Positivity Bounds at one-loop level

Jiayin Gu

Fudan University

Effective Field Theories, Gravity and Cosmology Hangzhou Institute for Advanced Study (UCAS) April 27, 2025

[2408.10318] Yunxiao Ye, Bin He, JG current work with Xiao Cao, Yuhang Wu, Yunxiao Ye

Jiayin Gu

Introduction

- Can all EFTs be UV completed?
- Dispersion relations of forward elastic amplitudes suggest that certain operator coefficients can only be positive.
 - Assuming the UV physics is consistent with the fundamental principles of QFT (analyticity, locality, unitarity, Lorentz invariance).
 - [hep-th/0602178] Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi ... many papers ...
- These positivity bounds only exist for certain Dimension-8 (or higher) operators (without additional model assumptions)!

$$\frac{d^2}{ds^2}\mathcal{A}(ab \to ab)_{t \to 0} \ge 0.$$

- Two important implications:
 - Assuming UV physics is described by QFT ⇒ we can rule out a large region in the EFT parameter space.
 - Or we can test the fundamental principles of QFT if we measure these dim-8 coefficients well enough.

Dispersion relations

• Consider a forward ($t \rightarrow 0$) elastic amplitude ($s + t + u = 4m^2$)

$$\begin{split} \tilde{\mathcal{A}}_{ab}(s) &= \sum_n c_n (s-s_0)^n \,, \\ c_n &= \frac{1}{2\pi i} \oint\limits_{s=s_0} \, ds \frac{\tilde{\mathcal{A}}_{ab}(s)}{(s-s_0)^{n+1}} \,, \end{split}$$

- Applying the fundamental principles of QFT
 - Analyticity (Cauchy's theorem applies)
 - Locality (poles from tree-level factorization, branch cuts from loops, Froissart Bound)
 - Unitarity (Optical theorem, $Im A \sim \sigma_{tot}$)
 - Lorentz invariance (Crossing symmetry)
 - Dispersion relation tells us that

$$c_n = \int_{4m^2}^{\infty} \frac{ds}{\pi} s \sqrt{1 - \frac{4m^2}{s}} \left(\frac{\sigma_{\text{tot}}^{ab}}{(s - s_0)^{n+1}} + (-1)^n \frac{\sigma_{\text{tot}}^{a\bar{b}}}{(s - 4m^2 + s_0)^{n+1}} \right) + c_n^{\infty} ,$$

Sum rules and positivity bounds

• Assuming s_0 is real and $0 < s_0 < 4m^2$,

$$c_n = \int_{4m^2}^{\infty} \frac{ds}{\pi} s \sqrt{1 - \frac{4m^2}{s}} \left(\frac{\sigma_{\text{tot}}^{ab}}{(s - s_0)^{n+1}} + (-1)^n \frac{\sigma_{\text{tot}}^{a\bar{b}}}{(s - 4m^2 + s_0)^{n+1}} \right) + c_n^{\infty} ,$$

► Froissart bound: $\mathcal{A} < \text{const} \cdot s \log^2 s \Rightarrow c_n^\infty = 0 \text{ for } n > 1.$

- For even *n*, the two terms with cross sections are both positive, so $c_n > 0$.
- At tree level, consider the limit m^2 , $s_0 \ll \Lambda^2$ (massless EFT).

$$\begin{aligned} \mathcal{L}_{\text{SMEFT}} &= \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)} + \cdots \\ \mathcal{A}(s)|_{t=0} &= c_{0} + c_{1} s + c_{2} s^{2} + \cdots \end{aligned}$$

- ► $c_{n=1}$ \Leftrightarrow dimension-6 (no positivity bounds, boundary can be nonzero), $c_{n=2}$ \Leftrightarrow dimension-8 (or d6²) (has positivity bounds!),
- Many generalizations and modified versions...
 - Improved positivity bounds [1710.09611] de Rham et al. (see also [1710.02539] Bellazzini et al.), Arc variable [2011.00037] Bellazzini et al., [2012.15849] Arkani-Hamed, Huang, Huang, ... (See also talks by Qing, Yongjun and Shi-Lin.)

