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Why not quite black holes? 

An interesting theoretical candidate  

GW searches for characteristic QNMs  

Summary



EHT Collaboration

M87

Excellent agreement between GR predictions 
and observations of black holes in a wide range 
of mass, i.e. from O(1) to 109 solar mass

“The discoveries of this year’s 
Laureates have broken new 
ground in the study of compact 
and supermassive objects. But 
these exotic objects still pose 
many questions that beg for 
answers and motivate future 
research. Not only questions 
about their inner structure, but 
also questions about how to test 
our theory of gravity under the 
extreme conditions in the 
immediate vicinity of a black 
hole” — David Haviland (2020 Nobel 
Committee for Physics chair)
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EHT Collaboration

M87

Excellent agreement between GR predictions 
and observations of black holes in a wide range 
of mass, i.e. from O(1) to 109 solar mass

“The discoveries of this year’s 
Laureates have broken new 
ground in the study of compact 
and supermassive objects. But 
these exotic objects still pose 
many questions that beg for 
answers and motivate future 
research. Not only questions 
about their inner structure, but 
also questions about how to test 
our theory of gravity under the 
extreme conditions in the 
immediate vicinity of a black 
hole” — David Haviland (2020 Nobel 
Committee for Physics chair)

One possibility: could these exotic objects be horizonless 
ultracompact objects (UCOs)? 

• Theoretically motivated: potential link to quantum gravity 
effects; crucial for resolving fundamental theoretical 
challenges of BHs

• Observationally intriguing: GWs offer a new window to 
probe the near-horizon regime with large redshifts
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Quantum black hole as horizonless objects 
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✦ Theoretical motivations
• Black hole thermodynamics (i.e. entropy area law), and information 

loss problems for evaporating black holes

• Quantum black holes may feature strong deviations around horizon, 
or even be horizonless

• Potential links to quantum gravity effects



Quantum black hole as horizonless objects 

Classical BH spacetime 
as an approximation of 

quantum fuzzball 
states, which stops to 

apply somewhere 
outside of the would-be 

horizon 

String theoryExotic matter + GR 

Gravastars: a black hole 
mimicker in GR, charac-

terized by a de Sitter interior 
and thin shell of matter at the 

would-be horizon
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[Mazur and Mottola, gr-qc/0109035] [Mathur, Fortsch. Phys. 53 (2005)]

✦ Theoretical motivations
• Black hole thermodynamics (i.e. entropy area law), and information 

loss problems for evaporating black holes

• Quantum black holes may feature strong deviations around horizon, 
or even be horizonless

• Potential links to quantum gravity effects



and well founded – it is important to highlight that there is no horizonless ClePhO for
which we know su�ciently well the physics at the moment.
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Figure 7: Schematic representation of ECO models in a compactness-curvature diagram.
The horizontal axis shows the compactness parameter ✏ associated to the object, which can
be also mapped (in a model-dependent way) to a characteristic light-crossing timescale.
The vertical axis shows the maximum curvature (as measured by the Kretschmann scalar
K) of the object normalized by the corresponding quantity for a BH with the same mass
M . All known ECO models with ✏ ! 0 have large curvature in their interior, i.e. the
leftmost bottom part of the diagram is conjectured to be empty. Angular momentum
tends to decrease ✏ and to increase Kmax.

30

curvature
COs Considering a compact object with radius r0, we may 

define a compactness parameter as: 𝜀 = (r0-rH) / rH  

Important length scales for astronomical observations: 

Observation evidence of compact objects (COs)
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ClePhOs have to exist in 
a wide range of masses to 
account for observations 

of astrophysical BHs,   

[Cardoso and Pani, Living Rev. Rel. 22 (2019)]

(log scale)

• ISCO: inner-most stable orbit for massive 
particles, crucial for accretion physics

• Photon-sphere: unstable photon orbit (m=0), 
crucial for black hole shadows and prompt 
ringdown of GW observation 

• Near-horizon regime: due to large redshift, 
this regime difficult to “see” using EMs, but 
could be “heard” via GWs

• Event horizon: one-way membrane



Key questions to explore in the 
remainder of the talk:

• Are there concrete theoretical models for UCOs, 
where 𝜀→0 can be achieved without fine-tuning? 

• How can we efficiently detect near-horizon 
corrections through GW observations, despite 
the large theoretical uncertainties?
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An interesting 
theoretical candidate  



• Features: black hole like exterior + narrow 
transition region + novel high curvature interior 

• Key ingredients: quadratic gravity (Weyl tensor 
term) + a compact matter source (e.g. thermal gas) 

• Mass ranges from the minimum to arbitrarily heavy 

• Novel high curvature interior leads to interesting 
connections to black hole thermodynamics  
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Horizonless UCOs in quadratic gravity

[Holdom, JR, PRD 95 (2017); Holdom, arXiv:1905.08849; JR, PRD 100 (2019)]
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stability of the 2-2-holes against movement of the shell in Sec. III A. In Sec. III B we study point
particle geodesics and collisions inside the 2-2-hole which leads to a discussion of the trapping
mechanism. We diagnose the timelike singularity with a focus on classical field dynamics in
Sec. III C. In Sec. III D we estimate the size dependent time delay for 2-2-holes and further
describe the wave equation. A sketch of possible behaviors of a rotating 2-2-hole is given in
Sec. III E.

II. STATIC SPHERICALLY SYMMETRIC SOLUTIONS

The general line element for a static, spherically symmetric spacetime is

ds2 = �B(r)d t2 + A(r)dr2 + r2d✓ 2 + r2 sin2 ✓d�2. (3)

Due to the Bianchi identity only two field equations of the action (2) are independent. We use
the t t and r r components of the field equations, which can also be obtained by varying the
action with respect to B(r) and A(r). B(r) is affected by a rescaling of t, and this is reflected
in field equations that depend only on the normalized derivatives B(i)(r)/B(r). By convention
B(r) is set to unity at infinity in asymptotically-flat solutions. For generic CQG, ↵ 6= 0,� 6= 0,
five initial conditions are needed to determine a solution to the field equations, namely A00, A0,
A, B00/B, B0/B at some value of r [23]. We shall also consider the special case with � = 0; in
this case there are three initial conditions, A0, A, B0/B [23].

The solutions can be classified by the series expansion around r = 0 [10].

A(r) = asrs + as+1rs+1 + as+2rs+2 + ... ,

B(r) = bt(r t + bt+1r t+1 + bt+2r t+2 + ...) . (4)

There are three families of solutions as characterized by the powers of the first nonvanishing
terms (s, t) [10]. We list properties and the free parameters of these families in Tab. I. We
will not include the leading coefficient bt in parameter counting since it is determined by
B(1) = 1. The remaining infinite set of coefficients are all determined, and we illustrate this
up to some order in Appendix. A.

The nonsingular (0, 0) family has only even power terms, and the increase in the number
of free parameters in CQG indicates that Birkhoff’s theorem no longer applies. The (1,�1)
family includes the Schd solution as a special case, as all vacuum solutions of GR automatically
satisfy the field equations of CQG. It also includes other solutions with a horizon as found
recently [24]. Most interestingly CQG has a new type of solution, the (2, 2) family, that
has no counterpart in GR. It is characterized by five free parameters [11], the same as the
number of initial conditions needed to specify a solution of the field equations. At the origin
all components of the metric gµ⌫ vanish. As we will see later there is a subclass of the (2, 2)

horizonless 2-2-hole

r / M



✦ Quantum Quadratic Gravity: an old candidate of quantum gravity
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Quadratic Gravity

2

of gravity leads directly to a drastic modification of the Schwarzschild (Schd) spacetime start-
ing just at the location of the would-be horizon. In this case the metric description still holds
in the interior large curvature region where the volume of spacetime shrinks drastically. For
this gravity theory we have found what may be the generic endpoint of gravitational collapse
for a general matter distribution. The vacuum Schd solution still exists, and possibly other
solutions with a horizon, but these may not be the physically relevant, sourced-by-matter
solutions.

It is the link between the absence of a horizon after gravitational collapse and the absence
of the black hole information paradox that provides the impetus for this work. The proposed
theory of quantum gravity that underlies our study is far from new, and coming along with
it is a well-worn problem that needs to be faced. It could be said that we are trading one
problem for another, but we would like to argue that these two problems are not equal in
their intractability.

Quantum quadratic gravity (QQG) is characterized by two dimensionless couplings and
one mass scale,

SQQG =
Z

d4 x
p
�g

✓
1
2
M2R � 1

2 f 2
2

Cµ⌫↵�Cµ⌫↵� +
1

3 f 2
0

R2
◆

. (1)

This action was found to be perturbatively renormalizable and asymptotically free decades
ago [4–7]. In the standard picture the running couplings remain weak at the mass scale
⇠ | fiM|, below which the effective description is GR with M identified with the reduced
Planck mass. Unfortunately such a view suffers from the problem of a spin-2 ghost. Due to
the higher derivative terms the propagator for the metric perturbation on a flat background
has a massive pole with negative residue in the spin-2 sector. It implies either problems with
the probability interpretation and unitarity, or vacuum instability. A consensus on how to deal
with this problem is still lacking.

It appears to us that the apparent intractability of this problem is linked to the assumption
of weak couplings. Recently some thought has been given as to what happens if the theory
enters a strong phase [8][9]. In [8] we discussed the case where M is sufficiently small, so
that the couplings fi grow strong and another mass scale ⇤QQG >M appears. The poles in the
perturbative propagator then fall into the nonperturbative region in which case the physical
spectrum need not be the perturbative spectrum. A similar phenomenon occurs in quantum
chromodynamics (QCD). We discussed the analogy, both the similarities and differences, be-
tween the nonperturbative graviton propagator and the nonperturbative gluon propagator.
The analogy led to our conjecture that when M Æ ⇤QQG, the naive spin-2 ghost is removed
and a mass gap forms as determined by M. Since diffeomorphism invariance (like gauge
invariance in QCD) is preserved we further argued that GR emerges in the infrared (IR) in the
limit of a vanishing mass gap, M ! 0. (In [9] the analogy between quadratic gravity and a

• Perturbatively renormalizable and asymptotically free 

• But, at the price of “the ghost problem”: maybe tackled by quantum corrections?   

generalize GR with all 
quadratic curvature terms

[Stelle, PRD 16 (1977)]; [Fradkin, Tseytlin, NPB 201 (1982)] …

e.g. PT symmetry, modified probability interpretation, Lee-Wick theory, “fakeon”; QCD analogy [Holdom, JR, PRD 93 (2016)], …                                                                                      



✦ Quantum Quadratic Gravity: an old candidate of quantum gravity

✦ Classical Quadratic Gravity: an approximation of QQG at small and large curvatures 
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This action was found to be perturbatively renormalizable and asymptotically free decades
ago [4–7]. In the standard picture the running couplings remain weak at the mass scale
⇠ | fiM|, below which the effective description is GR with M identified with the reduced
Planck mass. Unfortunately such a view suffers from the problem of a spin-2 ghost. Due to
the higher derivative terms the propagator for the metric perturbation on a flat background
has a massive pole with negative residue in the spin-2 sector. It implies either problems with
the probability interpretation and unitarity, or vacuum instability. A consensus on how to deal
with this problem is still lacking.

It appears to us that the apparent intractability of this problem is linked to the assumption
of weak couplings. Recently some thought has been given as to what happens if the theory
enters a strong phase [8][9]. In [8] we discussed the case where M is sufficiently small, so
that the couplings fi grow strong and another mass scale ⇤QQG >M appears. The poles in the
perturbative propagator then fall into the nonperturbative region in which case the physical
spectrum need not be the perturbative spectrum. A similar phenomenon occurs in quantum
chromodynamics (QCD). We discussed the analogy, both the similarities and differences, be-
tween the nonperturbative graviton propagator and the nonperturbative gluon propagator.
The analogy led to our conjecture that when M Æ ⇤QQG, the naive spin-2 ghost is removed
and a mass gap forms as determined by M. Since diffeomorphism invariance (like gauge
invariance in QCD) is preserved we further argued that GR emerges in the infrared (IR) in the
limit of a vanishing mass gap, M ! 0. (In [9] the analogy between quadratic gravity and a

• Perturbatively renormalizable and asymptotically free 

• But, at the price of “the ghost problem”: maybe tackled by quantum corrections?   

generalize GR with all 
quadratic curvature terms

• In contrast to the standard view in EFT, this perspective allows considering solutions containing 
both small and large curvature regions without higher order terms

✦ Strong coupling:                                   (one scale)                                 
✦ Weak coupling:                               (solar system tests)     ↵,� � 1, �i � `Pl

↵,� ⇠ O(1), �i ⇠ `Pl

[Stelle, PRD 16 (1977)]; [Fradkin, Tseytlin, NPB 201 (1982)] …

e.g. PT symmetry, modified probability interpretation, Lee-Wick theory, “fakeon”; QCD analogy [Holdom, JR, PRD 93 (2016)], …                                                                                      



✦ Narrow transition region: compactness parameter 𝜀∝1/M 2 drops 
quickly for increasing M

✦ Novel interior: a novel scaling associated with quadratic curvature 
term, yielding a small radial proper length ~𝜆2 << rH (“holography”)  
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Appealing features for typical 2-2-holes
Mass considerably larger than the minimum Mmin ⇠ m2
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Figure 4: Properties of 2-2-holes sourced by a photon gas or cold Fermi gas. Left: the metric A
(red) and B (blue) as functions of the rescaled radius r̄ = r/rH . Right: the temperature T for
the photon gas (red) and the Fermi momentum kF for cold fermion with mass mf (λ2"Pl)1/2 = 1
as a function of r̄. In both panels, the dashed and solid lines denote solutions with rH/λ2 ≈ 10
and 100, respectively.

