Institute of High Energy Physics **Chinese Academy of Sciences**

Theoretical Physics Division, IHEP, CAS

Effective Field Theories, Gravity, and Cosmology April 28, 2025

Based on collaborations with Bob Holdom, Ufuk Aydemir, Di Wu, Niayesh Afshordi, Pengyuan Gao, Ximeng Li

Not Quite Black Holes

Jing Ren (任婧)

Outline

Why not quite black holes?

- An interesting theoretical candidate
- GW searches for characteristic QNMs

Excellent agreement between GR predictions and observations of black holes in a wide range of mass, i.e. from O(1) to 10^9 solar mass

Prize share: 1/2

Courtesy NobelPrize.org

The Nobel Prize in Physics 2020

Prize share: 1/4

III. Niklas Elmehed. © Nobel Media. Andrea Ghez Prize share: 1/4

"The discoveries of this year's Laureates have broken new ground in the study of compact and supermassive objects. But these exotic objects still pose many questions that beg for answers and motivate future research. Not only questions about their inner structure, but also questions about how to test our theory of gravity under the extreme conditions in the immediate vicinity of a black **hole**" — David Haviland (2020 Nobel Committee for Physics chair)

Excellent agreement between GR predictions and observations of black holes in a wide range of mass, i.e. from O(1) to 10^9 solar mass

The Nobel Prize in Physics 2020

Media Reinhard Genzel Prize share: 1/4

Andrea Ghez Prize share: 1/4

"The discoveries of this year's Laureates have broken new ground in the study of compact and supermassive objects. But these exotic objects still pose many questions that beg for answers and motivate future research. Not only questions about their inner structure, but also questions about how to test our theory of gravity under the extreme conditions in the immediate vicinity of a black **hole**" — David Haviland (2020 Nobel Committee for Physics chair)

One possibility: could these exotic objects be *horizonless* ultracompact objects (UCOs)?

Theoretically motivated: potential link to quantum gravity effects; crucial for resolving fundamental theoretical challenges of BHs

Observationally intriguing: GWs offer a new window to probe the near-horizon regime with large redshifts

Quantum black hole as horizonless objects

Theoretical motivations

- Black hole thermodynamics (i.e. entropy area law), and information loss problems for evaporating black holes
- Quantum black holes may feature strong deviations around horizon, or even be *horizonless*
- Potential links to quantum gravity effects

Quantum black hole as horizonless objects

Theoretical motivations

- Black hole thermodynamics (i.e. entropy area law), and information loss problems for evaporating black holes
- Quantum black holes may feature strong deviations around horizon, or even be *horizonless*
- Potential links to quantum gravity effects

[Mazur and Mottola, gr-qc/0109035]

exterior: Schwarzschild vacuum non-rotating

String theory

Classical BH spacetime as an approximation of quantum fuzzball states, which stops to apply somewhere outside of the would-be horizon

[Mathur, Fortsch. Phys. 53 (2005)]

Observation evidence of compact objects (COs)

COs

►€

(log scale)

CO

IS

curvature

[Cardoso and Pani, Living Rev. Rel. 22 (2019)]

Considering a compact object with radius r_0 , we may define a **compactness parameter** as: $\varepsilon = (r_0 - r_H) / r_H$

Important length scales for astronomical observations:

- **ISCO:** inner-most stable orbit for massive particles, crucial for accretion physics
- **Photon-sphere:** unstable photon orbit (m=0), crucial for black hole shadows and prompt ringdown of GW observation
- **Near-horizon regime:** due to large redshift, this regime difficult to "see" using EMs, but could be "heard" via GWs

Event horizon: one-way membrane •

remainder of the talk:

Are there concrete theoretical models for UCOs, where $\varepsilon \rightarrow 0$ can be achieved without *fine-tuning*?

How can we *efficiently* detect near-horizon corrections through GW observations, despite the large theoretical uncertainties?