Jiayin Gu

Does positivity still hold at loop level? [2408.10318] Yunxiao Ye, Bin He, JG

- The kinematic dependence becomes more complicated at loop level due to the log terms.
- What's the impact of RG running on positivity bounds (and vice versa)?
- Some interesting observations have been found in previous studies.
 - IR effects can be important. [2011.00037, 2112.12561] Bellazzini et al.
 - The naive tree-level positivity bound could appear to be violated. [2110.01624] Chala, Santiago
 - Some of the RG mixing of dim-8 coefficients are subject to positivity bounds. [2301.09995] Chala, [2309.16611] Chala, Li
- Our main message: To each fixed loop order in the UV model, "something" is positive, but that something can have a lot of contributions and each contribution is not necessarily positive!

Two different scenarios

An "asymmetric" one-loop diagram of the forward elastic amplitude corresponds to the interference term of a cross section and can take either sign!

A "symmetric" one-loop diagram corresponds to a squared contribution to the cross section and could be subject to a positivity bound (which can have several contributions in the EFT).

A (counter) example

• Consider a model with 2 real light scalars $\phi_{1,2}$ and a real heavy scalar Φ ,

$$\mathcal{L} = \frac{1}{2} \left(\partial^{\mu} \Phi \partial_{\mu} \Phi - \mathbf{M}^{2} \Phi^{2} \right) + \frac{1}{2} \partial^{\mu} \phi_{1} \partial_{\mu} \phi_{1} + \frac{1}{2} \partial^{\mu} \phi_{2} \partial_{\mu} \phi_{2} - \mathbf{g} \mathbf{M} \Phi \phi_{1} \phi_{2} - \frac{1}{4} \lambda \phi_{1}^{2} \phi_{2}^{2} ,$$

- At low energy we can integrate out Φ and match it to the EFT with $\phi_{1,2}$.
- A positivity bound can be obtained from the forward elastic amplitude φ₁φ₁ → φ₁φ₁ (or 1 ↔ 2).
- For λ ≫ g², the new physics contributions are proportional to λg², which can obviously take either sign.
- What's wrong?

Back to the dispersion relation

- Two different scales:
 - s₀ labels the position of the pole in the comples s plane. (often denoted as μ², which we will avoid doing...)
 - μ is the renormalization scale (in \overline{MS}).
- Due to the cross symmetry of φ₁φ₁ → φ₁φ₁, we can consider the massless case (which makes life much easier) and use a modified version of the dispersion relation.

[2011.11652] Herrero-Valea, Santos-Garcia, Tokareva

$$egin{aligned} \Sigma &\equiv \left(\oint\limits_{s=is_0} + \oint\limits_{s=-is_0}
ight) rac{ds}{2\pi i} rac{s^3 ilde{\mathcal{A}}(s)}{(s^2+s_0^2)^2} \ &= rac{2}{\pi} \int_0^\infty ds rac{s^4 \sigma(s)}{\left(s^2+s_0^2
ight)^3} \geq 0 \,. \end{aligned}$$

- This holds for any real s_0 , but $s_0 \ll \Lambda^2$ is required for the EFT validity.
 - Dim-10 contributions are further suppressed by a factor of s_0/Λ^2 .
 - With loops, we don't want to let $s_0 \rightarrow 0$ in which case Σ may diverge.

