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Counting polynomials
How many degree d polynomials can be constructed using x and y?

degree 0 1 1
degree 1 2 x , y
degree 2 3 x2, xy , y2

degree 3 4 x3, x2y , xy2, y3

...
...

...

We can generate all of these polynomials, exactly once, as follows:

1

1− x

1

1− y
= (1 + x + x2 + · · · )(1 + y + y2 + · · · )

= 1 + x + y + x2 + xy + y2 + · · ·

To count set x = t = y to obtain(
1

1− t

)2

= 1 + 2t + 3t2 + 4t3 + · · ·

The function

H(t) =
1

(1− t)2
=

∞∑
n=0

cnt
n

Is called a Hilbert series. The integer cn counts how many degree n polynomials can be
freely generated from the 2 variables x and y .
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More Counting

How many degree d polynomials can be constructed using x and y freely and using w2

and v3 each at most once? (i.e. we might not use either, or we might use w2 or v3, but
we don’t use both, or either more than once)

We can generate all of these polynomials, exactly once, as follows:

1× 1

1− x

1

1− y
+ w2 × 1

1− x

1

1− y
+ v3 × 1

1− x

1

1− y

Thus to count we can again set x = y = w = v = t to obtain

1 + t2 + t3

(1− t)2
= 1 + 2t + 4t2 + 7t3 + · · ·

mathcing x , y degree 1, x2, xy , y2,w2 degree 2 and x3, x2y , xy2, y3,w2x ,w2y , v3 degree 3.

The Hilbert series is now

H(t) =
1 + t2 + t3

(1− t)2
=

∞∑
n=0

cnt
n

cn again counts how many degree n polynomials can be freely generated from the 2
variables x and y , and using w2 and v3 each at most once.
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The Basic Result
We will compute partition functions of free multi-matrix model quantum mechanics.
Denote the matrices as ϕa, a = 1, 2, · · · , d . They all take the form

Z (x) =
1 +

∑
i c

s
i x

i∏
j(1− x j)c

p
j

.

Each factor in the denominator is associated to an operator of degree j

x j ↔ PA = Tr(ϕa1ϕa2 · · ·ϕaj ) + · · ·

and is called a primary invariant. A takes NP =
∑

j c
p
j values.

Each monomial x i in the numerator is associated with an operator of degree i

x i ↔ SB = Tr(ϕa1ϕa2 · · ·ϕai )

and is called a secondary invariant. B takes NS = 1 +
∑

i c
s
i values, where we set S1 = 1.

The space of all gauge invariant operators (loop space) takes the form

H =

NS⊕
B=1

NP∏
A=1

∞∑
{nA}=0

(PA)
nASB
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Matrix Quantum Mechanics; Loop Space

We study the matrix quantum mechanics of d N × N Hermittian matrices

H =
1

2

d∑
a=1

Tr(ΠaΠa) +
1

2

d∑
a=1

Tr(ϕaϕa)

[Πa
ij(t), ϕ

b
kl(t)] = −iδilδjkδ

ab

The model has a U(N) symmetry

ϕa → U†ϕaU Πa → U†ΠaU

that we declare is a gauge symmetry.

The complete space of gauge invariant operators is given by traces of words constructed
from the ϕa’s as follows

Tr(ϕ1ϕ2ϕ2ϕ1ϕ3ϕ6 · · · )

What is a complete description of this loop space?
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Warm up: one matrix

We can diagonalize the Hamiltonian by introducing the creation and annihilation operators

A† = X − iΠ

Up to a ground state energy

H = Tr(A†A)

For a single matrix the partition function is

Z (x) =
1

(1− x)(1− x2)(1− x3) · · · (1− xN)
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Warm-up: one matrix

Z (x) =
1

(1− x)(1− x2)(1− x3) · · · (1− xN)

What is the interpretation of this result? Each factor in the denominator corresponds to a
specific generator; xn corresponds to Tr(A†n)

Why can we stop at N matrices in the trace? For example, of N = 2 we only have Tr(A†)
and Tr(A† 2). What about operators like Tr(A† 3) and even higher powers?

These higher powers all follow from trace relations. For example, any 2× 2 matrix obeys

Tr(M)3 − 3Tr(M2)Tr(M) + 2Tr(M3) = 0

Such relations are explained by the fact that the above traces depend only on the
eigenvalues of M. For 2× 2 matrices there are only 2 eigenvalues, so once you know
Tr(M) and Tr(M2) you know everything!