A typical 2-2-hole with a mass M " Mmin displays distinctive behaviors [18, 19], as illus-
trated in Fig. 4. Beyond the would-be horizon at rH = 2M"2Pl, the matter density becomes
negligible, and the 2-2-hole metrics closely resemble those of a black hole with the same mass.
There is a narrow transition region around the would-be horizon, where the quadratic curvature
terms in Eq. (25) begin to compete with the Einstein term. At r ! rH , the quadratic curvature
terms become dominant, leading to an extremely high curvature region in the interior. As
the distance r decreases, the metrics A(r) and B(r) approach zero following a r2 dependence,
indicating the presence of a time-like singularity at the origin. The interior also features a deep
gravitational potential, dictating the gas to have high temperatures or densities. This creates
an extreme environment capable of sourcing weakly coupled scalar fields and may provide access
to new physics that would otherwise remain inaccessible.

In investigating the non-trivial scalar profile created by astrophysical 2-2-holes, where rH is
significantly larger than λ2, it is advantageous to make certain approximations to the numerical
2-2-hole solutions. As the mass M increases, a 2-2-hole progressively resembles a black hole
from the exterior. Consequently, it is a reasonable approximation to utilize the EOM in Eq. (17)
for the exterior, along with Eq. (16) and R ≈ rH . On the other hand, the metrics and matter
properties in the interior exhibit a novel scaling behavior with M (or rH) due to the dominance
of quadratic curvature terms, particularly in the limit of M " Mmin. Specifically, at the leading
order of high curvature expansion, the solutions can be fully characterized by the following
dimensionless quantities, which are functions of the rescaled radius r̄ = r/rH ,

Ā(r̄) = A(r)
r2H
λ22

, B̄(r̄) = B(r)
r2H
λ22

, T̄ (r̄) = T (r)
√
λ2"Pl, k̄F (r̄) = kF (r)

√
λ2"Pl . (26)

Here, T (r) and kF (r) represent the proper temperature for a photon gas and the proper Fermi
momentum for a cold Fermi gas in the local inertia frame, respectively. A simplified scalar
EOM for the normalized field ϕ(r) is then obtained by substituting the approximated form of
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Figure 4: Properties of 2-2-holes sourced by a photon gas or cold Fermi gas. Left: the metric
A (red) and B (blue) as functions of the rescaled radius r̄ = r/rH . The black dotted lines
denote the Schwarzchild solution. Right: the proper temperature T for the photon gas (red)
and the proper Fermi momentum kF for the cold Fermi gas (with mass mf (�2`Pl)1/2 = 1) as
functions of r̄. The vertical gray line denotes the radius rF where kF drops quickly to zero. In
both panels, the dashed and solid lines denote solutions with rH/�2 ⇡ 10 and 100, respectively.

narrow transition region around the would-be horizon, where the quadratic curvature terms in
Eq. (24) begin to compete with the Einstein term. At r . rH , the quadratic curvature terms
become dominant, leading to an extremely high curvature region in the interior. As the distance
r decreases, the metrics A(r) and B(r) approach zero following a r2 dependence, indicating the
presence of a time-like singularity at the origin. The interior also features a deep gravitational
potential, dictating the gas to have high temperatures or densities. This creates an extreme
environment capable of sourcing weakly coupled scalar fields and may provide access to new
physics that would otherwise remain inaccessible. Specifically, the photon gas and cold Fermi
gas exhibit similar behavior in the deep interior, characterized by exceptionally high temper-
ature or Fermi momentum. The difference becomes evident at larger radii, where the Fermi
momentum kF rapidly decreases to zero within the interior at rF , when it becomes comparable
to the mass mf . In contrast, the temperature T for the photon gas extends to the would-be
horizon and decreases significantly only in the exterior.

In investigating the non-trivial scalar profile created by astrophysical 2-2-holes, where rH is
significantly larger than �2, it is advantageous to make certain approximations to the numerical
2-2-hole solutions. As the mass M increases, a 2-2-hole progressively resembles a black hole
from the exterior. Consequently, it is a reasonable approximation to utilize the EOM in Eq. (16)
for the exterior, along with Eq. (15) and R ⇡ rH . On the other hand, the metrics and matter
properties in the interior exhibit a novel scaling behavior with M (or rH) due to the dominance
of quadratic curvature terms, particularly in the limit of M � Mmin. Specifically, at the leading
order of high curvature expansion, the solutions can be fully characterized by the following
dimensionless quantities [32, 33], which are functions of the rescaled radius r̄ = r/rH ,

Ā(r̄) = A(r)
r2
H

�2
2

, B̄(r̄) = B(r)
r2
H

�2
2

, T̄ (r̄) = T (r)
p

�2`Pl, k̄F (r̄) = kF (r)
p
�2`Pl . (25)

A simplified scalar EOM for the normalized field '(r) is then obtained by substituting the full
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[JR, PRD 100 (2019); Holdom, PLB 830 (2022); Aydemir, JR, CQG 40 (2023)]
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(red) and B (blue) as functions of the rescaled radius r̄ = r/rH . Right: the temperature T for
the photon gas (red) and the Fermi momentum kF for cold fermion with mass mf (λ2"Pl)1/2 = 1
as a function of r̄. In both panels, the dashed and solid lines denote solutions with rH/λ2 ≈ 10
and 100, respectively.

A typical 2-2-hole with a mass M " Mmin displays distinctive behaviors [18, 19], as illus-
trated in Fig. 4. Beyond the would-be horizon at rH = 2M"2Pl, the matter density becomes
negligible, and the 2-2-hole metrics closely resemble those of a black hole with the same mass.
There is a narrow transition region around the would-be horizon, where the quadratic curvature
terms in Eq. (25) begin to compete with the Einstein term. At r ! rH , the quadratic curvature
terms become dominant, leading to an extremely high curvature region in the interior. As
the distance r decreases, the metrics A(r) and B(r) approach zero following a r2 dependence,
indicating the presence of a time-like singularity at the origin. The interior also features a deep
gravitational potential, dictating the gas to have high temperatures or densities. This creates
an extreme environment capable of sourcing weakly coupled scalar fields and may provide access
to new physics that would otherwise remain inaccessible.

In investigating the non-trivial scalar profile created by astrophysical 2-2-holes, where rH is
significantly larger than λ2, it is advantageous to make certain approximations to the numerical
2-2-hole solutions. As the mass M increases, a 2-2-hole progressively resembles a black hole
from the exterior. Consequently, it is a reasonable approximation to utilize the EOM in Eq. (17)
for the exterior, along with Eq. (16) and R ≈ rH . On the other hand, the metrics and matter
properties in the interior exhibit a novel scaling behavior with M (or rH) due to the dominance
of quadratic curvature terms, particularly in the limit of M " Mmin. Specifically, at the leading
order of high curvature expansion, the solutions can be fully characterized by the following
dimensionless quantities, which are functions of the rescaled radius r̄ = r/rH ,

Ā(r̄) = A(r)
r2H
λ22

, B̄(r̄) = B(r)
r2H
λ22

, T̄ (r̄) = T (r)
√
λ2"Pl, k̄F (r̄) = kF (r)

√
λ2"Pl . (26)

Here, T (r) and kF (r) represent the proper temperature for a photon gas and the proper Fermi
momentum for a cold Fermi gas in the local inertia frame, respectively. A simplified scalar
EOM for the normalized field ϕ(r) is then obtained by substituting the approximated form of
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✦ Narrow transition region: compactness parameter 𝜀∝1/M 2 drops 
quickly for increasing M

✦ Novel interior: a novel scaling associated with quadratic curvature 
term, yielding a small radial proper length ~𝜆2 << rH (“holography”)  

✦ Uniform hole properties: insensitive to matter sources

✦ Intriguing thermodynamics
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(red) and B (blue) as functions of the rescaled radius r̄ = r/rH . Right: the temperature T for
the photon gas (red) and the Fermi momentum kF for cold fermion with mass mf (λ2"Pl)1/2 = 1
as a function of r̄. In both panels, the dashed and solid lines denote solutions with rH/λ2 ≈ 10
and 100, respectively.

A typical 2-2-hole with a mass M " Mmin displays distinctive behaviors [18, 19], as illus-
trated in Fig. 4. Beyond the would-be horizon at rH = 2M"2Pl, the matter density becomes
negligible, and the 2-2-hole metrics closely resemble those of a black hole with the same mass.
There is a narrow transition region around the would-be horizon, where the quadratic curvature
terms in Eq. (25) begin to compete with the Einstein term. At r ! rH , the quadratic curvature
terms become dominant, leading to an extremely high curvature region in the interior. As
the distance r decreases, the metrics A(r) and B(r) approach zero following a r2 dependence,
indicating the presence of a time-like singularity at the origin. The interior also features a deep
gravitational potential, dictating the gas to have high temperatures or densities. This creates
an extreme environment capable of sourcing weakly coupled scalar fields and may provide access
to new physics that would otherwise remain inaccessible.

In investigating the non-trivial scalar profile created by astrophysical 2-2-holes, where rH is
significantly larger than λ2, it is advantageous to make certain approximations to the numerical
2-2-hole solutions. As the mass M increases, a 2-2-hole progressively resembles a black hole
from the exterior. Consequently, it is a reasonable approximation to utilize the EOM in Eq. (17)
for the exterior, along with Eq. (16) and R ≈ rH . On the other hand, the metrics and matter
properties in the interior exhibit a novel scaling behavior with M (or rH) due to the dominance
of quadratic curvature terms, particularly in the limit of M " Mmin. Specifically, at the leading
order of high curvature expansion, the solutions can be fully characterized by the following
dimensionless quantities, which are functions of the rescaled radius r̄ = r/rH ,

Ā(r̄) = A(r)
r2H
λ22

, B̄(r̄) = B(r)
r2H
λ22

, T̄ (r̄) = T (r)
√
λ2"Pl, k̄F (r̄) = kF (r)

√
λ2"Pl . (26)

Here, T (r) and kF (r) represent the proper temperature for a photon gas and the proper Fermi
momentum for a cold Fermi gas in the local inertia frame, respectively. A simplified scalar
EOM for the normalized field ϕ(r) is then obtained by substituting the approximated form of

11

Figure 4: Properties of 2-2-holes sourced by a photon gas or cold Fermi gas. Left: the metric
A (red) and B (blue) as functions of the rescaled radius r̄ = r/rH . The black dotted lines
denote the Schwarzchild solution. Right: the proper temperature T for the photon gas (red)
and the proper Fermi momentum kF for the cold Fermi gas (with mass mf (�2`Pl)1/2 = 1) as
functions of r̄. The vertical gray line denotes the radius rF where kF drops quickly to zero. In
both panels, the dashed and solid lines denote solutions with rH/�2 ⇡ 10 and 100, respectively.

narrow transition region around the would-be horizon, where the quadratic curvature terms in
Eq. (24) begin to compete with the Einstein term. At r . rH , the quadratic curvature terms
become dominant, leading to an extremely high curvature region in the interior. As the distance
r decreases, the metrics A(r) and B(r) approach zero following a r2 dependence, indicating the
presence of a time-like singularity at the origin. The interior also features a deep gravitational
potential, dictating the gas to have high temperatures or densities. This creates an extreme
environment capable of sourcing weakly coupled scalar fields and may provide access to new
physics that would otherwise remain inaccessible. Specifically, the photon gas and cold Fermi
gas exhibit similar behavior in the deep interior, characterized by exceptionally high temper-
ature or Fermi momentum. The difference becomes evident at larger radii, where the Fermi
momentum kF rapidly decreases to zero within the interior at rF , when it becomes comparable
to the mass mf . In contrast, the temperature T for the photon gas extends to the would-be
horizon and decreases significantly only in the exterior.

