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Gravitational wave: new window to probe our Universe

New physics!

▶ Probe dynamics of black holes

▶ Test general relativity

▶ Black hole formation

▶ ...

Future ground based observatories

▶ Advanced LIGO

▶ Einstein Telescope

▶ Cosmic Explorer

Future space based observatories

▶ LISA

▶ TaiJi

▶ TianQin

Require accurate theoretical prediction

LISA, 1702.00786

cosmicexplorer.org



Accurate theoretical prediction of the GW production puts challenges on the
understanding of its source
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(corrections from Relativity)

I will focus on long range interactions [cf. Katsuki Aoki’s talk]



How to organize perturbations?

▶ Post-Newtonian (PN) expansion

v2 ∼ Gm

r
≪ 1

▶ Post-Minkowskian (PM) expansion

Gm

r
≪ v2 ∼ 1

▶ Self-force expansion

Gm

r
∼ v2 ∼ 1 ,

m1

m2
≪ 1

Amplitude-based methods naturally lead to PM expansion

PM expansion is relevant to bound orbits with large eccentricity and scattering process

Khalil, Buonanno, Steinhoff, Vines, 2204.05047



EFT matching using amplitudes Cheung, Rothstein, Solon, 1808.02489
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MQFT = MEFT

Classical limit (q, ℓ,G) → (ℏq, ℏℓ, ℏ−1G)

Integrate out soft gravitons

Implemented by method of regions
Beneke, Smirnov, hep-ph/9711391

VPM given by an ansatz

Solve VPM by matching amplitudes
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Observables
Eikonal formula

Canxin Shi’s talk

EOM



EFT matching Cheung, Rothstein, Solon, 1808.02489

▶ Full theory: Schwarzschild black hole =⇒ scalar field ϕ
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▶ Effective theory: potential V (k,k′) given by an ansatz
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▶ Solve the EFT potential by matching the full theory and EFT amplitudes
order-by-order in G in the classical limit

M(L) classical limit−−−−−−−−−−−−−−−−→ M(L)
EFT

q
p1

p2 q → ℏq
ℓ → ℏℓ
G → ℏ−1G

no massless loops (quantum)
no massive contact vertices (delta-function potential) M(L)

classical ∼
Gm4

ℏ3q2
(Gmq)L



Conservative Hamiltonian for hyperbolic trajectory

Hamiltonian: H = E1 + E2 +

∞∑
n=1

Gn

|r|n cnPM(p2)

c1PM = −ν2(m1 +m2)
2

γ2ξ
(2σ2 − 1)

c2PM = −ν2(m1 +m2)
3

γ2ξ

[
3(5σ2 − 1)

4
− 4νσ(2σ2 − 1)

γξ
+

ν2(1− ξ)(2σ2 − 1)2

2γ3ξ2

]
State-of-the-art: c3PM, chyp4PM and chyp 1SF

5PM

▶ c3PM is not known to general relativists before computed this way

▶ c5PM for GR is obtained using the amplitude-worldline hybrid method
Driesse, Jakobsen, Mogull, Plefka, Sauer, Usovitsch, 2403.07781

E1 =
√
p2 +m2
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√
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E1 + E2

m1 +m2
ξ =

E1E2

(E1 + E2)2

ν =
m1m2

(m1 +m2)2
σ =

p1 · p2
m1m2

Cheung, Rothstein, Solon, 1808.02489
Bern, Cheung, Roiban, Solon, Shen, Zeng, 1901.04424
Bern, Parra-Martinez, Roiban, Ruf, Solon, Shen, Zeng, 2112.10750
Bern, Herrmann, Roiban, Ruf, Smirnov, 2406.01554

See Zhengwen Liu’s talk for world-line methods



World-line description of spin

Consider a rigid spinning body

L = −pµż
µ +

1

2
SµνΛAµ

DΛA
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+ χµS
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µ
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▶ We decompose the spin tensor into the rotation and boost components

Sµν = ϵµνρσ p̂ρSσ + (p̂µKν − p̂νKµ)

▶ The covariant spin supplementary condition (SSC) sets Kµ = 0

▶ Spin gauge freedom: the freedom to choose the time direction of the body-fixed
frame, which also corresponds to the choice of worldline

▶ SSC fixes the spin gauge freedom

▶ Non-minimal interactions: one independent spin-induced multipole moment per
order in spin

z(t)

ΛA
µ

∆x

Porto, gr-qc/0511061
Porto, Rothstein, gr-qc/0604099
Levi, Steinhoff, 1501.04956
Vines, Kunst, Steinhoff, Hinderer, 1601.07529

C2RpSpS

C3∇SR̃pSpS

C4∇S∇SRpSpS . . .