⇒ Tr(A† 3) =
3

2
Tr(A† 2)Tr(A†)− 1

2
Tr(A†)3
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Molien-Weyl Formula
Count gauge invariant operators constructed from adjoint bosonic fields with energies Ei :

Z (β) =
∞∑

n1=0

xn1E1

∞∑
n2=0

xn2E2 · · · ×#(n1, n2, ...)

where x = e−1/T = e−β and #(n1, n2, ...) is the number of singlets in the tensor product
symn1

adj ⊗ symn2

adj ⊗ · · · . Number of singlets is an integral over U(N) of the product of the
characters of the reps being tensored:

Z (β) =

∫
U(N)

[DU]
∏
i

∞∑
ni=0

xniEiχsym
ni
adj

(U)

Reduce the matrix integral above to an integral over the eigenvalues of U

Z (x) =
(ZN=1(x))

N

(2πi)N−1

∮
|t1|=1

dt1
t1

· · ·
∮
|tN−1|=1

dtN−1

tN−1

∏
1≤k≤r≤N−1

1− tk,r
fk,r

where tk,r = tktk+1 · · · tr and

ZN=1(x) =
1∏

i (1− xEi )
fk,r =

d∏
i=1

(1− xEi tk,r )(1− xEi t−1
k,r )
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Two matrix model, N = 2

Graded partition function: (call ϕ1 as X and ϕ2 as Y )

Z (x , y) =
1

(1− x)(1− y)(1− x2)(1− xy)(1− y2)
.

Generators:

m1 = Tr(X ), m2 = Tr(Y ),

m3 = Tr(X 2), m4 = Tr(XY ), m5 = Tr(Y 2),

Complete set of trace relations from the Cayley-Hamilton theorem. For N = 2,
T2(A,B,C ) = 0, where

T2(A,B,C ) = Tr(A)Tr(B)Tr(C )− Tr(AB)Tr(C )− Tr(AC )Tr(B)

−Tr(A)Tr(BC ) + Tr(ABC ) + Tr(ACB),

and A, B and C are any words constructed using X ,Y as letters.
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Words of length 3

Consider single trace operators constructed using n X fields and m Y fields.

For m + n = 3, each choice of m and n gives a single trace relation and there is only one
gauge-invariant single trace operator we can define. Thus all operators are determined in
terms of our generating set.

For instance, choosing m = 2 and n = 1, we obtain

T2(X ,Y ,Y ) = Tr(X )Tr(Y )2 − 2Tr(XY )Tr(Y )− Tr(X )Tr(XY ) + 2Tr(XY 2) = 0,

which implies

Tr(XY 2) =
1

2

(
2m2m4 +m1m5 −m1m

2
2

)
.

Swapping X and Y gives

Tr(YX 2) =
1

2

(
2m1m4 +m2m3 −m2

1m2

)
.
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Words of length 4

As m + n increases, the number of distinct gauge-invariant operators that can be
constructed increases.

Consider m = 2 = n: two independent operators, Tr(X 2Y 2) and Tr(XYXY ), can be
constructed.

T2(Y
2,X ,X ) = 0 gives

Tr(X 2Y 2) =
1

2

(
m3m5 + 2m1m2m4 +m2

1m5 −m2
1m

2
2 −m2

1m5

)
.

T2(XY ,X ,Y ) = 0 implies

Tr(XYXY ) =
1

2

(
m2

2m3 + 2m2
4 −m3m5 +m2

1m5 −m2
1m

2
2

)
.

Crucially, the growth in the number of independent operators is matched by the
emergence of additional trace relations.
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All Operators

We will prove that all gauge invariant operators can be written in terms of our generating
set. Proof proceeds by induction.

Assume single-trace loops containing at most k matrices are determined by the trace
relations. (established for k ≤ 4)

Consider the loop Tr(X n1Ym1) with n1 +m1 = k + 1 for k ≥ 4. At least one of n1 or m1

must be greater than 1. Without loss of generality, assume n1 > 1. The trace relation for
A = X , B = X n1−1, and C = Ym1 is

2Tr(X n1Ym1)− Tr(X )Tr(X n1−1Ym1)− Tr(X n1)Tr(Ym1)

−Tr(XYm1)Tr(X n1−1) + Tr(X )Tr(X n1−1)Tr(Ym1) = 0.

By the induction hypothesis, every term in this equation except the first contains at most
k matrices in the trace and is thus expressible in terms of our generating set.