In investigating the non-trivial scalar profile created by astrophysical 2-2-holes, where rH is
significantly larger than �2, it is advantageous to make certain approximations to the numerical
2-2-hole solutions. As the mass M increases, a 2-2-hole progressively resembles a black hole
from the exterior. Consequently, it is a reasonable approximation to utilize the EOM in Eq. (16)
for the exterior, along with Eq. (15) and R ⇡ rH . On the other hand, the metrics and matter
properties in the interior exhibit a novel scaling behavior with M (or rH) due to the dominance
of quadratic curvature terms, particularly in the limit of M � Mmin. Specifically, at the leading
order of high curvature expansion, the solutions can be fully characterized by the following
dimensionless quantities [32, 33], which are functions of the rescaled radius r̄ = r/rH ,

Ā(r̄) = A(r)
r2
H

�2
2

, B̄(r̄) = B(r)
r2
H

�2
2

, T̄ (r̄) = T (r)
p

�2`Pl, k̄F (r̄) = kF (r)
p
�2`Pl . (25)

A simplified scalar EOM for the normalized field '(r) is then obtained by substituting the full
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where the factor
√
B drops out from each integrand and the volume element becomes the

geometric one.
Let’s consider the canonical ensemble to verify the conventional thermodynamics. Given

the Helmholtz free energy density f = ρ− sT and the Tolman’s law equation (13), we can first
obtain the fundamental equation

F=

ˆ R

0

√
AB(ρ− sT)d3r= U− T∞S . (16)

Then, taking the total differential of the Helmholtz free energy F and implementing
equations (5) and (13), we have

dF=

ˆ R

0

√
AB(µdn− sdT)d3r+(dF)f = µ∞

ˆ R

0

√
A dnd3r−

ˆ R

0

√
ABs

dT∞√
B
d3r+(dF)f

= µ∞ dN− SdT∞ +(dF)N,T∞ . (17)

The last term (dF)N,T∞ denotes the variation of the metric function or size of the system inde-
pendent of N and T∞. If we attribute this change to the variation of a thermodynamic volume
element

dVth =−p−1
∞ (dF)T∞,N , (18)

the conventional equation can be recovered

dF=−SdT∞ − p∞dVth +µ∞dN . (19)

Thus, by considering F as a function of N, T∞ and Vth, one gets the consistent picture with the
desired relations

S=−
(

∂F
∂T∞

)

Vth,N
, p∞ =−

(
∂F
∂Vth

)

T∞,N
, µ∞ =

(
∂F
∂N

)

T∞,Vth

. (20)

By using these relations and equation (16), the internal energy can be simply expressed as
U=−T2∞ (∂(T−1

∞ F)/∂T∞)Vth,N. Then, with equations (16) and (19), one obtains the funda-
mental thermodynamic relation for internal energy,

dU= T∞dS− p∞dVth +µ∞dN , (21)

as the manifestation of the first law of thermodynamics for global variables.
Similarly, for the grand canonical ensemble (see appendix A for the microcanonical

ensemble), given Tolman’s law in equation (13), the global grand potential satisfies

Ω=

ˆ R

0

√
AB(ρ− sT−µn)d3r= U− T∞S−µ∞N , (22)

where the term in parenthesis is the grand potential density w=−p, as defined above
equation (8). Together with equation (19), the total differential of Ω is given as

dΩ=−SdT∞ − p∞dVth −Ndµ∞ , (23)

where the thermodynamic volume can be expressed in terms of the grand potential as

dVth =−p−1
∞ (dΩ)T∞,µ∞ =

(
d
ˆ R

0

√
AB

p
p∞

d3r
)

T∞,µ∞

, (24)
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Figure 2. Properties of neutron stars composed of the cold Fermi gas for dimensionless
quantities. The red and blue denote the stable and unstable branches of the solutions.
M̃=Mm2!Pl

3, R̃= Rm2!Pl, Ñ= Nm3!Pl are the rescaled dimensionless quantities.

internal-energy-to-mass ratio U/M decreases slowly from unity and reaches the minimum
U≈ 0.64M around the turning point. In the weak gravity regime, the thermodynamic volume
Vth is very close to the geometric one Vgeo and the entropy S∝ R3 with T∞ roughly a constant.
In the unstable branch, Vth becomes slightly larger and S∝ R3/2 grows slower with R given
T∞ ∝ R−1/2.

The numerical solutions can be used to examine the first law of thermodynamics. Since
the solutions are described by the two parameters pc and R, the entropy S (or the temperature
T∞) and the thermodynamic volume Vth can vary independently. The conventional first law
then applies, i.e. dU= T∞dS− p∞dVth, as we would expect from the general derivation in
section 2. On the other hand, it has been proved in GR [15] that the physical massM satisfies
the following first law,

dM= T∞dS− p(R)
√
B(R)dVgeo = T∞dS− p∞B(R)−3/2 dVgeo , (67)

whereM is considered as a function of S and Vgeo instead. The difference between the physical
mass and total internal energy is then

dM− dU= p∞
(
dVth − dVgeoB(R)−3/2

)
. (68)

Considering the gravitational potential in the object’s interior, i.e. B(R)> B(r) for r<R, we
expect Vth > VgeoB(R)−3/2 and then dM> dU. This reveals the U and M relation from a dif-
ferent perspective apart from their definitions. Interestingly, we find no discussion of such a
relation between equation (67) and the conventional first law in the literature.

As the second example, we consider neutron stars composed of cold Fermi gas at zero
temperature, with the EoS given in equation (61). In contrast to the self-gravitating photon gas,
the radius R of neutron stars is determined with p(R) = 0 and is not an independent parameter.
Neutron stars composed of cold Fermi gas are then described by a two-parameter family of
solutions, i.e. the central pressure pc and the Fermion mass m, and the scaling behavior in
equation (93) can be used to relate solutions of different mass m, with λ= 1/m.

Figure 2 shows properties for neutron stars composed of cold Fermi gas. Similarly, the
gravitational effects become stronger with increasing central pressure. In the stable branch of
solutions, the physical mass M and the total number of particles N increase, and the radius R
decreases. In the weak gravity regime, we find N∝ rH/(m"Pl

2), µ∞ ∝ r0Hm. The maximum of
M/R remains the turning point, but the value is slightly smaller than that of self-gravitating
photon gas. The internal energy to mass ratio U/M decreases from unity in a similar way
and is bounded from below by U≈ 0.72M. For the first law of thermodynamics, since the
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, dM ⇡ T1dS + µ1dN

photon gas cold Fermi gas

• BH-like behavior emerges: 

• High curvature effects captured by “thermodynamic volume” Vth 

(T → kF)

[JR, PRD 100 (2019); Holdom, PLB 830 (2022); Aydemir, JR, CQG 40 (2023)]



Primordial 2-2-hole serve as dark matter
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energy of the gas are related as,

S =
4

3

U

T1
=

8⇡3

45
N T

3

1

Z
dr

s
A(r)

B(r)3
r
2
. (3)

The metric functions A(r), B(r) are displayed in Appendix A. Being much smaller than unity
in the highly curved 2-2-hole interior, they play a significant role in determining the unusual
2-2-hole thermodynamics.

A 2-2-hole sourced by thermal gas exhibits intriguing thermodynamic behavior for the small-
and large-mass cases. Fig. 2 shows the temperature T1 and the entropy S as functions of the
mass, where the plots have been arranged to be independent of the values of Mmin and N .
Given that the mass M gets extremely close to the minimum for small-mass cases, we display
the dependence on the difference �M , instead. The exact numerical results, denoted as black
dots in Fig. 2, can be well approximated by analytical formulae in the small- and large-mass
ranges, as shown by the colored lines. In the following, we discuss this novel behavior in more
detail.
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Figure 2: The 2-2-hole temperature T1 and entropy S as functions of the mass difference
�M = M � Mmin. Black dots denote the exact numerical results. The blue and red solid
lines are the leading-order analytical approximations for the small- and large-mass ranges,
respectively. The red dashed line shows the next-to-leading-order improvement for the small-
mass cases.

In the large-mass range, the temperature and entropy can be well approximated by the
following,

T1 ⇡ 1.7N
�1/4

M̂
1/2

min
TBH, S ⇡ 0.60N

1/4
M̂

�1/2

min
SBH . (4)

TBH = m
2

Pl
/8⇡M is the Hawking temperature and SBH = ⇡ r

2

H
/`

2

Pl
is the Bekenstein-Hawking

entropy for a Schwarzschild black hole with the same M . Anomalous behavior of black hole
thermodynamics, i.e. the negative heat capacity and the area law for entropy, now arises
from the ordinary thermal gas on a highly curved background spacetime. Therefore, for an
outside observer, a large 2-2-hole appears similar to a black hole in terms of its thermodynamic
behavior. Yet, the thermodynamic quantities depend on the number of degrees of freedom N
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emerge from novel high curvature interior. Negative heat 
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• 2-2-hole starts by radiating like a black hole 
until entering the remnant stage with reduced 
power, which can account for DM 

• Fundamental parameter Mmin determines both 
the remnant mass and the evaporation rate   

[JR, PRD 100 (2019)]
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Present observations for 2-2-hole remnants
Present observations determined mainly by the remnant mass Mmin

• Large remnants: conventional PBH search through gravitational interaction  

• Small remnant: a distinctive phenomenon associated with remnant mergers
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Remnant merger product acquires very high T

Present observations for 2-2-hole remnants
Present observations determined mainly by the remnant mass Mmin

Mmerger = 2Mmin > Mpeak

same way as a PHB.4 The parameter space starts to be constrained for Mmin & 1017 g, with
some examples summarized in Fig. 8. Thus only smaller remnants with feeble gravitational
interactions are able to constitute the entirety of dark matter.

Possible thermal radiation from isolated 2-2-hole remnants is expected to be weak. A
conservative estimation in Appendix B shows that the remnant radiation with the dark matter
abundance can safely evade BBN, CMB constraints as well as measurements for the diffuse
photon flux at present. On the other hand, if two remnants form a binary and merge, then
the merger product is hot and this can produce spectacular radiation. In this section we
study the high-energy particle emission from this process, which is better understood for 2-2-
holes than for black hole remnants of ad-hoc nature [29, 34]. The corresponding experimental
constraints turn out to be significant. This opens a new window onto small size dark matter
that only interacts gravitationally with normal matter. The latter is usually considered to be
the untestable nightmare scenario.

3.1 High-energy particles from binary mergers

As we can see in Fig. 2, a 2-2-hole remnant can be pushed away from the remnant stage if it is
able to absorb sufficient mass. The merger of two 2-2-hole remnants or the accretion of ordinary
matter onto a remnant can both contribute. Larger remnants that accrete matter more easily
have already been strongly constrained by their gravitational interactions. Smaller remnants,
on the other hand, may have a cross section with normal matter that is too small. The more
likely mechanism is instead the merger of two remnants after forming a gravitationally bound
state. After reaching equilibrium, the merger product would acquire a high temperature and
radiate away the absorbed mass within a short time. This process provides a significant source
of high-energy astrophysical particles, as we will show below by calculating the flux.

The binary merger of 2-2-hole remnants generates a 2-2-hole with Mmerger ⇡ 2Mmin > Mpeak.
The structure of a 2-2-hole with this mass is explicitly displayed in Appendix A. From the
analytical approximation for the large-mass cases (4), the merger product has

T1,merger = 3.4 ⇥ 10�2
mPl N

�1/4
M̂

�1/2

min
= 1.9 ⇥ 1015N�1/4

✓
Mmin

g

◆�1/2

GeV . (16)

As approximated by the temperature, the average energy of emitted particles drops as Mmin

increases and it spans a wide range of values. For a Planck mass remnant, the particles could
have roughly the Planck energy, whereas for a large remnant with Mmin ⇠ 1023 g, the energy is
around TeV scale. With the lifetime being much smaller than a second for this mass range, it
is assured that such mergers release their significant amount of excess energy almost instantly
to get back to the remnant phase.