On-shell description of spin Bern, Luna, Roiban, Shen, Zeng, 2005.03071

▶ On-shell spin-s states are symmetric traceless and transverse

εa1a2...as = ε(a1a2...as) pa1εa1a2...as = ηa1a2εa1a2...as = 0

▶ Classical limit =⇒ spin coherent state εsa1a2...as
= ε+a1

ε+a2
. . . ε+as

with large s

εsp ·Mab · εsp+q ∼ Sab
(Mab)c(s)

d(s) = −2isδ
[a

(c1
ηb](d1δ

d2
c2

. . . δ
ds)

cs)

εsp · {MabMcd} · εsp+q ∼ SabScd
Sab = (1/m)εabcdpcSd

▶ The spin tensor satisfy covariant spin supplementary condition (SSC)

Sabpb = 0 (Sab is boosted from rest frame Sij)

▶ Transversality and covariant SSC are related

▶ Spin magnitude is conserved: SabSab ∼ SaSa ∼ SSS2 = const

p p+ q

. . .. . .



How to describe interactions?

∇µϕs = ∂µϕs + (i/2)ωµabM
abϕs

Higher spin quantum field theory (ϕs ≡ ϕa1a2...as) Sa = (−i/2m)ϵabcdMcd∇b

L = −1

2
ϕs(∇2 +m2)ϕs +

1

8
RabcdϕsM

abMcdϕs −
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2m2
Raf1bf2∇

aϕsS(f1Sf2)∇bϕs

+
D2

2m2
Rabcd∇iϕs{MaiMcd}ϕs +

E2 − 2D2

2m4
Rabcd∇(a∇i)ϕs{Mb

iM
d
j}∇(c∇j)ϕs +O(M3

ab)

We prefer to use a formalism that is uniform in s:

▶ Contractions of ϕs facilitated by Mab only

▶ Propagator uniform in s: iδ
b(s)

a(s)/(p
2 −m2)

▶ Classical and large spin limit is straightforward

▶ There are additional lower spin (s′ < s) states in the spectrum

While problematic for a quantum description, these additional states do not produce
inconsistency in the classical limit: We seem to get a more generic spinning object

Bern, Luna, Roiban, Shen, Zeng, 2005.03071
Bern, Kosmopoulos, Luna, Roiban, FT, 2203.06202

Alaverdian, Bern, Kosmopoulos, Luna, Roiban, Scheopner, Roiban, FT, 2407.10928, 2503.03739

See Alex Ochirov’s talk for alternative higher spin formalisms



Generalized spin coherent state
Bern, Kosmopoulos, Luna, Roiban, Scheopner, Roiban, FT, Vines, 2308.14176

The external state now contains lower spin components. Consider the coherent sum

Eµ1...µs = ε(s)µ1...µs
+ u(µ1

ε
(s−1)

µ2...µs)
+ . . .

Similar coherent sum was also considered in Aoude, Ochirov, 2108.01649, etc

Classical limit

Ep ·Mab · Ep+q ∼ Sab
Sab = Sab + (i/m)(paKb − pbKb)

Ep · {MabMcd} · Ep+q ∼ SabScd

where Ka is identified as the boost generator, and Sabpb = Kapa = 0

▶ Ka emerges from the transition between spin s and lower spin states

▶ Consequently, SabSab ∼ SSS2 −KKK2 is a still constant but SSS2 is not



Classical Compton amplitudes
Alaverdian, Bern, Kosmopoulos, Luna, Roiban, Scheopner, Roiban, FT, 2407.10928, 2503.03739

Three-point amplitude (metric):

M3 = −(ε1 · p)2 +
(ε1 · p)f̃µν

1 pµSν

m
− (1 + C2)(ε1 · p)2(k1 · S)2

2m2

− D2(k1 ·K)(ε1 · p)f̃µν
1 pµSν

m2
− E2(k1 ·K)2(ε1 · p)2

2m2

▶ A stationary metric source by K-dependent multipole moments

▶ The presence of K does NOT modify the spin-induced dipole contribution

▶ LO matched to Rasheed-Larsen black hole Rasheed, hep-th/9505038, Larsen, hep-th/9909102

▶ K drops out of the amplitude when D2 = E2 = 0

Sµν = (1/m)ϵµνρσpρSσ

fµν = kµεν − kνεµ and f̃µν = (i/2)ϵµνρσfρσ



Classical Compton amplitudes
Alaverdian, Bern, Kosmopoulos, Luna, Roiban, Scheopner, Roiban, FT, 2407.10928, 2503.03739