Key questions to explore in the

An interesting theoretical candidate

Horizonless UCOs in quadratic gravity

- Features: <u>black hole like exterior</u> + <u>narrow</u> <u>transition region + novel high curvature interior</u>
- Key ingredients: quadratic gravity (Weyl tensor term) + a compact matter source (e.g. thermal gas)

$$S_{
m CQG} = rac{1}{16\pi} \int d^4x \, \sqrt{-g} \left(m_{
m Pl}^2 R - lpha C_{\mu
ulphaeta} C^{\mu
ulphaeta} + eta R
ight)$$

- Mass ranges from the minimum to arbitrarily heavy
- Novel high curvature interior leads to interesting connections to black hole thermodynamics

[Holdom, JR, PRD 95 (2017); Holdom, arXiv:1905.08849; JR, PRD 100 (2019)]

horizonless 2-2-hole

Quadratic Gravity

• Quantum Quadratic Gravity: an old candidate of quantum gravity

$$S_{\rm QQG} = \int d^4 x \, \sqrt{-g} \left(\frac{1}{2} \mathcal{M}^2 R - \frac{1}{2f_2^2} C_{\mu\nu\alpha\beta} C^{\mu\nu\alpha\beta} + \frac{1}{3f_0^2} R^2 \right)$$

- \bullet
- But, at the price of "the ghost problem": maybe tackled by quantum corrections? ullete.g. PT symmetry, modified probability interpretation, Lee-Wick theory, "fakeon"; QCD analogy [Holdom, JR, PRD 93 (2016)], ...

generalize GR with all quadratic curvature terms

Perturbatively renormalizable and asymptotically free [Stelle, PRD 16 (1977)]; [Fradkin, Tseytlin, NPB 201 (1982)] ...

Quadratic Gravity

• Quantum Quadratic Gravity: an old candidate of quantum gravity

$$S_{\rm QQG} = \int d^4 x \, \sqrt{-g} \left(\frac{1}{2} \mathcal{M}^2 R - \frac{1}{2f_2^2} C_{\mu\nu\alpha\beta} C^{\mu\nu\alpha\beta} + \frac{1}{3f_0^2} R^2 \right)$$

- But, at the price of "the ghost problem": maybe tackled by quantum corrections? e.g. PT symmetry, modified probability interpretation, Lee-Wick theory, "fakeon"; QCD analogy [Holdom, JR, PRD 93 (2016)], ...

Classical Quadratic Gravity: an approximation of QQG at small and large curvatures

$$S_{
m CQG} = rac{1}{16\pi} \int d^4 x \, \sqrt{-g} \left(m_{
m Pl}^2 R - lpha C_{\mu
u \sigma}
ight)$$

both small and large curvature regions without higher order terms

generalize GR with all quadratic curvature terms

Perturbatively renormalizable and asymptotically free [Stelle, PRD 16 (1977)]; [Fradkin, Tseytlin, NPB 201 (1982)] ...

 $_{\alpha\beta}C^{\mu\nu\alpha\beta}+\beta R^{2})$

- Strong coupling: $\alpha, \beta \sim \mathcal{O}(1), \lambda_i \sim \ell_{\text{Pl}}$ (one scale)
- Weak coupling: $\alpha, \beta \gg 1, \lambda_i \gg \ell_{\text{Pl}}$ (solar system tests)

• In contrast to the standard view in **EFT**, this perspective allows considering solutions containing

Appealing features for typical 2-2-holes

Mass considerably larger than the minimum $M_{\rm min} \sim m_{\rm Pl}^2 \lambda_2$

- + Narrow transition region: compactness parameter $\varepsilon \propto 1/M^2$ drops quickly for increasing M
- Novel interior: a novel scaling associated with quadratic curvature term, yielding a small radial proper length $\sim \lambda_2 \ll r_H$ ("holography")

$$\bar{A}(\bar{r}) = A(r)\frac{r_H^2}{\lambda_2^2}, \quad \bar{B}(\bar{r}) = B(r)\frac{r_H^2}{\lambda_2^2}, \quad \bar{T}(\bar{r}) = T(r)\sqrt{\lambda_2\ell}$$