Observations in high-energy cosmic rays, gamma rays and neutrinos turn out to probe
energies that are quite appropriate for the high-energy particle flux from mergers and can
be used to constrain the fundamental scale Mmin in the theory. Ultra-high energy cosmic
rays with energy beyond the GZK cut-off have long been observed. But a clear high-energy
suppression around 1011 GeV is now seen in the latest observations, and the need for new physics

4
Most of these studies assume a Newtonian force for the object, so a 2-2-hole remnant that deviates at

r ⇠ O(rH) still appears indistinguishable from a black hole.
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Excess energy (~ Mmin) released — source of 
high-energy astro-physical particles 

Observations of photon and neutrino flux 
place strong constraints 

• Large remnants: conventional PBH search through gravitational interaction  

• Small remnant: a distinctive phenomenon associated with remnant mergers
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Figure 1: Constraints on the mass fraction of 2-2-hole remnants f as a function of Mmin [33].
The gray lines present upper bounds from purely gravitational interactions as in the case for
PBHs. The colored lines show the constraints on the high-energy particle fluxes special to 2-2-
hole remnants. The solid line considers only the on-shell neutrinos and serves as a conservative
estimation. The dash and dotted lines include the parton shower effects and may suffer more
from the theoretical uncertainties.

binaries with mass around 2Mmin can be quite hot, and its temperature is close to the maximum
allowed value, with

Tmerger ⇡ 1.3⇥ 1017M̂�1/2

min
GeV . (20)

Thus, the evaporation of the merger product will produce high-energy particle fluxes, with the
average energy ranging from the Planck scale down to GeV scale. Considering the latest esti-
mations for the binary merger rate and the parton shower effects for the high-energy emission,
we found strong constraints from the photon and neutrino flux measurements for Mmin . 1026 g
due to this novel phenomenon, as summarized in Fig. 1. To account for all of dark matter,
Mmin has be to small and the upper bound varies from 105 g to 10mPl depending on the parton
show effects.

In the rest of the paper, the following benchmark values of Mmin are chosen to present the
results,

Mmin ⇡ mPl, 10
5 g, 1028 g . (21)

Mmin ⇡ mPl corresponds to the strong coupling scenario with only one fundamental scale in the
theory. Mmin ⇡ 105 g case has a large uncertainty for the constraints on f , which may range
from 10�4 to 1 depending on whether the parton show effects are included or not. Mmin ⇡ 1028 g
is around the Earth mass and related to the anomalous microlensing events recently observed
by OGLE with f at a per cent level [37].4

4
In order to be consistent with the precise solar-system test of GR, we require the Compton wavelength of

the spin-2 mode no larger than O(km). This leads to a rough upper bound Mmin . 1033 g that still includes

the earth mass case.
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✦ Scalarization: light scalar sourced exclusively in the strong gravity regime due to a “phase-
transition like” phenomenon, i.e. non-trivial scalar profiles inside/around NSs or BHs

Scalarized 2-2-holes

• Spontaneously scalarization in scalar-tensor theories

• Finite density effects for QCD axion inside NSs

10

[Damour and Esposito-Farèse 1992; 1993; 1996; Shao et al. 2017, PRX; …]

[Hook and Huang 2018, JHEP; Zhang et al. 2021, PRL]



✦ Scalarization: light scalar sourced exclusively in the strong gravity regime due to a “phase-
transition like” phenomenon, i.e. non-trivial scalar profiles inside/around NSs or BHs

✦ Novel mechanism for 2-2-holes: high-temperature (density) gases inside offer a promising 
avenue for generating non-trivial scalar profile for minimal scalar models

✦ Distinctive features of scalarized 2-2-holes

Scalarized 2-2-holes

[Li, JR, PRD 109 (2024)]

Figure 6: The finite temperature and density effects for 2-2-holes induced by the fermion
Yukawa couplings. Left: The scalar field at the origin as a function of the dimensionless
coefficient FT,ρ. Right: the contours of the dimensionless scalar charge to mass ratio γ on the
plane of the scalar VEV φ0 and the combination gφfmf,0λ̄2. Vertical lines for given value of mf

and λ̄2 given gφf ! 1.

In a similar fashion, we can express them as F̄T (r̄) = FT T̄ 2(r̄) and F̄ρ(r̄) = Fρk̄2
F (r̄), where

Fρ = 3FT/π2 = gφfmf,0λ̄2/(2π2φ0) represents the dimensionless coefficients. Figure 6 illustrates
the numerical results for this case. Similar to Fig. 3, we observe that ϕ0 − 1 is linear in F̄ρ
for small values and continues to increase with F̄ρ for large values. The contour of γ shows a
mild dependence on φ0 and becomes completely independent of φ0 in the limit of small F̄ρ, with
γ ≈ 0.01gφfmf,0λ̄2/mPl.3 To achieve a value of γ on the order of one, the combination gφfmf,0λ̄2
needs to reach 1022 GeV. Considering that gφf ! 1, this implies λ̄2 " 1012(1010GeV/mf,0).
Namely, for mf,0 ∼ 1010 GeV, a value of γ ∼ 1 can be achieved with λ̄2 " 1012, corresponding
to a minimum 2-2-hole mass of Mmin " 107 g.4 In comparison to the case with only self-
interaction, as shown in Fig. 3, the scalar mass is not directly involved in determining the
scalar charge. Furthermore, the presence of a potentially large mass for the new heavy fermion
and the absence of experimental constraints on gφf allow for more freedom in achieving a large
scalar charge, which compensates for the small radial size of the 2-2-hole interior. Therefore,
it is worth considering the observational effects of the scalar charge for stellar 2-2-holes mass
M " M!, which are the primary targets of ongoing and planned gravitational wave experiments.
It is important to note that the above estimate assumes that the heavy fermion constitutes all
of the matter sourcing the 2-2-holes. In reality, the source should also include the SM fermions.
Given the wide range of allowed parameter space described here, even a small fraction of heavy
fermions is sufficient to achieve a significant charge.

Therefore, the potential existence of 2-2-holes opens up a new possibility for sourcing light
scalar fields in the strong gravity regime. The deep gravitational potential within the interior
of these holes leads to super-Planckian high temperatures or densities of the matter source,
resulting in a significantly modified scalar potential. However, the high curvature effects in

3The scalar VEV φ0 is set below ∼ 0.1mPl to guarantee that the back-reaction of the scalar field can be
ignored.

4For reference, when considering λ2 ∼ 1012 and mf,0 ∼ 1010 GeV, we observe mf (λ2#Pl)1/2 ∼ 10−3, signifi-
cantly smaller than the benchmark value in Fig. 4. Consequently, in the scenario of a cold Fermi gas, kF will
decrease to zero at a greater distance compared to that depicted in Fig. 4.

14

• Spontaneously scalarization in scalar-tensor theories

• Finite density effects for QCD axion inside NSs

• The ratio γ ~ O(1) can be achieved if the scalar field couples to 
a new heavy fermion, i.e.

• The ratio γ is independent of the 2-2-hole mass, setting it apart 
from other mechanisms

• Potential GW observations: coalescence time, dephasing
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scalar charge-to-mass ratio γ



GW searches for 
characteristic QNMs 



Looking for the characteristic QNMs

✦ GR prediction for inspiral-merger-ringdown confirmed by 
GW observations of ~100 CBC events 

✦ Current observations identify the fundamental mode of BH 
quasi-normal modes (QNMs), probes only the photosphere 
but cannot differentiate between UCOs and BHs

✦ “Black hole spectroscopy”: search for fast-damping 
overtones at the early stage of ringdown    

11

[Vitor, Franzin, Pani, PRL 116 (2016)]



• Late ringdown: postmerger echoes appear as superposition 
of long-lived QNMs (comparable mass ratio, LVK)

• Early inspiral: resonant excitation of QNMs modifies GW 
phase (extreme-mass-ratio inspiral, LISA) 

Looking for the characteristic QNMs

✦ GR prediction for inspiral-merger-ringdown confirmed by 
GW observations of ~100 CBC events 

✦ Current observations identify the fundamental mode of BH 
quasi-normal modes (QNMs), probes only the photosphere 
but cannot differentiate between UCOs and BHs

✦ “Black hole spectroscopy”: search for fast-damping 
overtones at the early stage of ringdown    

✦ “QM black hole seismology”: UCOs with strong reflection 
feature long-lived and quasi-periodic QNMs 

11

[Vitor, Franzin, Pani, PRL 116 (2016)]

[Cardoso, Hopper, Macedo, Palenzuela, Pani, PRD 94 (2016)]

[Cardoso, del Rio and Kimura, PRD 100 (2019)]
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different ECOs. Next we extend these results to the case of nonzero spin in Sec. III. A spin
changes the shape of the resonance pattern and it increases the number of narrow resonances.
For spins typical of the merger remnants of LIGO events, this turns out to be quite relevant for
search strategies. In Sec. IV we develop three types of window functions designed to isolate
signals from noisy data. Finally in Sec. V we apply our methods onto the LIGO data; we
describe our signals and estimate p-values for each event. In Sec. VI we study consistency
of the signals and other characteristics, including secondary peaks, that strengthen the echo
interpretation. We end that section with some implications for the neutron star merger. We
conclude in Sec. VII.

II. ECHOES FROM SPINLESS ECOS

A useful way to understand echoes is through their frequency content. On a static and spher-
ically symmetric background as described by the metric ds2 = �B(r)d t2 + A(r)dr2 + r2d✓ 2 +
r2 sin2 ✓d�2, the field equations for wave perturbations are greatly simplified by separating
out angular variables and focussing on the radial equation. Considering a single frequency
mode e�i!t !(x), the radial equation reduces to

�
@ 2

x +!2
� V (x)

�
 !(x) = S(x ,!) , (1)

where x is the tortoise coordinate implicitly defined by d x/dr =
p

A(r)/B(r), and S(x ,!)
denotes the matter source that generates the perturbation. The background spacetime deter-
mines the effective potential V (x) = V (r(x)),

V (r) = B(r)
l(l + 1)

r2 +
1 � s2

2r
B(r)
A(r)

✓
B0(r)
B(r)

�
A0(r)
A(r)

◆
, (2)

for the field perturbation with spin s and angular momentum l.1 For Schwarzschild black
holes, the angular momentum barrier reaches a peak at xpeak, which is close to the light ring
radius r = 3M .

Fig. 1 presents the potential for different ECOs. A simple model is provided by a black
hole potential with the low end of the x range simply truncated at x0, and where the model
dependence is encoded in the boundary condition at x0. Some more physical models of ECOs
are basically ultracompact stars. The prime example is the gravastar [17, 18] characterized by
an exotic matter surface just outside the would-be horizon. There is no firm prediction for the
location of this surface. The standard centrifugal barrier of this regular spacetime corresponds
to a diverging potential and the behavior !(x) ⇠ (x � x0)l+1

⇠ r l+1 near the origin. Recently

1 s = 0, 1 are for the test scalar field and electromagnetic radiation cases. s = 2 gives the Regge-Wheeler equation
that governs perturbations in general relativity.

Postmerger echoes: a simple picture 
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UCOs behave as leaky cavities with two 
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(near-horizon corrections “heard” via “QM tunneling”)
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 barrier [Cardoso, Franzin, Pani, PRL 116 (2016)]

td / M ln r0�rH
rH

ln(lPl/rH) ⇠ O(100)

initial perturbation 
reflected repeatedly 

between two 
boundaries

UCOs behave as leaky cavities with two 
effective boundaries 

   (stellar mass BHs) 

Generate quasi-periodic GW signal 
with a nearly constant time delay td

Planck scale deviation detectable: log-dependence 
of td on the interior surface position

(near-horizon corrections “heard” via “QM tunneling”)



✦ Explicit computation of echo waveform 

Echo waveform uncertainties

13

• Perturbative calculation for truncated Kerr black holes

• Calculation in the “fuzzball” paradigm

• Numerical simulation for boson stars  

[Nakano et al., PTEP 2017 (2017), Maggio et al., PRD 100 (2019), Xin et al. PRD 104 (2021), 
Ma et al., PRD 105 (2022)….]

[Ikeda et al., PRD 104 (2021)]

[Siemonsen, arXiv:2404.14536]



✦ Explicit computation of echo waveform 

✦ Generic construction of echo waveform

Echo waveform uncertainties

13

• Perturbative calculation for truncated Kerr black holes

• Calculation in the “fuzzball” paradigm

• Numerical simulation for boson stars  

[Nakano et al., PTEP 2017 (2017), Maggio et al., PRD 100 (2019), Xin et al. PRD 104 (2021), 
Ma et al., PRD 105 (2022)….]