The same property holds at four points

M4 =
4

stu

[
α2 − αO(1) +
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(
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m
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α = p · f1 · f2 · p

O(1) =
1
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[
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s

2
f̃12(p, S) + (1 ↔ 2)

]
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[
tf1(p,S)f2(p, S) + α(k1 · S + k2 · S)2

]
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2m2
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f2(p,K)f̃1(p, S) + f1(p,K)f̃2(p, S)

]

When D2 = E2 = 0, the additional dynamical freedom drops out automatically

s = 2p · k1, t = 2k1 · k2, u = 2p · k2



Non-minimal interactions up to O(M 2
ab)

Alaverdian, Bern, Kosmopoulos, Luna, Roiban, Scheopner, Roiban, FT, 2407.10928, 2503.03739

∇µϕs = ∂µϕs + (i/2)ωµabM
abϕs

Sa = (−i/2m)ϵabcdMcd∇b

L = −1

2
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▶ The C2-operator has an origin in the world-line formalism for neutron stars
Porto, 0511061; Levi, Steinhoff, 1501.04956

▶ It is the only independent operator assuming that rest frame spin is the only
dynamical degree of freedom

▶ The D2- and E2-operators supply additional O(SK) and O(K2) interactions

D2 = E2 = 0 =⇒ Conventional compact object described by H(r,p,S)

C2 = D2 = E2 = 0 =⇒ Kerr black hole

Generic values: generic compact object described by H(r,p,S,K)



World-line Lagrangian with K
Alaverdian, Bern, Kosmopoulos, Luna, Roiban, Scheopner, Roiban, FT, 2407.10928, 2503.03739

The above Compton amplitudes can be reproduced by the following world-line model

L = −pµż
µ +

1

2
SµνΛAµ

DΛA
ν

Dλ
+

ξ

2
(p2 −M2) Sµν = ϵµνρσ p̂ρSσ + p̂µKν − p̂νKµ

M2 = m2 +

[
1 + C2

4
Rp̂Sp̂S +

1 +D2

2
R̃p̂Sp̂K +

1 + E2

4
Rp̂Kp̂K +O(S3)

]
Kµ = −Sµν p̂ν

▶ Notably, NO SSC (for example, Sµνpν = 0) is imposed

▶ The classical Compton amplitude is identified as the ratio between the amplitude
of the outgoing spherical wave and incoming plane wave Saketh, Vines, 2208.03170

hµν = e−ik·xεµεν +
eikr−iωt

4πr
Mµν,ρσ

Compερεσ

▶ The matching requires an identification iKa ≡ Ka

▶ Self-consistent world-line theory involving both Sab and Ka exists
d’Ambrosi, Kumar, van Holten, 1501.04879



Generic spinning body with K

▶ The vector Ka is the displacement between the world-line we choose
(center-of-spin) and the actual center-of-mass

Jµν = zµpν − zνpµ + Sµν = (zµ −Kµ/|p|)pν − (zν −Kν/|p|) + ϵµνρσ p̂ρSσ

▶ When D2 = E2 = 0, K drops out of the EOM under the redefinition of world-line

z′µ = zµ −Kµ/|p|

▶ One can show that the EOM is the same as that with the covariant SSC

L = −pµż
µ +

1

2
SµνΛAµ

DΛA
ν

Dλ
+

ξ

2

(
p2 −m2 +

C2

4
Rµνρσ p̂

µSν p̂ρSσ

)
+ χµS

µν p̂ν + ζµ(Λ
µ
0 − p̂µ)

▶ Emergence of spin gauge symmetry when D2 = E2 = 0

▶ For generic D2 and E2, K
µ is a genuine dynamical variable that contributes at

the quadrupole level

z(t)

ΛA
µ

∆x



Two-body amplitudes

(super-classical)

p1, S1,K1 p4, S1,K1

p2, S2,K2 p3, S2,K2

p1, S1,K1 p4, S1,K1

p2, S2,K2 p3, S2,K2

p1, S1,K1 p4, S1,K1

p2, S2,K2 p3, S2,K2

p1, S1,K1 p4, S1,K1

p2, S2,K2 p3, S2,K2

p1, S1,K1 p4, S1,K1

p2, S2,K2 p3, S2,K2

M2 body = A0 +A1L · S +A2,1S
2 +A2,2K

2 +A2,3S ·K +A2,4(b · S)2

+A2,5(p · S)2 +A2,6(b ·K)2 +A2,7(p ·K)2 +A2,8(b · S)(p · S)

