ≤ ρ(z) ≤ L

ρ(z)
z a1 a2
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Consider a symmetric toy model (e.g., a bird-shaped mass 
distribution)…, once we know the bird is made of ordinary matter, 
then:  
 .   (By unitarity) 
 
  

0 < ρbird < ρneuron star

What is my moment?

UV assumption

IR region



Minkowski sum
• We will solve it by the method of Minkowski sums.   Y-t H, L R, et al JHEP 05 (2024) 102

• The definition of the Minkowski sum of two  

areas A and B is:  
 

 
 
Notice  is not necessary  

• To get the right boundary of the sum, you need to  
follow the boundaries placed in the right order.


• In this 2d example, the right order means  
ordering them by their slopes. For example:

A + B := {a + b ∣ a ∈ A, b ∈ B}

∂(A + B) ∂A + ∂B
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Solve the L-moment problem with Minkowski sums
• To fit our intuition of doing Minkowski sums, we first discretize the integral to the 

sum: 

  


• In the case of 2d: consider , for some n, the vector is 

.


• The slope is , it becomes larger as we increase n.

ak = ∫
1

0
ρ(z)zk−1dz =

N

∑
n=1

ρ ( n
N ) ( n

N )
k−1 1

N
0 < ρ(z) < L

ki > kj

(ρ ( n
N ) ( n

N )
ki−1 1

N
, ρ ( n

N ) ( n
N )

kj−1 1
N ) 0 < ρ ( n

N ) < L

( n
N )

kj−ki
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From projective to non-projective geometry

• In the continuous limit, the corresponding boundaries  
are the following parametric curves: 

lower boundary:  

upper boundary: 


• We give the picture of the allowed regions. 
In the limit  all the non-projective 

information has lost, only left with .

(L
mki

ki
, L

mkj

kj ) m ∈ [0,1]

(L
1 − mki

ki
, L

1 − mkj

kj ) m ∈ [1,0]

L → ∞
a1 > a2
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Add the different angular momentum contributions

• Once we get the allowed region of ,  

the remaining question is — how are we adding them together?  


• The answer is quite simple — just do the Minkowski sum again for .

• For the case interesting to us, we show it in the 

picture on the right.

• The Minkowski sum of j=2,0,4 regions for  

rescaled moments. The boundary of the sum  
can be obtained by ordering the individual  
boundaries by their slopes.

aj,q = ∫
1

0
ρj(z)zk−1dz

gk,q = ∑
j

vk,q,jaj,k

j

j=2

j=0

j=4

j=2
j=0
j=4

g2

n4

a
b

c

a+b+c
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N=4 null constraint
• Because of the full crossing-symmetry, we can get the same coefficient in different ways.  

It gives strong constraints on the UV states.


• The first non-trivial one is : 


• we define , and we have different ways to get . 

   

 A J. T et al JHEP 05 (2021) 255   S C-H at al  JHEP 05 (2021) 280 

n = 4 g4(s2 + t2 + u2)2

Mn =
1

2πi ∮arc

A(μ, t)
(μ)n+1

g4

0 = 6M4 − ∂2
t M2 |t→0 = ∑

j

16(2j + 1)( j2( j + 1)2 − 8j( j + 1))∫
1

0
ρj(z)z4dz 0 ≤ ρj(z) ≤ 2

Null constraint

EFT-hedron

Loop null constraint



Bound on  from full unitarityg2• Once loop effects taken account, null constraint should be modified: 




• Also 


• Repeating our previous analysis, we obtain  
the rescaled regions for different angular moment 
contributions.

∑
j

16(2j + 1)( j2( j + 1)2 − 8j( j + 1))∫
1

0
ρj(z)z4dz = n4 = −

2353
1968

π2g2
2

g2 = ∑
j

16(2j + 1)∫
1

0
ρj(z)zdz

g2

n 4

j  2
j  0
j  4
j  6
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Details will be explained by Guang-zhuo Peng.



Results
•  The -space with boundary 

sections  is shown in the picture below.
(g2, n4)

20 40 60 80 100 120

- 1500

- 1000

- 500

500

section 1: j=2
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section 3: j=4, 6, 8, ...

section ∞: j=∞
k=  4 null constraint

L=∞,     the lower boundary

g2

n4
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Tree level

Loop-corrected

Positivity only with IR loops 

Our result:  

0 < g2 < 37.8

Previous result:  

0 < g2 < 125.4

Loops are important !!!

n4 = −
2353
1968

π2g2
2



Discussion
• From a geometric point of view, the positivity conditions define the allowed region 

of Wilson coefficients—known as the EFT-hedron—in projective space.


• When full unitarity is taken into account, this EFT-hedron is deprojected.


• We find that, once loop effects are considered, the geometry is further deformed 
and even only positivity condition can give non-projective structures.


• We are interested in how this method can be used in the gravity case. Especially 
how the full-unitarity condition can be used in the weak gravity conjecture. (work 
in progress.)



•
                             Thank you!
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Think dispersion relation as a distribution

• = + =  

Infinity equal to 0 is not always a good thing, in this case, we should really think it as a equality only true 
in a distribution sense.A. Martin, INABILITY OF FIELD THEORY TO EXPLOIT THE FULL UNITARITY 
CONDITION 


• After doing such justification, we can subtract  from 

 =   

with right combination to eliminate  from above, then we can safely set t goes to 0 limit.


• The null constraint has been modified: 

2M4 − ∂tM3 0 (−2b1 − b2)log(−t) ∑
j

0∫
1

0
ρj(z)z4dz 0 ≤ ρj(z) ≤ 2

2M4 − ∂tM3

(−2b2 − 6b1)log(−t) − 18b1 ∑
j

16(2j + 1)( j2( j + 1)2 − 8j( j + 1))∫
1

0
ρj(z)z4dz 0 ≤ ρj(z) ≤ 2

log(−t)

∑
j

16(2j + 1)( j2( j + 1)2 − 8j( j + 1))∫
1

0
ρj(z)z4dz =

28b2
1 + 28b1b2 + 5b2

2

2b1 + b2
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