[Ikeda et al., PRD 104 (2021)]

[Siemonsen, arXiv:2404.14536]

Considering a truncated Kerr black hole, 

quantifies the smallness of the distance from the surface r0 to the would-be horizon r+ =
M(1 +

p
1� �2). Assuming ln ✏ ⌘ �⌘ ln(M/`Pl), ⌘ = 1, 2 correspond to the coordinate and

proper Planck length distance, respectively.
For a sufficiently small ✏, GW perturbations of ECOs are governed by the Teukolsky equation

with a modified boundary condition at r0. For a given source, the response of ECOs at infinity
can be related to the responses of the corresponding Kerr BHs at infinity and horizon. With
the absence of mode-mixing, the GW strain is related to the Teukolsky variables in a simple
way. The observation for ECOs then manifests as a sum of BH ringdown and echoes, i.e.
hECO(!) = hRD(!) + hecho(!), with [5] (see Appendix. A for the derivations)

hecho(!) = P(!)he↵(!), P(!) =
RBH(!)Rwall(!)

1�RBH(!)Rwall(!)
. (2)

Here, RBH(!) is the reflection coefficients of the light-ring potential barrier for waves coming
from the left and Rwall(!) is the reflection coefficient for the interior boundary. he↵(!) is related
to the BH response at horizon. Thus, with zero reflection, i.e. Rwall = 0, hECO reduces to hRD.
Eq. (2) shows that the echo waveform is determined solely by two ingredients: the processing
function P(!) and the initial profile he↵(!). Below we discuss these two ingredients in more
details.

The processing function P(!) relies intimately on the combined reflectivity of the cavity.
For latter discussion, it is convenient to separate the amplitude and phase of the product with
RBH(!)Rwall(!) ⌘ Re↵(!)ei�(!). The QNMs of ECOs are then determined by the denominator
of P(!), with

1�Re↵(!)e
i�(!) = 0, for ! = !R + i!I . (3)

The amplitude square R
2
e↵(!) is the product of energy flux reflectivities on the two surfaces,

and a ECO shall have Re↵  1 to avoid the ergoregion instability. The phase �(!) encodes
the dependence of propagating distance. For extremely compact ECOs with the time delay td
much longer than the typical time scale ⇠ M , it is a good approximation to take �(!) ⇡ td !̃,
where !̃ = ! �m⌦H denotes the wave frequency close to inner boundary, with ⌦H = �/(2r+)
the horizon angular frequency. If we further assume |!I | ⌧ |!R| and |dRe↵/d!| ⌧ td, Eq. (3)
can be solved analytically with (!R,!I) = (!n,�1/⌧n) for a series of integer n

td(!n �m⌦H) ⇡ 2⇡n, td/⌧n ⇡ � lnRe↵(!n) . (4)

These are exactly the trapped modes of a long cavity with sufficiently strong reflection. The
oscillation frequency is quasi-periodic, with the spacing between two modes roughly the inverse
of time delay, i.e. !n+1 � !n ⇡ 2⇡�f , where �f = 1/td. The mode width 1/⌧n to spacing
�f ratio is determined by the energy dissipation rate, and 1/⌧n is considerably smaller than
�f for Re↵(!n) close to one. In this limit, the echo waveform in the frequency space is
thus characterized by a quasi-periodic and well-separated resonance pattern. Under the same
approximation, the processing function around the simple pole !n can be expanded as

P(!) ⇡
Re↵(!n)

�itd

eitd!

! � !n � i/⌧n
+ ..., for ! ⇠ !n . (5)

The amplitude at the mode is then |P(!n)| = Re↵(!n)/| lnRe↵(!n)|.

4

• P(𝜔): relies on the properties of UCOs, e.g. potential shape near 
inner boundary, Rwall could vary strongly with models

• heff(𝜔): encodes source dependence, may or maynot be intimately 
related to the BH ringdown signal

22 Elisa Maggio, Paolo Pani, Guilherme Raposo
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Fig. 8 Schematic diagram for the wave propagation in the spacetime of an ECO [195, 9, 47].

the event horizon. Let us define the reflection and trasmission coefficients of a wave
coming from the left of the photon-sphere barrier with unitary amplitude as

RBH =
Bin

Bout
, TBH =

1
Bout

. (46)

As shown in Fig. 8, after each bounce in the cavity between the ECO surface and
the photon sphere the perturbation acquires a factor RRBH, where R is the ECO
surface reflectivity and RBH is defined in Eq. (46). Due to the conservation of the
Wronskian, |RBH| = |Aout/Ain| where Ain and Aout are the coefficients of the inci-
dent and reflected wave, respectively, at the photon sphere for a left-moving wave
originating at infinity. The latter coefficients are related to the amplification factor
of BHs for a wave of spin s by

Zslm =

����
Aout

Ain

����
2
�1 . (47)

The condition for the energy in the cavity to grow indefinitely is |RRBH |2 > 1 which
implies that the object is unstable due to the ergoregion instability if

|R|2 > 1
1+Zslm

. (48)
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LVK collaboration on echo search
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LSC-Virgo-KAGRA Observational Science White Paper

LSC-Virgo-KAGRA Observational Science Working Group
Burst CBC (compact binaries) Continuous Wave Stochastic Background
Search for short-duration
GW bursts (both online and
offline)

Responding to exceptional
compact binary coalescence
detections

Targeted searches for high-
interest known pulsars, e.g.
Crab, Vela

Searches for an isotropic
stochastic GW background

Search for long-duration GW
bursts

Cataloging detections of co-
alescence of neutron star and
black hole binaries and their
meaured parameters

Narrow-band searches for
high-interest known pulsars

Directional searches for
anisotropic stochastic GW
backgrounds

H
ig

he
st

pr
io

rit
y Responding to exceptional

GW burst and multi-
messenger detections

Characterizing the astrophys-
ical distribution of compact
binaries

Directed searches for high-
interest point sources, e.g.
Cassiopeia A, Scorpius X-1

Detector characterization,
data quality, and correlated
noise studies specific to
SGWB searches

Searches without templates
from GWs from binary black
holes

Testing General Relativity
with compact binaries

All-sky searches for un-
known sources, either
isolated or in binary systems

All-sky all-frequency search
for unmodeled persistent
sources

GW burst signal characteri-
zation

Low-latency searches to en-
able multimessenger astron-
omy

Long-transient searches for
emission from nearby post-
merger neutron stars

SGWB implications and
modeling

Multimessenger search for
CBC-GRB coincidences

Follow-up searches of any
promising candidates found
by other searches

Development of python
SGWB search pipeline

Measuring the properties of
extreme matter, e.g. the neu-
tron star equation of state

Detector characterization,
data preparation, scientific
software maintenance

Determination of the Hubble
constant

H
ig

h
pr

io
rit

y Multimessenger searches for
GW bursts associated with
GRBs, fast radio bursts, and
high-energy neutrinos.

Improved searches for in-
termediate mass black hole
binaries and intermediate
mass-ratio inspirals

Targeted searches for other
known pulsars, and non-
tensor polarisations

Search for very long tran-
sients (⇠ 10 hr� days)

Search for BNS post-merger
signals

Search for sub-solar mass
compact binary coalescences

Targeted searches for CW
signals with non-tensor po-
larizations

Data folding for efficient
SGWB searches

All-sky cosmic string search Search for gravitationally
lensed signals from compact
binary coalesceces

Directed searches for other
point sources of interest

Optimized algorithms for bi-
nary black hole mergers with
features well-suited to un-
modeled searches.

Improved waveform models
for signals expected during
the O4 run

Long-transient searches for
emission from distant post-
merger neutron stars

Multimessenger searches for
binary mergers associated
with fast radio bursts and
high energy neutrinos
Optimized search for
stochastic background of
GWs from CBCs

Searches for long-lived tran-
sient emission following a
known pulsar glitch

Analysis to separate compo-
nents of a stochastic GW
background

A
dd

iti
on

al
pr

io
rit

y

Continuous GW emission
from ultra-light boson clouds
around black holes

Search for SGWB-EM sky
correlations

Direct detection of dark pho-
ton dark matter

Table 2: Scientific Operations and Observational Results priorities of the LIGO Scientific Collaboration,
Virgo Collaboration and KAGRA, for the four astrophysical search working groups. Targets are grouped
into three categories (highest priority, high priority, additional priority) based on their detection potential.
There is no additional ranking within each category in this table.
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LSC-Virgo-KAGRA Observational Science White Paper (Summer 2021 edition) 

LSC-Virgo-KAGRA Observational Science White Paper

TASK LT-3.1-B(i): INVESTIGATE WAVEFORM SYSTEMATICS ON PE

ACTIVITY LT-3.1-C: MARGINALISATION OVER WAVEFORM UNCERTAINTY

The systematic differences between waveform models can be incorporated in a statistical model that
allows for uncertainty in the waveforms as well as in the parameter of the signal itself. This will allow
us to mitigate the effect of waveform systematic errors in the estimation of source properties. This
is particularly important for regions of parameter space where numerical simulations are sparse, and
there is less data to calibrate waveform models.

TASK LT-3.1-C(i): MARGINALISATION OVER WAVEFORM UNCERTAINTY

ACTIVITY LT-3.1-D: ANALYZING BACKGROUND EVENTS

Though not an official task of the PE group, as the most rigorous stage of signal characterization, PE
is often looked to for verification of a trigger’s status as signal vs. noise. To better inform the collab-
oration on such matters, we must conduct complete studies of PE analyses of background events to
better understand the behavior of posteriors and detection-related statistics (e.g., coherent vs. incoher-
ent Bayes factor) on foreground and background. This work is coordinated with the CBC detection
and search R&D group (Sec. Op-3.7).

TASK LT-3.1-D(i): PE ANALYSES OF BACKGROUND EVENTS

ACTIVITY LT-3.1-E: ANALYZING POPULATIONS OF SUB-THRESHOLD EVENTS

For many sources of GWs we expect a stochastic background, which need not be persistent or Gaus-
sian. The use of Bayesian inference to detect a population of sub-threshold events could lead to the
detection of such a stochastic background. This work is coordinated with the binary coalescence Rates
and Population R&D group (Sec. Op-3.5) and the Stochastic group (Sec. 8).

TASK LT-3.1-E(i): ANALYZING POPULATIONS OF SUB-THRESHOLD EVENTS: PE ANGLE

ACTIVITY LT-3.1-F: USE OF BAYES FACTORS IN LOW LATENCY TO HELP INFORM DETECTIONS

The production of Bayes factors, which can be useful as detection statistics, currently takes too long
to be useful for decisions made in low latency. The fact that such analyses can include physical
effects not accounted for in searches (e.g., precession) means that obtaining such statistics on shorter
timescales could allow PE to provide crucial new information at the time of detection. This work is
coordinated with the CBC detection and search R&D group (Sec. Op-3.7).

TASK LT-3.1-F(i): USE OF BAYES FACTORS IN LOW LATENCY

ACTIVITY LT-3.1-G: RESEARCH AND DEVELOPMENT OF NEW TECHNIQUES

We will continue to investigate the use of new algorithms or hardware-specific optimization (e.g.,
GPUs and/or machine learning techniques) for CBC parameter estimation, to support the desire to
lower overall latency until final results are obtained, but also to allow codes to scale to increasing
numbers of parameters and/or complex signal models.

TASK LT-3.1-G(i): RESEARCH AND DEVELOPMENT OF NEW PE TECHNIQUES

Op-3.2 Tests of General Relativity R&D (Short Term)

Short-term research and development on tests of general relativity using compact binary coalescences.

41

Short-term research and development on tests of general 
relativity using compact binary coalescences.  

TASK Op-3.2-B(ii): PROBING THE NEAR-HORIZON 
STRUCTURE 

Develop and improve searches for echoes and 
other features that probe the near-horizon structure 
of the merger remnant, using template-based and 
model-agnostic approaches 

Op-3.11 O3b and O4 Strong-Field Tests of General 
Relativity  

Subject GR to a battery of tests based on observed CBC 
signals, ranging from tests of strong field dynamics to tests 
of the nature of gravitational waves, using events in the O3b 
and O4 catalogs.  