[**JR**, PRD 100 (2019); Holdom, PLB 830 (2022); Aydemir, **JR**, CQG 40 (2023)]

Mass considerably larger than the minimum $M_{\rm min} \sim m_{\rm Pl}^2 \lambda_2$

- + Narrow transition region: compactness parameter $\varepsilon \propto 1/M^2$ drops quickly for increasing M
- Novel interior: a novel scaling associated with quadratic curvature term, yielding a small radial proper length $\sim \lambda_2 \ll r_H$ ("holography")

$$\bar{A}(\bar{r}) = A(r)\frac{r_H^2}{\lambda_2^2}, \quad \bar{B}(\bar{r}) = B(r)\frac{r_H^2}{\lambda_2^2}, \quad \bar{T}(\bar{r}) = T(r)\sqrt{\lambda_2\ell}$$

metric functions

- Uniform hole properties: insensitive to matter sources
- Intriguing thermodynamics
- BH-like behavior emerges: $T_{\infty} \propto \mathcal{N}^{-1/4} \left(\frac{M_{\min}}{m_{\max}} \right)$
- High curvature effects captured by "the modynamic volume" // free

$$dU = T_{\infty} dS - p_{\infty} dV_{\text{th}} + \mu_{\infty} dN$$

$$dM - dU = p_{\infty} \left(dV_{\text{th}} - dV_{\text{geo}} B(R)^{-3/2} \right)^{-10^{-6}} \xrightarrow{U \approx 3}{M \approx 8}, dM \approx 0.2$$

[**JR**, PRD 100 (2019); Holdom, PLB 830 (2022); Aydemir, **JR**, CQG 40 (2023)]

Appealing features for typical 2-2-holes

 $(T \rightarrow k_{\rm F})$ -1/2 M_{\min} $T_{\rm BH}, \quad S \propto \mathcal{N}^{1/2}$ ⊅вн $T_{\infty}dS + \mu_{\infty}dN$ cold Fermi gas oton gas 1.0 8.0 1.2 1.4

Primordial 2-2-hole serve as dark matter

- 2-2-hole starts by radiating like a black hole until entering the remnant stage with reduced power, which can account for DM
- Fundamental parameter M_{\min} determines both the remnant mass and the evaporation rate

Typical thermal 2-2-hole $(M \gg M_{\min})$

Anomalous features of black hole thermodynamics emerge from novel high curvature interior. Negative heat capacity and entropy area law

 $T_{\infty} \propto \mathcal{N}^{-1/4} \left(\frac{M_{\rm min}}{m_{\rm Pl}}\right)^{1/2} T_{\rm BH}, \quad S \propto \mathcal{N}^{1/4} \left(\frac{M_{\rm min}}{m_{\rm Pl}}\right)^{-1/2} S_{\rm BH}$

Thermal 2-2-hole remnant (M~Mmin)

Thermodynamically more like a normal star sourced by radiation. Positive heat capacity and "normal entropy"

$$T_{\infty} \propto \mathcal{N}^{-1/4} \left(\frac{M_{\min}}{m_{\rm Pl}}\right)^{-3/2} \Delta M \left(\ln \frac{M_{\min}}{\Delta M}\right)^{7/4}, \quad S \propto \left(\frac{r_a}{\ell_{\rm Pl}}\right)^{3/4}$$
$$\Delta M = M - M_{\min}$$

[**JR**, PRD 100 (2019)]

Present observations for 2-2-hole remnants

Present observations determined mainly by the remnant mass M_{min}

- Large remnants: conventional PBH search through gravitational interaction
- Small remnant: a distinctive phenomenon associated with remnant mergers