+A2,9(L · S)(b ·K) +A2,10(L · S)(p ·K) +A2,11(b · S)(L ·K)

+A2,12(p · S)(L ·K) +A2,13(b ·K)(p ·K)



Effective Hamiltonian through matching
Alaverdian, Bern, Kosmopoulos, Luna, Roiban, Scheopner, Roiban, FT, 2407.10928, 2503.03739

Consider canonical spin in the COM frame

H =
√

p2 +m2
1 +

√
p2 +m2

2 +
∑
a

∞∑
n=1

(
G

|r|

)n

can(p
2)Σa

where the operators Σa takes value in

1 ((r× p) · S) /r2 (r ·K) /r2

(r · S)2 /r4 (r ·K) ((r× p) · S) /r4 (r ·K)2 /r4

S2/r2 (K · (p× S)) /r2 K2/r2

(p · S)2 /r2 (r · S) ((r×K) · p) /r4 (p ·K)2 /r2

• ca0 matches to the tree level amplitude at O(G)

• Iteration of ca0 should agree exactly with the super-classical box coefficients at O(G2)

• ca1 matches to the triangle coefficients at O(G2) order of V

• The coefficient of (r ·K) /r2 vanishes identically

• All the can coefficients are local in p2



Generic spinning body with K

S
S

K

An additional conservative gapless degree of freedom



Scattering off a Newtonian bound state

H =
p2
2

2m2
+

P 2

2m1
+H0(p, r)−

GmB1m2

|R+ mB2
m1

r| −
GmB2m2

|R− mB1
m1
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=
p2
2
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+
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2m1
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Gm1m2

|R| − 3GµBm2

2|R|5

(
(r ·R)2 − 1

3
|r|2|R|2

)
︸ ︷︷ ︸

Qij(r)Qij(R)

+ . . .

where m1 = mB1 +mB2 and µB = mB1mB2/m1



Scattering off a Newtonian bound state

Ai→f =

∫ +∞

−∞
dtei(E

B
f −EBi )t

〈
i

∣∣∣∣3GµBm2

2|R|5

(
(r ·R)2 − 1

3
|r|2|R|2

)∣∣∣∣ f

〉
=

3GµBm2r
2
cl,n

2|b|2v0

[
2(b ·A)2

|b|2 − |A|2
]

▶ Trajectory: R = (bx, by,−v0t)

▶ Initial and final state have the same energy; otherwise exponentially suppressed

▶ Use elliptical orbit coherent state with bv20 ≫ rcl,n Bhaumik, Dutta-Roy, Ghosh, 1986

⟨α|x|α⟩ = rcl,n
[
cos(2ωclt) + sin(2χ)

]
⟨α|y|α⟩ = rcl,n sin(2ωclt) cos(2χ)

⟨α|z|α⟩ = 0

▶ Laplace-Runge-Lenz vector A = sin(2χ)x̂



Scattering off a Newtonian bound state

M2 body ∼ A2,1K
2 +A2,6(b ·K)2

Match to the field theory amplitude:

▶ Spin ⇔ bound system total orbital angular momentum

▶ Due to the geometric configuration, the spin does not appear in Ai→f

▶ K-vector ⇔ Laplace-Runge-Lenz vector

K = iGm2
1
µB

m1

√
µB

2|EB
i |

A

▶ Wilson coefficient

Ebound 2-body
2 =

3|EB
i |m1

µ2
B

(m1rcl,n)
2

L ∼ E2

2m4
Rabcd∇(a∇i)ϕs{Mb

iM
d
j}∇(c∇j)ϕs



Summary

▶ Framework for effective description of generic spinning binaries

Field theory: transition between fields with different s
World-line: introduce additional dynamical variables
Allow more Wilson coefficients compared to the conventional formalism

▶ Equivalence of the field-theory and world-line description

Consider a world-line model involving spin S and another dynamical DOF K
Demonstrate by matching classical Compton amplitudes
Field theory and world-line agree at O(S3)

▶ The presence of K does not affect spin-induced dipole moment

▶ K drops out when additional Wilson coefficients take special values

No constraints needed [can use naive kinetic term ϕs(∇2 +m2)ϕs for classical physics]

Simplify calculation [propagators and vertices uniform in s; straightforward large s limit]



Discussion

▶ Effective Hamiltonian at two-loop O(S3) and beyond

▶ Efficient organization of loop integrands involving spin

▶ Better understanding of tidal operators at S4 and beyond

▶ Phenomenology of generic compact bodies?



Thanks for listening!
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