This establishes that Tr(X n1Ym1) can also be expressed in terms of these variables. The
same argument applies, with trivial changes, in the case where m1 > 1.
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All Operators
Consider Tr(X n1Ym1 · · ·X nqYmq ), with

n1 +m1 + · · ·+ nq +mq = k + 1.

Call invariants, with q alternating X#Y# blocks, type-q invariants.

Trace relation obtained from A = X n1 , B = Ym1 , and C = X n2Ym2 · · ·X nqYmq , is

Tr(X n1Ym1 · · ·X nqYmq ) + Tr(X n1+n2Ym2 · · ·X nqYmq+m1)

−Tr(X n1)Tr(X n2Ym2 · · ·X nqYmq+m1)− Tr(Ym1)Tr(X n1+n2Ym2 · · ·X nqYmq )

−Tr(X n1Ym1)Tr(X n2Ym2 · · ·X nqYmq ) + Tr(X n1)Tr(Ym1)Tr(X n2Ym2 · · ·X nqYmq ) = 0.

Second and third lines contain at most k matrices in a trace. By the induction hypothesis
they are expressible in terms of our generating set.

First term is type-q invariant. Second term is type-(q − 1) invariant. We established
type-1 invariant Tr(X n1Ym1) can be expressed in terms of our generating set ⇒ the
type-2 invariant Tr(X n1Ym1X n2Ym2) can also be expressed in terms of these variables.

This reasoning extends recursively, proving that all type-q invariants can be determined in
terms of our generating.
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Three matrix model, N = 2

Z (x , y , z) =
1 + xyz

(1− x)(1− y)(1− z)(1− x2)(1− y2)(1− z2)(1− xy)(1− xz)(1− yz)
.

Terms in the denominator correspond to the set of primary invariants

m1 = Tr(X ), m2 = Tr(Y ), m3 = Tr(Z ),

m4 = Tr(X 2), m5 = Tr(Y 2), m6 = Tr(Z 2),

m7 = Tr(XY ), m8 = Tr(YZ ), m9 = Tr(ZX ),

The term in the numerator correspond to the secondary invariant

s = Tr(XYZ )

Primary invariants act freely - they can be raised to any power. The secondary invariants
are quadratically reducible and appear at most linearly, if at all.
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Proof that s is quadratically reducible

When constructing the complete space of gauge invariant observables, we should not allow
s to act more than linearly.

Any action of s2 can be replaced by an action of the primary invariants and terms with s
appearing at most linearly, thanks to the constraint

s2 + s (m1m2m3 −m1m8 −m2m9 −m3m7) +
1

4
m2

1m
2
2m

2
3 −

1

2
m2

1m2m3m8

−1

4
m2

1m5m6 +
m2

1m
2
8

2
− 1

2
m1m

2
2m3m9 −

1

2
m1m2m

2
3m7 +

1

2
m1m2m6m7

+
1

2
m1m3m5m9 −

1

4
m2

2m4m6 +
m2

2m
2
9

2
+

1

2
m2m3m4m8 −

1

4
m2

3m4m5 +
m2

3m
2
7

2

+
m4m5m6

2
− m4m

2
8

2
− m5m

2
9

2
− m6m

2
7

2
+m7m8m9 = 0.
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Complete space of gauge invariant operators

Complete space of gauge invariant operators is thus given by the direct sum of the space

mn1
1 mn2

2 mn3
3 mn4

4 mn5
5 mn6

6 mn7
7 mn8

8 mn9
9 × 1

and the space

mn1
1 mn2

2 mn3
3 mn4

4 mn5
5 mn6

6 mn7
7 mn8

8 mn9
9 × s

It is natural to interpret the first space above as perturbative excitations of the vacuum
state, created by the identity.

It is natural to interpret the second space above as perturbative excitations of the
non-trivial state, created by the secondary invariant s.

Thus the primary invariants play the role of perturbative degrees of freedom. Acting with
the primary invariants is creating perturbative excitations. The secondary invariants play
the role of non-trivial states (like a soliton). The state created by the secondary invariant
can support perturbative excitations.
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Hironaka Decomposition

All partition functions we compute take the form

Z (x) =
1 +

∑
i c

s
i x

i∏
j(1− x j)c

m
j
.

This is the Hilbert series of the invariant ring CN,d of GL(N) invariants of d N × N
matrices. It matches the structure of the Hironaka decomposition.

The denominator encodes primary invariants, while the numerator encodes secondary
invariants.