Present observations for 2-2-hole remnants

Present observations determined mainly by the remnant mass M_{min}

- Large remnants: conventional PBH search through gravitational interaction
- Small remnant: a distinctive phenomenon associated with remnant mergers

Remnant merger product acquires very high T

$$M_{\rm merger} = 2M_{\rm min} > M_{\rm peak}$$

$$T_{\infty,\text{merger}} = 1.9 \times 10^{15} \mathcal{N}^{-1/4} \left(\frac{M_{\text{min}}}{\text{g}}\right)^{-1/2} \text{GeV}$$

Excess energy (~ M_{min}) released — source of high-energy astro-physical particles

Observations of photon and neutrino flux place strong constraints

[Aydemir, Holdom, **JR**, PRD 102 (2020)]

Scalarized 2-2-holes

- Scalarization: light scalar sourced exclusively in the strong gravity regime due to a "phasetransition like" phenomenon, i.e. non-trivial scalar profiles inside/around NSs or BHs

 - Finite density effects for QCD axion inside NSs [Hook and Huang 2018, JHEP; Zhang et al. 2021, PRL]

• Spontaneously scalarization in scalar-tensor theories [Damour and Esposito-Farèse 1992; 1993; 1996; Shao et al. 2017, PRX; ...]

4	
н	J

Scalarized 2-2-holes

- Scalarization: light scalar sourced exclusively in the strong gravity regime due to a "phasetransition like" phenomenon, i.e. non-trivial scalar profiles inside/around NSs or BHs

 - Finite density effects for QCD axion inside NSs [Hook and Huang 2018, JHEP; Zhang et al. 2021, PRL]
- Novel mechanism for 2-2-holes: high-temperature (density) gases inside offer a promising avenue for generating non-trivial scalar profile for minimal scalar models [Li, JR, PRD 109 (2024)]
- **Distinctive features of scalarized 2-2-holes**

2-2-hole interior: $T \sim \frac{m_{\rm Pl}}{\sqrt{\bar{\lambda}_2}} \bar{T}^{25}_{200} \approx g_{\phi f} \bar{\lambda}_2 \frac{m_{f,0}}{\phi_0} \bar{T}^2 \qquad \bar{\lambda}_2 = \frac{\lambda_2}{\ell_{\rm Pl}} \gg 1$

- The ratio $\gamma \sim O(1)$ can be achieved if the scalar field couples to a new heavy fermion, i.e. $\bar{\lambda}_{2} = 10^{10} \sum_{100}^{12} g_{\phi f} \lesssim 1, m_{f,0} \sim 10^{10} \,\mathrm{GeV}$
- The ratio γ is independent of the 2-2-hole mass, setting it apart 50 from other mechanisms
- Potential GW observations: coal escence time dephasing

Spontaneously scalarization in scalar-tensor theories [Damour and Esposito-Farèse 1992; 1993; 1996; Shao et al. 2017, PRX; ...]

4	
н	J

GW searches for characteristic QNMs

Looking for the characteristic QNMs

GR prediction for inspiral-merger-ringdown confirmed by GW observations of ~100 CBC events

 Current observations identify the *fundamental mode* of BH quasi-normal modes (QNMs), probes only the photosphere but cannot differentiate between UCOs and BHs

[Vitor, Franzin, Pani, PRL 116 (2016)]

"Black hole spectroscopy": search for fast-damping overtones at the early stage of ringdown

11

Looking for the characteristic QNMs

GR prediction for inspiral-merger-ringdown confirmed by GW observations of ~100 CBC events

 Current observations identify the *fundamental mode* of BH quasi-normal modes (QNMs), probes only the photosphere but cannot differentiate between UCOs and BHs

[Vitor, Franzin, Pani, PRL 116 (2016)]

 "Black hole spectroscopy": search for fast-damping overtones at the early stage of ringdown