Jiayin Gu

Fudan University

$$\begin{split} \mathcal{L} = & \frac{1}{2} \partial_{\mu} \phi_{1} \partial^{\mu} \phi_{1} + \frac{1}{2} \partial_{\mu} \phi_{2} \partial^{\mu} \phi_{2} + \frac{c_{1}^{[4]}}{4!} \phi_{1}^{4} + \frac{c_{2}^{[4]}}{4!} \phi_{2}^{4} + \frac{c_{12}^{[4]}}{4} \phi_{1}^{2} \phi_{2}^{2} + c_{12}^{[6]} (\partial_{\mu} \phi_{1}) (\partial^{\mu} \phi_{2}) \phi_{1} \phi_{2} \\ & + \frac{c_{1}^{[8]}}{2} (\partial_{\mu} \phi_{1}) (\partial^{\mu} \phi_{1}) (\partial_{\nu} \phi_{1}) (\partial^{\nu} \phi_{1}) + \frac{c_{2}^{[8]}}{2} (\partial_{\mu} \phi_{2}) (\partial^{\mu} \phi_{2}) (\partial_{\nu} \phi_{2}) (\partial^{\nu} \phi_{2}) \\ & + 2c_{12,su}^{[8]} (\partial_{\mu} \phi_{1}) (\partial^{\mu} \phi_{2}) (\partial_{\nu} \phi_{1}) (\partial^{\nu} \phi_{2}) + c_{12,t}^{[8]} (\partial_{\mu} \phi_{1}) (\partial^{\mu} \phi_{1}) (\partial_{\nu} \phi_{2}) , \end{split}$$

- The Wilson coefficients in the massless scalar EFT can be conveniently parameterized in terms of tree level on-shell amplitudes.
- (Note: We've absorbed Λ in the definition of couplings.)

$\mathcal{A}(\phi_1\phi_1\phi_1\phi_1)$ at the 1 loop level

$$\begin{split} \mathcal{A}_{1}^{[4]} &= \mathbf{c}_{1}^{[4]} + \frac{1}{32\pi^{2}} \left(\left(\mathbf{c}_{1}^{[4]} \right)^{2} + \left(\mathbf{c}_{12}^{[4]} \right)^{2} \right) \left(-\log \frac{-\mathbf{s}}{\mu^{2}} - \log \frac{-t}{\mu^{2}} - \log \frac{-u}{\mu^{2}} + 6 \right) \,, \\ \mathcal{A}_{1}^{[6]} &= \frac{1}{16\pi^{2}} \left(\mathbf{c}_{12}^{[4]} \mathbf{c}_{12}^{[6]} \right) \left(-\mathbf{s}\log \frac{-\mathbf{s}}{\mu^{2}} - t\log \frac{-t}{\mu^{2}} - u\log \frac{-u}{\mu^{2}} \right) \,. \end{split}$$

$$\begin{split} \mathcal{A}_{1}^{[8],\text{tree}} &= c_{1}^{[8]} \left(s^{2} + t^{2} + u^{2} \right) \,, \\ \mathcal{A}_{1}^{[8],\text{1-loop}} &= \frac{1}{16\pi^{2}} s^{2} \left[-\log \frac{-s}{\mu^{2}} \left(\frac{1}{2} \left(c_{12}^{[6]} \right)^{2} + \frac{2}{3} \, c_{12}^{[4]} c_{12,su}^{[8]} + c_{12}^{[4]} c_{12,t}^{[8]} + \frac{5}{3} \, c_{1}^{[4]} c_{1}^{[8]} \right) \\ &\quad + \left(c_{12}^{[6]} \right)^{2} + \frac{13}{9} \, c_{12}^{[4]} c_{12,su}^{[8]} + 2 \, c_{12}^{[4]} c_{12,t}^{[8]} + \frac{31}{9} \, c_{1}^{[4]} c_{1}^{[8]} \right] \\ &\quad + \left(s \longleftrightarrow t \right) \, + \, \left(s \longleftrightarrow u \right) . \end{split}$$

- ► MS scheme. µ is the renormalization scale at which the couplings are defined.
- Amplitudes are independent of μ (which gives RG equations).