TASK Op-3.11-C(ii): PROBING THE NEAR-HORIZON 
STRUCTURE 

Search for near-horizon effects such as late-time 
echoes using template-based and model-independent 
approaches. 
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[Tsang et al., Phys. Rev. D 98 (2018); Phys. Rev. D 101 (2020); 
Miani, et al., arXiv:2302.12158; Abbott et al. [LIGO Scientific, 
VIRGO and KAGRA], arXiv:2112.06861]
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FIG. 1: The simulated signals used to evaluate the method. Top
panel: A train of sine-Gaussians. Bottom panel: the waveform from
a toy model for a mass ratio q = 1000 inspiral of a particle in a
Schwarzschild spacetime, with Neumann reflective boundary condi-
tions just outside the horizon.

and w = 1.2. Both for cases (a) and (b), values for the ampli-
tudes of the injected signals are chosen such that the combined
(matched-filtering) signal-to-noise ratio (SNR) in all echoes
is, respectively, 8, 12, 18, and 25. The higher values corre-
spond to the SNR in the ringdown signal of a gravitational
wave detection like GW150914 [2] under the assumption that
it would be seen in Advanced LIGO at final design sensitivity,
whereas an SNR of 8 roughly equals the SNR that the ring-
down actually had for GW150914 [10].

For both types of simulated signals, 10 echoes are injected
(in reality one would expect infinitely many), and the general-
ized wavelets used to characterize the simulated signals have
5 sine-Gaussians in them. Case (a) has a well-defined damp-
ing factor � and widening factor w, allowing us to establish
that the method works as intended, by ascertaining that these
parameters are recovered correctly. In case (b), � and w may
not have rigorous meaning, but the distributions on parameter
space that are obtained should be indicative of the physics in-
volved; moreover, the peaks of their distributions should cor-
respond to what one estimates from a visual inspection of the
signal. In the latter case, the stretch of data analyzed excludes
the main signal, as one would also do in reality. In both cases

FIG. 2: Background distributions for the (log) Bayes factors BS/N
(top) and BS/G (bottom), containing 380 trials. The dashed lines show
the values of these quantities for the injection of echoes from the
inspiral toy model with SNRs of 8, 12, 18, and 25.

the first echo is searched for in a window for t0 that has a width
of 0.5 s; for the other parameters the prior distributions are flat
in �t 2 [0, 0.25] s, � 2 [0, 1], w 2 [1, 2], and �� 2 [0, 2⇡].

In order to confidently detect echoes, the Bayes factors
BS/N and BS/G must be compared with a background distri-
bution for these quantities, computed on stretches of detec-
tor noise, e.g. at times immediately preceding the inspiral-
merger-ringdown signal. These are shown in Fig. 2, together
with the values obtained from the injection of echoes for the
inspiral toy model. For all simulated signals considered here
we find that, starting from SNR = 12, log BS/G and log BS/N
are above their respective backgrounds; hence trains of echoes
with this loudness would be detected with confidence. It is
worth noting that very similar Bayes factors are obtained with
the original BayesWave algorithm, which instead of the gen-
eralized wavelets of Eq. (2) uses the standard Morlet-Gabor
wavelets consisting of single sine-Gaussians. Hence the use
of generalized wavelets does not significantly improve detec-
tion. However, the generalized wavelets allow for the charac-
terization of echoes, to which we now turn.

Fig. 3 shows the distribution of samples for case (a), for an
SNR of 25 and injected echo-related parameters �t = 0.04 s,
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TABLE XIV. Results of the echoes analysis (Sec. VIII B). List of
p-values for signal to noise Bayes Factor BS

N for the events that
are analysed. In the absence of any echoes signal these should be
uniformly distributed between [0, 1]. Fig. 15 shows the corresponding
PP plot with 90% credible intervals superimposed on it. There is no
evidence for the presence of echoes.

Event p-value

GW191109 010717 0.35
GW191129 134029 0.35
GW191204 171526 0.37
GW191215 223052 0.23
GW191216 213338 0.88
GW191222 033537 0.89
GW200115 042309 0.44
GW200129 065458 0.33
GW200202 154313 0.43
GW200208 130117 0.24
GW200219 094415 0.18
GW200224 222234 0.59
GW200225 060421 0.69
GW200311 115853 0.42
GW200316 215756 0.27

IX. CONCLUSIONS AND OUTLOOK

Gravitational-wave observations provide a unique tool to test
fundamental physics. The strongly gravitating, highly dynam-
ical and radiative spacetime associated with the late inspiral,
merger and ringdown of compact binaries facilitates tests of
general relativity in a regime that is unaccessible otherwise.
Binary black holes and binary neutron star mergers observed
in the past observing runs already set limits on possible de-
viations from GR [3, 6, 7, 9–11, 79, 99, 242, 259, 266–269].
Here we discuss a pool of tests aimed at unearthing deviations
from GR using the events detected during the second part of
the third observing run of advanced LIGO and advanced Virgo.
We perform ten tests of GR on the 15 events that have a false
alarm rate less than 10�3 yr�1. These tests are the same ones
as in the previous analysis [11], except with the following
updates. Our search for post-merger echoes is morphology-
independent in this paper and the method to test for non-GR
polarization modes is refined to address mixed polarizations
as opposed to scalar-only, vector-only, and tensor-only hy-
potheses as was the case in [11]. Furthermore, some of the
tests rely on more up-to-date waveforms; in the residuals and
inspiral-merger-consistency tests, we account for higher order
multipole moments for all the events from the second part of
the third observing run.

We subtract the maximum-likelihood GR waveform from
the data to verify the consistency of the residuals with detector
noise, thereby showing the consistency of the signals in the
data with GR. Independent estimates of the mass and spin of
the merger remants, from the inspiral and postinspiral parts
of the waveform for di↵erent events show mutual consistency.
The fractional changes in the final mass and spin from this
test, assuming they take the same values for all the events
and combining all the events analyzed so far, are constrained
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FIG. 15. Results of the echoes analysis (Sec. VIII B). Plot of fraction
of events for which the echoes signal-to-noise p-value is less than or
equal to the abscissa. The light-blue band represents the 90% credible
interval of the observed p-values, while the diagonal dashed line is
expectation from the null hypothesis. The light-gray band around
the diagonal line represents the 90% uncertainty band of the null
hypothesis.

to �Mf/M̄f = �0.02+0.07
�0.06 and ��f/�̄f = �0.06+0.10

�0.07 at 90%
credibility.

Tests aimed at looking for parametrized departures from GR
in the post-Newtonian phasing coe�cients all find consistency
with GR within the statistical uncertainties. The most well-
constrained parameter is the absolute value of the �1PN coe�-
cient, which is bound to  7.3⇥10�4 at 90% credibility, assum-
ing its value is the same for all the events. As certain modified
theories of gravity predict dispersion of GWs, we searched for
this e↵ect and found no evidence for dispersion. The bound
on the graviton mass is updated to mg  1.27 ⇥ 10�23eV/c2,
at 90% credibility. A general metric theory of gravity admits
up to six modes of GW polarization. We searched for non-GR
polarization modes and found no signature of such modes.

Analyses to measure the spin-induced quadrupole moments
of the binary components found no signatures of exotic com-
pact objects. Further, tests for deviations from GR in the
ringdown of the remnant black hole were carried out using
two independent methods and the frequency deviation parame-
ters are constrained to � f̂221 = 0.01+0.27

�0.28 and � f̂220 = 0.02+0.07
�0.07,

at 90% credibility, by hierarchically combining the results
from the events that are analyzed. We also found no evidence
for post-merger echoes from the merger remnant from our
morphology-independent search.

Future observing runs with improved detector sensitivities
will provide a larger catalog of compact binary observations
and events with larger SNR. These observations will enable us
to carry out more stringent tests of GR in parts of the parameter
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constrained parameter is the absolute value of the �1PN coe�-
cient, which is bound to  7.3⇥10�4 at 90% credibility, assum-
ing its value is the same for all the events. As certain modified
theories of gravity predict dispersion of GWs, we searched for
this e↵ect and found no evidence for dispersion. The bound
on the graviton mass is updated to mg  1.27 ⇥ 10�23eV/c2,
at 90% credibility. A general metric theory of gravity admits
up to six modes of GW polarization. We searched for non-GR
polarization modes and found no signature of such modes.

Analyses to measure the spin-induced quadrupole moments
of the binary components found no signatures of exotic com-
pact objects. Further, tests for deviations from GR in the
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p-vale for signal to noise Bayes Factor and the distribution 

uniformly distributed between 
[0, 1] with no echoes

No clear evidence for postmerger echoes from O1-O3 

e.g. BayesWave, coherent Wave Burst

quasiperiodic signal with a small 
# of pulses in the time domain

Model-independent searches: target the characteristic features independent of model-specific details 

Present methods: target rapidly damped pulses in the case of a weak reflection (high frequency) 
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quantifies the smallness of the distance from the surface r0 to the would-be horizon r+ =
M(1 +

p
1� �2). Assuming ln ✏ ⌘ �⌘ ln(M/`Pl), ⌘ = 1, 2 correspond to the coordinate and

proper Planck length distance, respectively.
For a sufficiently small ✏, GW perturbations of ECOs are governed by the Teukolsky equation

with a modified boundary condition at r0. For a given source, the response of ECOs at infinity
can be related to the responses of the corresponding Kerr BHs at infinity and horizon. With
the absence of mode-mixing, the GW strain is related to the Teukolsky variables in a simple
way. The observation for ECOs then manifests as a sum of BH ringdown and echoes, i.e.
hECO(!) = hRD(!) + hecho(!), with [5] (see Appendix. A for the derivations)

hecho(!) = P(!)he↵(!), P(!) =
RBH(!)Rwall(!)

1�RBH(!)Rwall(!)
. (2)

Here, RBH(!) is the reflection coefficients of the light-ring potential barrier for waves coming
from the left and Rwall(!) is the reflection coefficient for the interior boundary. he↵(!) is related
to the BH response at horizon. Thus, with zero reflection, i.e. Rwall = 0, hECO reduces to hRD.
Eq. (2) shows that the echo waveform is determined solely by two ingredients: the processing
function P(!) and the initial profile he↵(!). Below we discuss these two ingredients in more
details.

The processing function P(!) relies intimately on the combined reflectivity of the cavity.
For latter discussion, it is convenient to separate the amplitude and phase of the product with
RBH(!)Rwall(!) ⌘ Re↵(!)ei�(!). The QNMs of ECOs are then determined by the denominator
of P(!), with

1�Re↵(!)e
i�(!) = 0, for ! = !R + i!I . (3)

The amplitude square R
2
e↵(!) is the product of energy flux reflectivities on the two surfaces,

and a ECO shall have Re↵  1 to avoid the ergoregion instability. The phase �(!) encodes
the dependence of propagating distance. For extremely compact ECOs with the time delay td
much longer than the typical time scale ⇠ M , it is a good approximation to take �(!) ⇡ td !̃,
where !̃ = ! �m⌦H denotes the wave frequency close to inner boundary, with ⌦H = �/(2r+)
the horizon angular frequency. If we further assume |!I | ⌧ |!R| and |dRe↵/d!| ⌧ td, Eq. (3)
can be solved analytically with (!R,!I) = (!n,�1/⌧n) for a series of integer n

td(!n �m⌦H) ⇡ 2⇡n, td/⌧n ⇡ � lnRe↵(!n) . (4)

These are exactly the trapped modes of a long cavity with sufficiently strong reflection. The
oscillation frequency is quasi-periodic, with the spacing between two modes roughly the inverse
of time delay, i.e. !n+1 � !n ⇡ 2⇡�f , where �f = 1/td. The mode width 1/⌧n to spacing
�f ratio is determined by the energy dissipation rate, and 1/⌧n is considerably smaller than
�f for Re↵(!n) close to one. In this limit, the echo waveform in the frequency space is
thus characterized by a quasi-periodic and well-separated resonance pattern. Under the same
approximation, the processing function around the simple pole !n can be expanded as

P(!) ⇡
Re↵(!n)

�itd

eitd!

! � !n � i/⌧n
+ ..., for ! ⇠ !n . (5)

The amplitude at the mode is then |P(!n)| = Re↵(!n)/| lnRe↵(!n)|.
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h(!) =
NX

n=1
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i�ne�i!tn �i

(! � !n)� i/⌧n
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“QM black hole seismology”: in the case of a strong reflection, it is preferable to view echoes as a 
superposition of long-lived and quasi-periodic QNMs of UCOs
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Figure 8: Left: the echo amplitude |h(T )
echo(!)| for the four benchmarks with the dimensionless

spin � = 0.69 and NE = 200. The gray solid, purple dotted, red dashed and blue dotdashed
lines are for B1, B2, B3 and B4, respectively. The two vertical lines are for M!H = 0.40 and
M!RD = 0.53. Right: the ratio SNRecho/SNRRD as a function of NE for the four benchmarks.
The legends are the same as the left plot.