 "QM black hole seismology": UCOs with strong reflection feature long-lived and quasi-periodic QNMs

- Late ringdown: postmerger echoes appear as superposition of long-lived QNMs (comparable mass ratio, LVK)
 [Cardoso, Hopper, Macedo, Palenzuela, Pani, PRD 94 (2016)]
- Early inspiral: resonant excitation of QNMs modifies GW phase (extreme-mass-ratio inspiral, LISA)
 [Cardoso, del Rio and Kimura, PRD 100 (2019)]

11

Postmerger echoes: a simple picture

UCOs behave as **leaky cavities** with two effective boundaries

$$\left(\partial_x^2 + \omega^2 - V(x)\right)\psi_\omega(x) = S(x,\omega)$$

(near-horizon corrections "heard" via "QM tunneling")

Postmerger echoes: a simple picture

UCOs behave as **leaky cavities** with two effective boundaries

(near-horizon corrections "heard" via "QM tunneling")

between two boundaries

Generate quasi-periodic GW signal with a nearly constant time delay t_d

Planck scale deviation detectable: log-dependence of t_d on the interior surface position

 $\ln(l_{\rm Pl}/r_H) \sim \mathcal{O}(100)$ (stellar mass BHs)

Echo waveform uncertainties

Explicit computation of echo waveform

- Perturbative calculation for truncated Kerr black holes
 [Nakano et al., PTEP 2017 (2017), Maggio et al., PRD 100 (2019), Xin et al. PRD 104 (2021), Ma et al., PRD 105 (2022)....]
- Calculation in the "fuzzball" paradigm [Ikeda et al., PRD 104 (2021)]
- Numerical simulation for boson stars [Siemonsen, arXiv:2404.14536]

Echo waveform uncertainties

Explicit computation of echo waveform

- Perturbative calculation for truncated Kerr black holes
 [Nakano et al., PTEP 2017 (2017), Maggio et al., PRD 100 (2019), Xin et al. PRD 104 (2021), Ma et al., PRD 105 (2022)....]
- Calculation in the "fuzzball" paradigm [Ikeda et al., PRD 104 (2021)]
- Numerical simulation for boson stars [Siemonsen, arXiv:2404.14536]

Generic construction of echo waveform

Considering a truncated Kerr black hole,

$$h_{\rm echo}(\omega) = \mathcal{P}(\omega)h_{\rm eff}(\omega), \quad \mathcal{P}(\omega) = \frac{R_{\rm BH}(\omega)R_{\rm wall}}{1 - R_{\rm BH}(\omega)R_{\rm wall}}$$

- $P(\omega)$: relies on the properties of UCOs, e.g. potential shape near inner boundary, R_{wall} could vary strongly with models
- $h_{\text{eff}}(\omega)$: encodes source dependence, may or maynot be intimately related to the BH ringdown signal

LVK collaboration on echo search

LSC-Virgo-KAGRA Observational Science White Paper (Summer 2021 edition)

	LSC-Virgo-KAGRA Observational Science Working Group							
	Burst	CBC (compact binaries)	Stochastic Background					
	Search for short-duration	Responding to exceptional	Targeted searches for high-	Searches for an isotropic				
	offline)	detections	Crab Vala	stochastic Gw background				
	Search for long-duration GW	Cataloging detections of co-	Narrow-band searches for	Directional searches for				
	bursts	alescence of neutron star and	high-interest known pulsars	anisotropic stochastic GW				
		black hole binaries and their	ingh interest known pulsuis	backgrounds				
		meaured parameters						
ty	Responding to exceptional	Characterizing the astrophys-	Directed searches for high-	Detector characterization,				
iori	GW burst and multi-	ical distribution of compact	interest point sources, e.g.	data quality, and correlated				
t pr	messenger detections	binaries	Cassiopeia A, Scorpius X-1	noise studies specific to				
Highes				SGWB searches				
	Searches without templates	Testing General Relativity	All-sky searches for un-	All-sky all-frequency search				
	from GWs from binary black	with compact binaries	known sources, either	for unmodeled persistent				
	GW burst signal characteri	I aw latency searches to en	I ong transient searches for	Sources SGWB implications and				
	zation	able multimessenger astron-	emission from nearby post-	modeling				
		omy	merger neutron stars	linodening				
		Multimessenger search for	Follow-up searches of any	Development of python				
		CBC-GRB coincidences	promising candidates found	SGWB search pipeline				
			by other searches					
		Measuring the properties of	Detector characterization,					
		extreme matter, e.g. the neu-	data preparation, scientific					
		tron star equation of state	software maintenance					
		Determination of the Hubble						
		constant						