The number of primary invariants equals the number of denominator factors and gives the
Krull dimension of the ring: (d − 1)N2 + 1.

That our partition functions all take the Hironaka form is key to our analysis. The
Hochster-Roberts theorem ensures that CN,d is Cohen-Macaulay, since GL(N) is a linearly
reductive group over a field of characteristic zero. Thus, the ring admits a Hironaka
decomposition, i.e., it is a free module over a polynomial subalgebra.
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Comment on Primary Invariants

Number of primary invariants M = (d − 1)N2 + 1.

Single-trace operators with at most N matrices are generating invariants: these can’t be
eliminated as trace relations only begin there are N + 1 matrices in the trace.

Length L is the number of matrices in the trace. The number of distinct single-trace
operators of length L is

Nop(L) ≈
dL

L
.

Captures leading behavior, but systematically underestimates the actual count.

For modest value of N, total number of single trace operators of length N (∼ eN) vastly
exceeds number of primary invariants (= (d − 1)N2 + 1). Although single-trace operators
with ≤ N matrices are included, tiny fraction are actually primary invariants.

Example: Two matrix model at N = 20. Total number of single-trace operators with
≤ N matrices is 111,321. Number of primary invariants is M = N2 + 1 = 401.
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Counting Invariants

For a matrix model with two matrices, the number of primary and secondary invariants
counted as a function of N are given below.

N Primary Invariants Secondary Invariants

2 5 0
3 10 1
4 17 63
5 26 15,423
6 37 312,606,719
7 50 21,739,438,196,735

Table: Growth in the number of invariants as N increases.

Growth in the number of primary invariants is N2 + 1.

Growth in secondary invariants is much more rapid than a power.
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Counting Invariants

Make the ansatz NSecondary = e1.1N
2−3.3N .

Above curve is orange. Blue is data. Suggests secondary invariants are black hole
microstates.

SBH = log(Nstates) = O(N2)
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Fortuity
1
16 black hole microstates in AdS5×S5 are represented by operators in N = 4 SYM theory
with gauge group SU(N), that obey the equation: QOBH = 0.

Recently a distinction between two types of solns was made:

Solve QOBH = 0 for all N - monotone operators.

Solve QOBH = 0 for N = N∗ - fortuitous operators. [Chang, Lin 2402.10129]

Most heavy operators are fortuitious ⇒ the black hole entropy is explained by fortuitous
operators.

Different chaos properties: fortuitous operators are more chaotic than monotone operators.

Black hole microstates are constructed using O(N2) fields ⇒ black hole microstate in the
N = 10 theory is not a microstate in N = 100 theory.

Makes us question if black holes are present at N = ∞ or rather at large but finite N?

These seem like general lessons that should extend beyond considerations of susy. In this
talk I will argue that indeed they are.
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Bosonic Fortuity

Recall that operators that are dual to black hole microstates at some N where they obey
QO = 0 are not dual to black hole microstates at a larger values of N where QO ̸= 0.

An operator that represents a black hole microstate in the N = 10 theory will not
represent a black hole microstate in the N = 100 theory.

As N increases we find that more and more secondary invariants change their character
and transition to become primary invariants.

This is a purely bosonic analog of the fortuity mechanism.
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Infinite N

In the infinite N limit, there are no trace relations for any operator you look at, since these
only kick in when you have N + 1 matrices in the trace.

Thus, the large N limit is freely generated and the partition function takes the form

Z (x) =
1∏

i (1− x i )ni
(1)

with ni =the number of single trace operators constructed from ni matrices.

All secondary invariants have now been promoted to primary invariants. There are no
“black hole microstates” at N = ∞.
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Summary

The space of gauge invariant operators that can be constructed in the multi-matrix model
quantum mechanics of d matrices is generated from primary and secondary invariants

H =

NS⊕
B=1

NP∏
A=1

∞∑
{nA}=0

(PA)
nASB

The number of primary invariants is (d − 1)N2 + 1. The primary invariants generate a
Fock space structure and represent perturbative degrees of freedom.

The number of secondary invariants grows as ∼ eN
2

. We conjecture that black hole
microstates are represented as secondary invariants.

As N is increased the character of invariants changes and secondary invariants transition
to become primary invariants. This is a bosonic analog of the fortuity mechanism.

Robert de Mello Koch (School of Science Huzhou University Based on: RdMK and Antal Jevicki, arXiv:2503.20097)Bosonic Fortuity from Structure of Loop Space at Finite N April 26, 2025 24 / 25



Thanks for your attention!
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