The properties of four benchmarks are displayed in Fig. 8. The echo amplitude |h(T )
echo(!)| in

the left panel demonstrate a significant degree of complementarity. The spectrum is dominated
by the positive frequency component for the first three benchmarks, while the negative fre-
quency component is larger for the last one. In comparison to the constant reflection case B1,
the damping model B2 exhibits a significantly broader spectrum, with the exception of a minor
dip around !H . Notably, there exists a larger number of narrow modes at lower frequencies,
which grow large as the time increases. In contrast, the spectrum with the Boltzmann reflection
(B3) exhibits a peak around the special frequency !H , which rapidly diminishes as ! deviates
from !H . The spectrum associated with the "infalling particle" (B4) features strong modes
at high frequency. The right panel shows the ratio of the SNRs for echoes and ringdown as a
function of T/td for the four benchmarks. The ratio for B2 grows the fastest with T due to
the dominance of low frequency modes with very long lifetime. In contrast, those for B3 and
B4 saturate at early times due to the dominance of quickly damped modes at high frequency.
Our method targets more the models as B1, B2, which are dominated by long-lived QNMs.
Nonetheless, as we will show below, it can still detect models like B3, B4, though with lower
probability.

4.2 Search results for the benchmarks

Now we are ready to conduct the model-agnostic search for the four complementary benchmarks
designed above. To account for the detector response, we consider a simple constant effective
impulse response Rdet, where the waveform can be written as hdet(f) =

1
2(hecho(f)+h⇤

echo(�f))
with the constant Rdet absorbed in the amplitude. More generally, as long as the detector
response varies slowly with frequency, the model agnostic search for the narrow QNMs would
not be much affected. Also, considering the narrow widths of targeted QNMs, the positive
and negative frequency components in hdet(f) are unlikely to overlap in general. The search
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Looking for the characteristic QNMs

quantifies the smallness of the distance from the surface r0 to the would-be horizon r+ =
M(1 +

p
1� �2). Assuming ln ✏ ⌘ �⌘ ln(M/`Pl), ⌘ = 1, 2 correspond to the coordinate and

proper Planck length distance, respectively.
For a sufficiently small ✏, GW perturbations of ECOs are governed by the Teukolsky equation

with a modified boundary condition at r0. For a given source, the response of ECOs at infinity
can be related to the responses of the corresponding Kerr BHs at infinity and horizon. With
the absence of mode-mixing, the GW strain is related to the Teukolsky variables in a simple
way. The observation for ECOs then manifests as a sum of BH ringdown and echoes, i.e.
hECO(!) = hRD(!) + hecho(!), with [5] (see Appendix. A for the derivations)

hecho(!) = P(!)he↵(!), P(!) =
RBH(!)Rwall(!)

1�RBH(!)Rwall(!)
. (2)

Here, RBH(!) is the reflection coefficients of the light-ring potential barrier for waves coming
from the left and Rwall(!) is the reflection coefficient for the interior boundary. he↵(!) is related
to the BH response at horizon. Thus, with zero reflection, i.e. Rwall = 0, hECO reduces to hRD.
Eq. (2) shows that the echo waveform is determined solely by two ingredients: the processing
function P(!) and the initial profile he↵(!). Below we discuss these two ingredients in more
details.

The processing function P(!) relies intimately on the combined reflectivity of the cavity.
For latter discussion, it is convenient to separate the amplitude and phase of the product with
RBH(!)Rwall(!) ⌘ Re↵(!)ei�(!). The QNMs of ECOs are then determined by the denominator
of P(!), with

1�Re↵(!)e
i�(!) = 0, for ! = !R + i!I . (3)

The amplitude square R
2
e↵(!) is the product of energy flux reflectivities on the two surfaces,

and a ECO shall have Re↵  1 to avoid the ergoregion instability. The phase �(!) encodes
the dependence of propagating distance. For extremely compact ECOs with the time delay td
much longer than the typical time scale ⇠ M , it is a good approximation to take �(!) ⇡ td !̃,
where !̃ = ! �m⌦H denotes the wave frequency close to inner boundary, with ⌦H = �/(2r+)
the horizon angular frequency. If we further assume |!I | ⌧ |!R| and |dRe↵/d!| ⌧ td, Eq. (3)
can be solved analytically with (!R,!I) = (!n,�1/⌧n) for a series of integer n

td(!n �m⌦H) ⇡ 2⇡n, td/⌧n ⇡ � lnRe↵(!n) . (4)

These are exactly the trapped modes of a long cavity with sufficiently strong reflection. The
oscillation frequency is quasi-periodic, with the spacing between two modes roughly the inverse
of time delay, i.e. !n+1 � !n ⇡ 2⇡�f , where �f = 1/td. The mode width 1/⌧n to spacing
�f ratio is determined by the energy dissipation rate, and 1/⌧n is considerably smaller than
�f for Re↵(!n) close to one. In this limit, the echo waveform in the frequency space is
thus characterized by a quasi-periodic and well-separated resonance pattern. Under the same
approximation, the processing function around the simple pole !n can be expanded as

P(!) ⇡
Re↵(!n)

�itd

eitd!

! � !n � i/⌧n
+ ..., for ! ⇠ !n . (5)

The amplitude at the mode is then |P(!n)| = Re↵(!n)/| lnRe↵(!n)|.

4

“QM black hole seismology”: in the case of a strong reflection, it is preferable to view echoes as a 
superposition of long-lived and quasi-periodic QNMs of UCOs
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Re↵(!) = RBH(!)Rwall(!) ⇠ 1

Complementary benchmarks

 — test the algorithm's ability 
to detect diverse echo signal

• Rwall: “damping 2-2-holes”, 
“Boltzman reflection”

• heff: “initial pulse from 
inside”, “infalling particles” 
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hecho(!) = he↵(!)
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(quasi-periodic)

(long-lived)

interior reflection
source/initial 
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✦ Search template: periodic and uniform echo waveform (UniEw)
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QNMs search with partial phase information 
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✦ Search template: periodic and uniform echo waveform (UniEw)

✦ Bayesian search algorithm for QNMs: phase-marginalized likelihood

QNMs average amplitude:  

QNMs search with partial phase information 

QNMs position/average spacing: 

QNMs average width:  

Frequency band:  

Acomb

fw
fmin, fmax

f0, �f ⇡ 1/td

[JR, Wu, PRD 104 (2021); Wu, Gao, 
JR, Afshordi, PRD 108 (2023]
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• Log-Bayes factor used to compare different models

• Inferred UniEw parameters encode essential properties of QNMs

relative phase info (sensitive to SNR per mode)                         

Thus, the marginalized log-likelihood normalized by the noise contribution becomes,

lnLnew ⌘

NX

n=1

[lnLn(d|h)� lnLn(d|0)]

=
NX

n=1

ln I0

 �����
X

j2n

djh⇤
j

P̃j

�����

!
�

1

2

NX

j=1

|hj|
2

P̃j

. (11)

In comparison to the old likelihood Eq. (8) used in Ref. [3], different frequency bins belonging
to one QNM are coherently combined in Eq. (11), and the log-Bessel function acts on the
coherent sum. As a result, the new likelihood depends mainly on the SNR per mode, i.e.P

j2n djh
⇤
j/P̃j ⇡

P
j2n |hj|

2/P̃j = SNR2
n when the signal dominates over the noise. When the

QNM is well resolved, Tn � ⌧n, the SNR per mode could be considerably larger than the SNR
per bin, and so the new likelihood will significantly improve the sensitivity.

2.2 Comparison of two likelihoods

To compare the performance of two likelihoods, we consider a simple toy model consisting of
periodic and uniform QNMs, namely, waveforms in Eq. (3) satisfying

An = A, ⌧n = ⌧, fn = n�f + f0 . (12)

Assuming �f � 1/⌧ and tn ⌧ ⌧ , the toy model is described by six parameters:

�f, f0, A, ⌧, T, N , (13)

denoting the spacing, the shift, the amplitude, the damping time, the time duration, the reso-
nance number of the QNMs, respectively. Then, injecting this toy model into Gaussian noises,
we compare the performance of the two likelihoods, and also with search results in Ref. [3].

We first consider a simple search of the maximum log-likelihood, where {�f , f0, ⌧ , T} is
fixed as the injected values and only the amplitude A of the signal model can vary. For a given
injected signal, we search for Asearch that maximizes the log-likelihood in Eqs. (8) and (11) for
each noise, respectively, and then produce a distribution of the maximum log-likelihood lnLmax
and the corresponding amplitude Asearch for different noise realizations. The distributions peak
around zero for small signals, and are approximately Gaussian for sufficiently large signals.
Below we compare the two likelihoods from different perspectives.2

Fig. 1 compares the time duration dependence for a given injected signal amplitude. The
top row shows the dependence for the maximum log-likelihood lnLmax. The performances of
the two likelihoods are similar at low frequency resolution, i.e. T/⌧ . 1, while they differ
significantly when the resonance gets well resolved, i.e. T/⌧ & 1. This is expected since the
difference of Eqs. (8) and (11) comes down to the number of frequency bins contributing to one
QNM. In low frequency resolution limit, the signal SNR / T 1/2 due to the exponential factor
in Eq. (3) and so the mean of lnLmax is proportional to T approximately. When T/⌧ & 1, SNR
per mode approaches the continuous limit, and the new likelihood becomes quite insensitive

2
Some of the injected parameters are fixed, i.e. �f = 5Hz, f0 =1.26 Hz, ⌧ = 4 s, N = 6, and others can

vary, with the explicit values given in each figure.
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likelihood in each bin is
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where I0 is the zeroth-order modified Bessel function of the first kind. Combining N frequency
bins, the marginalized log-likelihood normalized by the noise contribution is
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which we denote as the old likelihood for later comparison. The second term is the conventional
optimal signal-to-noise ratio (SNR) term: SNR2 =

PN
j=1 |hj|

2/P̃j. The main effect of phase
marginalization lies in the first term, a log-Bessel function acting on the overlap between the
absolute values of signal and data. The sensitivity of the old likelihood then depends mainly
on the SNR per frequency bin, i.e. |dj||hj|/P̃j ⇡ |hj|

2/P̃j when hj dominates over noise, and it
loses sensitivity to the signal when |hj|

2/P̃j . 1.
Next, we move to the more refined treatment of the phase in Eq. (5). To deal with the un-

wanted phase for the n-th QNM, we first combine the likelihood of all frequency bins satisfying
fn ��f/2 . fj . fn +�f/2. Then, we marginalize over the second phase term by treating it
as a constant �0n. The combined likelihood for the n-th mode becomes
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where 'j = �j � ( j � �0n),  j � �0n is the relative phase of h and h⇤

j is the complex conjugate
of hj. The integral is simplified with the following trick for ai, bi 2 R
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no phase info (sensitive to SNR per bin) 
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Figure 11: The log Bayes factor distributions for the four benchmarks as a function of the time
duration T�fmax. The signal amplitude is selected such that SNRecho ⇡ 16 at T�fmax ⇡ 200.
The upper and lower bars represent the symmetric 90% credible intervals, and the dots denote
the median values. The gray band represents the 90% credible interval of the noise distributions.

the new likelihood’s performance remains stable as T increases, while the old likelihood’s per-
formance deteriorates rapidly. The median value of the template SNR traces well the injected
value of SNRecho for all T . The inferred combined reflectivity 1/| lnRe↵ | peaks around the
maximum value T�f for small time duration case, as the frequency resolution is insufficient to
resolve the dominant QNMs. When T�fmax & 200, its posterior distribution is more symmet-
ric and the median value reaches a saturation point, offering a reliable estimate of the average
1/| lnRe↵ | for the detected QNMs. For B2, both likelihoods show a faster increase in the log
Bayes factor as T increases, which is associated with the increasing SNRecho shown in Fig. 8.
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B2: increasing contribution 
from unresolved QNMs

B1: best performance; 
most similar to UniEw

B4: wider modes dominate

B3: a small # of QNMs dominate

18

Figure 10: The four benchmarks and search results for their injections with SNRdom ⇡ 16 and
T�fmax ⇡ 200. For each row, the left panel plots SNR2 per frequency bin (with bin resolution
M/T ⇡ 10�5) by the blue lines and SNR2 per QNM by the orange bars. A well-resolved QNM
has the orange bar much higher than the blue line. The two green bands (dashed vertical lines)
denote the symmetric 90% credible intervals (median values) of fmin and fmax from the overall
posterior distributions. The right panel shows the corner plots for the spacing M�f and the
width log10 M/⌧ with the overall posterior distributions. The vertical gray lines present the
best-fit values of M�f from the injected spectrum within the inferred frequency ranges.
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• Non-Gaussian artifacts (instrumental lines) and validation on LIGO O1 data 
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LIGO real data search

After validating the methodology and implementation
of the algorithm with LIGO data, we are now ready to
perform the proposed search for the confirmed gravitational
wave events. Figure 8 summarizes our search results for
GW150914. For each time duration T, the blue histogram
shows the background distribution of log Bayes factor with
500 samples. The black dashed line denotes lnBobs, the
detection statistic obtained by analyzing the data right after
merger. With the smoothened background distributions, we
can calculate the p-value with

p ¼ 1 −
Z

lnBobs

−∞
PðxÞdx; ð21Þ

which quantifies the probability of getting lnB from
noise larger than that for the observed data. The smallest
p-value is 3% for T ¼ 13.2 s. Overall, the results are
consistent with background distributions, and there is no
clear evidence of a comblike structure in the strain data
amplitude.