Op-3.2 Tests of General Relativity R&D (Short Term)

Short-term research and development on tests of general relativity using compact binary coalescences.

TASK Op-3.2-B(ii): PROBING THE NEAR-HORIZON STRUCTURE

Develop and improve searches for echoes and other features that probe the near-horizon structure of the merger remnant, **using template-based and model-agnostic approaches**

Op-3.11 O3b and O4 Strong-Field Tests of General Relativity

Subject GR to a battery of tests based on observed CBC signals, ranging from tests of strong field dynamics to tests of the nature of gravitational waves, using events in the O3b and O4 catalogs.

TASK Op-3.11-C(ii): PROBING THE NEAR-HORIZON STRUCTURE

Search for near-horizon effects such as late-time echoes using template-based and model-independent approaches.

14

Model-independent search of echoes

Model-independent searches: target the characteristic features independent of model-specific details **Present methods:** target rapidly damped pulses in the case of a *weak reflection (high frequency)*

[Tsang et al., Phys. Rev. D 98 (2018); Phys. Rev. D 101 (2020); Miani, et al., arXiv:2302.12158; Abbott et al. [LIGO Scientific, VIRGO and KAGRA], arXiv:2112.06861]

No clear evidence for postmerger echoes from O1-O3

p-vale for signal to noise Bayes Factor and the distribution

Looking for the characteristic QNMs

"QM black hole seismology": in the case of a *strong reflection*, it is preferable to view echoes as a superposition of long-lived and quasi-periodic QNMs of UCOs

$$h_{\rm echo}(\omega) = h_{\rm eff}(\omega) \frac{R_{\rm BH}(\omega)R_{\rm wall}(\omega)}{1 - R_{\rm BH}(\omega)R_{\rm wall}(\omega)} = \sum_{n=1}^{N} A_n e^{i\delta_n} e^{-i\omega t_n} \frac{-i}{(\omega - \omega_n) - i/\tau_n}$$

condition

interior reflection

 $t_d(\omega_n - m\Omega_H) \approx 2\pi n$, (quasi-periodic) $t_d/\tau_n \approx -\ln \mathcal{R}_{eff}(\omega_n)$. (long-lived) $(\mathcal{R}_{eff}(\omega) = \mathcal{R}_{BH}(\omega)\mathcal{R}_{wall}(\omega) \sim 1)$

Looking for the characteristic QNMs

"QM black hole seismology": in the case of a *strong reflection*, it is preferable to view echoes as a superposition of long-lived and quasi-periodic QNMs of UCOs

$$h_{\rm echo}(\omega) = h_{\rm eff}(\omega) \frac{R_{\rm BH}(\omega)R_{\rm wall}(\omega)}{1 - R_{\rm BH}(\omega)R_{\rm wall}(\omega)} = \sum_{n=1}^{N} A_n e^{i\delta_n} e^{-i\omega t_n} \frac{-i}{(\omega - \omega_n) - i/\tau_n}$$
source/initial

condition

interior reflection

Complementary benchmarks

test the algorithm's ability
 to detect diverse echo signal

- *R*_{wall}: "damping 2-2-holes",
 "Boltzman reflection"
- *h*eff: "initial pulse from inside", "infalling particles"

[Wu, Gao, JR, Afshordi, PRD 108 (2023)]

$$t_d(\omega_n - m\Omega_H) \approx 2\pi n$$
, (quasi-periodic)
 $t_d/\tau_n \approx -\ln \mathcal{R}_{\text{eff}}(\omega_n)$. (long-lived)

$$(\mathcal{R}_{\rm eff}(\omega) = \mathcal{R}_{\rm BH}(\omega)\mathcal{R}_{\rm wall}(\omega) \sim 1)$$

QNMs search with partial phase information

Search template: periodic and uniform echo waveform (UniEw) [Conklin, Holdom, JR, PRD 98 (2018)]

- QNMs position/average spacing: $f_0, \Delta f \approx 1/t_d$
- QNMs average amplitude: $A_{\rm comb}$
- QNMs average width: f_w
- Frequency band: f_{\min} , f_{\max}

QNMs search with partial phase information

+ Bayesian search algorithm for QNMs: phase-marginalized likelihood

$$\ln \mathcal{L}_{\text{old}} = \sum_{j=1}^{\mathcal{N}} \ln I_0 \left(\frac{|d_j| |h_j|}{\tilde{P}_j} \right) - \frac{1}{2} \sum_{j=1}^{\mathcal{N}} \frac{|h_j|^2}{\tilde{P}_j} \quad \textbf{v.s.} \quad \ln \mathcal{L}_{\text{new}} = \sum_{n=1}^{\mathcal{N}} \ln I_0 \left(\left| \sum_{j \in n} \frac{d_j h_j^*}{\tilde{P}_j} \right| \right) - \frac{1}{2} \sum_{j=1}^{\mathcal{N}} \frac{|h_j|^2}{\tilde{P}_j}$$

no phase info (sensitive to **SNR per bin**)

- Log-Bayes factor used to compare different models
- Inferred UniEw parameters encode essential properties of QNMs

Search template: periodic and uniform echo waveform (UniEw) [Conklin, Holdom, JR, PRD 98 (2018)]

- QNMs position/average spacing: $f_0, \Delta f \approx 1/t_d$
- QNMs average amplitude: A_{comb}
- QNMs average width: f_w
- Frequency band: f_{\min} , f_{\max}

[**JR**, Wu, PRD 104 (2021); Wu, Gao, **JR**, Afshordi, PRD 108 (2023]

relative phase info (sensitive to **SNR per mode**)

Validation: echo benchmarks + Gaussian noise

SNR² per bin

0.01

6

2

0 -

0.00

SNR²

Wu, Gao, **JR**, Afshordi, PRD 108 (2023)

LIGO re

• Non-Gaussian artifacts (instrumental

GO O1 data

LIGO re

Non-Gaussian artifacts (instrumental

- NO clear evidence for GW150914 and GW151012 (*old* likelihood) [JR, Wu, PRD 104 (2021)]
- Search on LVK O1-O3 data with *both* likelihoods ongoing [JR, Wu, Zhang, in progress]

GO O1 data

"With the increase in GW and multi-messenger data anticipated in this decade... We are therefore on the threshold of transforming BH physics from a theoretical conundrum to a subject of observational science, with potentially far-reaching implications for the foundations of physics, including the quantum nature of gravity"

Snowmass2021 Cosmic Frontier White Paper: Fundamental Physics and Beyond the Standard Model

- Planck-scale physics could naturally manifest just beyond the horizon scale r_H around macroscopic holes, playing a crucial role for not quite black holes. This may lead to intriguing thermodynamic behaviors and significant phenomenological implications.
- long-lived QNMs. Stay tuned!

• Gravitational wave echoes provide a promising way to probe tiny deviations just outside r_{H} . Developing model-independent search methods for these echoes is crucial. The primary observable, the time delay, can be accurately inferred by searching for quasi-periodic and

Thank You!