We perform the search for GW151012 following the
same procedure. As the frequency band of interest extends
up to around 500 Hz for a lighter final object, more spectral
lines have to be taken into account for a proper background
estimation. In addition to those considered for GW150914,
we further notch out the calibration lines and the violin
modes around 300 Hz. Because of the enlarging priors for
the frequency band, we set the notching threshold a bit
lower and the minimum width of frequency band a bit
larger as shown in Table III. Figure 9 shows the search
results. The overall shapes of the background distributions
are similar to that for GW150914. The search results are
consistent with background distributions, with the smallest
p-value being 34% for T ¼ 40.6 s.
Therefore, given the priors defined in Table II, we find no

clear evidence of a comblike structure as reported in the
previous study [30] for the first two events in the GWTC-1
catalog. As a simple check, we rerun the analysis on data
after merger by considering an incoherent combination of
two detectors to resemble more the analysis in Ref. [30].

FIG. 7. The search results for an injected echo signal from model A in detector noise around GW150914, with T ¼ 66.3 s and the
average network optimal SNR ≈ 17.5. Top left: the absolute value of the normalized data in the frequency domain with lnB ≈ 2.5.
The light gray and orange (cyan) lines denote the combined strain (noise) data d̃HL in Eq. (14) before and after notching, respectively.
The blue line denotes the normalized best-fit comb h̃0 in Eq. (14) with frequency bins influenced by notching removed. Top right: the
corner plot for the sampled posterior distributions for half of the search parameters, where the full prior ranges are shown. Bottom left:
the log Bayes factor distributions for detector noise before and after notching. Bottom right: the log Bayes factor distributions for
detector noise and the injected signal after notching.
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• Non-Gaussian artifacts (instrumental lines) and validation on LIGO O1 data 

• NO clear evidence for GW150914 and GW151012 (old likelihood) 
   
• Search on LVK O1-O3 data with both likelihoods ongoing 
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LIGO real data search

[JR, Wu, Zhang, in progress]
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Summary

• Planck-scale physics could naturally manifest just beyond the horizon scale rH around 
macroscopic holes, playing a crucial role for not quite black holes. This may lead to 
intriguing thermodynamic behaviors and significant phenomenological implications.

• Gravitational wave echoes provide a promising way to probe tiny deviations just outside rH. 
Developing model-independent search methods for these echoes is crucial. The primary 
observable, the time delay, can be accurately inferred by searching for quasi-periodic and 
long-lived QNMs. Stay tuned! 
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“With the increase in GW and multi-messenger data anticipated in this 
decade… We are therefore on the threshold of transforming BH physics 
from a theoretical conundrum to a subject of observational science, with 
potentially far-reaching implications for the foundations of physics, 
including the quantum nature of gravity” 

Snowmass2021 Cosmic Frontier White Paper: Fundamental Physics and Beyond the Standard Model



Thank You!



Ghost Problem in Quantum Quadratic Gravity
Classically the spectrum has a massive, spin-2 ghost (vacuum instability or unitarity problem), indicating 
theoretical inconsistency. BUT, quantum effects may change the story:  

1) remove ghost in perturbative theory, i.e. Lee-Wick theory, PT symmetry…  
2) remove ghost by strong interaction associated with f0, f2 in analogy to QCD [Holdom, JR, PRD 93 (2016)]

A QCD analogy for quadratic gravity

QCD QQG                   e

UV behavior perturbatively renormalizable, asymptotically free

Strong scale gauge coupling strong at      d          gravitational couplings strong at       d 

Nonperturb
ative effects

the perturbative gluon removed 
from the physical spectrum and 
a mass gap developed as 
controlled by 

            : the massless graviton pole 
emerges as the only light state in the 
physical spectrum (with would-be  
ghost removed)

IR effective 
description

color singlet states described by 
Chiral Lagrangian 

massless graviton described by GR with 
the derivative expansion,                      

⇤QQG⇤QCD

mPl ⇠ ⇤QQG

M = 0

⇤QCD

(M . ⇤QQG)

GR emerges as the low energy effective theory! 

8

GR emerges as 
the low energy 

effective theory! 

CERN workshop 2019: https://indico.cern.ch/event/740038

https://indico.cern.ch/event/740038/timetable/#all


Timelike curvature singularity for 2-2-holes Timelike curvature singularity?!

Geodesic 
incompleteness?

KG equation:  

May appear regular as 
probed by finite energy 

wave-packets?

• Near the 2-2-singularity, all waves behave like 
the s-wave on a nonsingular spacetime. Only 
one solution has finite energy.          

A Neumann boundary condition is imposed

?

• The initial value problem of the wave equation is well-posed if     has a unique 

positive self-adjoint extension  Wald, JMP. 21, 2802 (1980); Ishibashi, Wald, CQG. 20, 3815 (2003);
Horowitz, Marolf, PRD 52, 5670 (1995) Ishibashi, Hosoya, PRD 60, 104028 (1999) 
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First law in literature Conventional first law

the turning point. In the weak gravity regime, the thermodynamic volume Vth is very close to
the geometric one Vgeo and the entropy S / R

3 with T1 roughly a constant. In the unstable
branch, Vth becomes slightly larger and S / R

3/2 grows slower with R given T1 / R
�1/2.

The numerical solutions can be used to examine the first law of thermodynamics. Since the
solutions are described by the two parameters pc and R, the entropy S (or the temperature T1)
and the thermodynamic volume Vth can vary independently. The conventional first law then
applies, i.e. dU = T1dS � p1dVth, as we would expect from the general derivation in Sec. 2.
On the other hand, it has been proved in GR [14] that the physical mass M satisfies the first
law below

dM = T1dS � p(R)
p
B(R) dVgeo = T1dS � p1 B(R)�3/2

dVgeo , (66)

where M is considered as a function of S and Vgeo instead. The difference between the physical
mass and total internal energy is then

dM � dU = p1
�
dVth � dVgeoB(R)�3/2

�
. (67)

Considering the gravitational potential in the object’s interior, i.e. B(R) > B(r) for r < R,
we expect Vth > VgeoB(R)�3/2 and then dM > dU . This reveals the U and M relation from a
different perspective apart from their definitions. Interestingly, we find no discussion of such
relation between Eq. (66) and the conventional first law in the literature.

As the second example, we consider neutron stars composed of cold Fermi gas at zero
temperature, with the EoS given in Eq. (60). In contrast to the self-gravitating photon gas, the
radius R of neutron stars is determined with p(R) = 0, and is not an independent parameter.
Neutron stars composed of cold Fermi gas are then described by a two-parameter family of
solutions, i.e. the central pressure pc and the Fermion mass m, and the scaling behavior in
Eq. (92) can be used to relate solutions of different mass m, with � = 1/m.

Figure 2: Properties of neutron stars composed of the cold Fermi gas for dimensionless quanti-
ties. The red and blue denote the stable and unstable branches of the solutions. M̃ = M m

2
`
3
Pl,

R̃ = Rm
2
`Pl, Ñ = N m

3
`Pl are the rescaled dimensionless quantities.

Figure 2 shows properties for neutron stars composed of cold Fermi gas. Similarly, the
gravitational effects become stronger with increasing central pressure. In the stable branch of
solutions, the physical mass M and total number of particles N increase, and the radius R

decreases. In the weak gravity regime, we find N / rH/(m `
2
Pl), µ1 / r

0
H
m. The maximum of
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Thermodynamics in curved background
✦ Thermodynamics of self-gravitating systems usually explored in GR, i.e.  deriving 

equilibrium equation from maximum entropy principle, finding exact relation to M 

✦ Beyond GR, for laws governing the global thermodynamic quantities, we may directly 
generalize the conventional thermodynamics. The curved spacetime effects are encoded 
in the thermodynamic volume Vth

• Self-gravitating photon gas in GR: U/M>0.64, 𝜀>1, dVgeo non-negligible  

• Thermal 2-2-hole: U/M=3/8, 𝜀~0, dVth responsible for dM-dU, dM≈T∞ dS (similar to BH)

By using these relations and Eq. (16), the internal energy can be simply expressed as U =
�T

2
1 (@(T�1

1 F )/@T1)Vth,N
. Then, with Eqs. (16) and (19), one obtains the fundamental ther-

modynamic relation for internal energy,

dU = T1dS � p1dVth + µ1dN , (21)

as the manifestation of the first law of thermodynamics for global variables.
Similarly, for the grand canonical ensemble, given the Tolman’s law in Eq. (13), the global

grand potential satisfies

⌦ =

Z
R

0

p
AB (⇢� s T � µn) d3r = U � T1S � µ1N , (22)

where the term in parenthesis is the grand potential density w = �p, as defined above Eq. (8).
Together with Eq. (19), the total differential of ⌦ is given as

d⌦ = �SdT1 � p1dVth �Ndµ1 , (23)

where the thermodynamic volume can be expressed in terms of the grand potential as

dVth = �p
�1
1 (d⌦)T1,µ1 =

✓
d

Z
R

0

p
AB

p

p1
d
3
r

◆

T1,µ1

, (24)

and consequently the required relations are obtained as

S = �
✓

@⌦

@T1

◆

Vth,µ1

, p1 = �
✓

@⌦

@Vth

◆

T1,µ1

, N = �
✓

@⌦

@µ1

◆

T1,Vth

. (25)

In short; we have seen that global thermodynamic variables obey the conventional thermo-
dynamics in the sense that their definitions fully encode the curved spacetime effects. The key
ingredient is to appropriately identify the thermodynamic volume Vth as in Eqs. (18) and (24).
Finding the explicit expression for Vth is not in general straightforward and its attainability
highly depends on the equation of state in question. This can be conveniently seen from the
definition given in Eq. (24). Unlike T (r), µ(r) that follow Tolman’s law, the spatial variation of
pressure depends on the equation of state as we will see later in our examples. The difficulty is
in separating the spatial integral from the T1 when the latter is tangled in a position dependent
non-trivial functions. If such a separation is possible, then one can have a clear expression for
Vth. For instance, in the case of massless ideal gas with equation of state ⇢ = 3p, which yields
p / T

4, we have p(r)/p1 = B
2(r) from the Tolman’s law, and the thermodynamic volume

emerges as

Vth =

Z
R

0

s
A(r)

B3(r)
d
3
r , (26)

with ⌦ = �p1Vth. Apparently, Vth differs from the geometric volume

Vgeo =

Z
R

0

p
A d

3
r . (27)
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(M is the physical/ADM mass)
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By using these relations and Eq. (16), the internal energy can be simply expressed as U =
�T

2
1 (@(T�1

1 F )/@T1)Vth,N
. Then, with Eqs. (16) and (19), one obtains the fundamental ther-

modynamic relation for internal energy,

dU = T1dS � p1dVth + µ1dN , (21)

as the manifestation of the first law of thermodynamics for global variables.
Similarly, for the grand canonical ensemble, given the Tolman’s law in Eq. (13), the global

grand potential satisfies
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where the term in parenthesis is the grand potential density w = �p, as defined above Eq. (8).
Together with Eq. (19), the total differential of ⌦ is given as
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In short; we have seen that global thermodynamic variables obey the conventional thermo-
dynamics in the sense that their definitions fully encode the curved spacetime effects. The key
ingredient is to appropriately identify the thermodynamic volume Vth as in Eqs. (18) and (24).
Finding the explicit expression for Vth is not in general straightforward and its attainability
highly depends on the equation of state in question. This can be conveniently seen from the
definition given in Eq. (24). Unlike T (r), µ(r) that follow Tolman’s law, the spatial variation of
pressure depends on the equation of state as we will see later in our examples. The difficulty is
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(U is total gas internal energy)

[Aydemir, JR, CQG 40 (2023)]