Ghost Problem in Quantum Quadratic Gravity

Classically the spectrum has a *massive, spin-2 ghost* (vacuum instability or unitarity problem), indicating theoretical inconsistency. BUT, quantum effects may change the story:

1) remove gasting for bating logy i. for digateratic sygnatic reactive ERN workshop 2019: https://indico.cern.ch/event/740038 2) remove ghost by strong interaction associated with f_0 , f_2 in analogy to QCD [Holdom, JR, PRD 93 (2016)]

	QCD		
UV behavior	perturbatively renorm	nali	
Strong scale	gauge coupling strong at Λ_{QCD}	gr	
Nonperturb ative effects	the perturbative gluon removed from the physical spectrum and a mass gap developed as controlled by Λ_{QCD}	M em phy ghc	
IR effective description	color singlet states described by Chiral Lagrangian	ma the	

$QQG(\mathcal{M} \leq \Lambda_{OOG})$

izable, asymptotically free

ravitational couplings strong at Λ_{QQG}

= 0: the massless graviton pole erges as the only light state in the vsical spectrum (with would-be ost removed)

ssless graviton described by GR with derivative expansion, $m_{\rm Pl} \sim \Lambda_{\rm QQG}$

GR emerges as the low energy effective theory!

Timelike curvature singularity?! Timelike curvature singularity? Timelike curvature singularity?:-holes

Geodesic incompleteness?

May appear regular as probed by finite energy wave-packets! Neumann boundary condition is imposed A Neumann boundary condition is imposed A Neumann boundary condition is imposed

extension

KG equation:
$$\partial_t^2 \psi_l = \frac{B}{A} \partial_r^2 \psi_l + \frac{B}{A} \left(\frac{2}{r} + \frac{B'}{2B} - \frac{A'}{2A} \right) \partial_r \psi_l - B \frac{l(l+1)}{r^2} \psi_l \equiv \mathbb{A} \psi_l$$

• Near the 2-2-singularity, all waves behave like the s-wave on a nonsingular spacetime. Only one solution has finite energy.

• The initial value problem of the wave equation is well-posed if A has a unique positive self-adjoint

Wald, JMP. 21, 2802 (1980); Ishibashi, Wald, CQG. 20, 3815 (2003); Horowitz, Marolf, PRD 52, 5670 (1995) Ishibashi, Hosoya, PRD 60, 104028 (1999)

Spacetime	A(r)	B(r)	$\psi_{l1}(r,t)$	$\psi_{l2}(r,t)$
2-2-hole	r^2	r^2	1	r^{-1}
star	r^0	r^0	r^l	$r^{-(l+1)}$

Thermodynamics in curved background

- Thermodynamics of self-gravitating systems usually explored in GR, i.e. deriving equilibrium equation from maximum entropy principle, finding exact relation to M
- Beyond GR, for laws governing the global thermodynamic quantities, we may directly generalize the conventional thermodynamics. The curved spacetime effects are encoded in *the thermodynamic volume V*_{th} [Aydemir, JR, CQG 40 (2023)]

First law in literature $dM = T_{\infty}dS - p_{\infty} B(R)^{-3/2} dV_{geo}$ (*M* is the physical/ADM mass) $V_{geo} = \int_{0}^{R} \sqrt{A} d^{3}r$

- Self-gravitating photon gas in GR: U/M>0.64, $\varepsilon>1$, dV_{geo} non-negligible
- Thermal 2-2-hole: U/M=3/8, $\varepsilon \sim 0$, dV_{th} responsible for dM-dU, $dM \approx T_{\infty} dS$ (similar to BH)

Conventional first law

$$dU = T_{\infty}dS - p_{\infty}dV_{th}$$

(U is total gas internal energy)

$$V_{th} = \int_0^R \sqrt{\frac{A(r)}{B^3(r)}} d^3r$$