Positivity Bounds at one-loop level

Fudan University

Positivity bound at the 1-loop level

The $\Sigma \geq 0$ for $\phi_1 \phi_1 \rightarrow \phi_1 \phi_1$ in the EFT up to 1-loop and dim-8 is

$$\begin{split} \Sigma &= 2 \boldsymbol{c}_{1}^{[8]} + \frac{1}{64\pi^{2}} \frac{1}{\boldsymbol{s}_{0}^{2}} \left(\left(\boldsymbol{c}_{1}^{[4]} \right)^{2} + \left(\boldsymbol{c}_{12}^{[4]} \right)^{2} \right) + \frac{1}{16\pi^{2}} \frac{1}{\boldsymbol{s}_{0}} \frac{3\pi}{8} \boldsymbol{c}_{12}^{[4]} \boldsymbol{c}_{12}^{[6]} + \left(\frac{3}{4} + \log \frac{\boldsymbol{s}_{0}}{\mu^{2}} \right) \boldsymbol{\beta}_{1}^{[8]} \\ &+ \frac{1}{16\pi^{2}} \left(2 \left(\boldsymbol{c}_{12}^{[6]} \right)^{2} + \frac{26}{9} \boldsymbol{c}_{12}^{[4]} \boldsymbol{c}_{12,su}^{[8]} + 4 \boldsymbol{c}_{12}^{[4]} \boldsymbol{c}_{12,t}^{[8]} + \frac{62}{9} \boldsymbol{c}_{1}^{[4]} \boldsymbol{c}_{1}^{[8]} \right) \,, \end{split}$$

where

$$\beta_1^{[8]} \equiv \mu \frac{\textit{d} \textit{c}_1^{[8]}}{\textit{d} \mu} = -\frac{1}{16\pi^2} \left(\frac{4}{3} \textit{c}_{12}^{[4]} \textit{c}_{12,\textit{su}}^{[8]} + 2 \textit{c}_{12}^{[4]} \textit{c}_{12,\textit{t}}^{[8]} + \frac{10}{3} \textit{c}_1^{[4]} \textit{c}_1^{[8]} + \left(\textit{c}_{12}^{[6]} \right)^2 \right).$$

- ► Σ is independent of μ just like the amplitude. Requiring $\mu \frac{d}{d\mu} \Sigma = 0$ gives us the β function!
 - By changing μ we don't really change the positivity bound! We just change the definition of c₁^[8].
- Σ does depend on s_0 . $\Sigma \ge 0$ is valid as long as $0 < s_0 \ll \Lambda^2$.

$$\begin{split} \Sigma &= 2 \mathbf{c}_{1}^{[8]} + \frac{1}{64\pi^{2}} \frac{1}{\mathbf{s}_{0}^{2}} \left(\left(\mathbf{c}_{1}^{[4]} \right)^{2} + \left(\mathbf{c}_{12}^{[4]} \right)^{2} \right) + \frac{1}{16\pi^{2}} \frac{1}{\mathbf{s}_{0}} \frac{3\pi}{8} \mathbf{c}_{12}^{[4]} \mathbf{c}_{12}^{[6]} + \left(\frac{3}{4} + \log \frac{\mathbf{s}_{0}}{\mu^{2}} \right) \beta_{1}^{[8]} \\ &+ \frac{1}{16\pi^{2}} \left(2 \left(\mathbf{c}_{12}^{[6]} \right)^{2} + \frac{26}{9} \mathbf{c}_{12}^{[4]} \mathbf{c}_{12,su}^{[8]} + 4 \mathbf{c}_{12}^{[4]} \mathbf{c}_{12,t}^{[8]} + \frac{62}{9} \mathbf{c}_{1}^{[4]} \mathbf{c}_{1}^{[8]} \right) \,. \end{split}$$

► If $c_1^{[8]}$ is generated at one loop, while the other coefficients are generated at the tree level, then $c_1^{[8]}$ and the 1-loop contribution of tree-level coefficients are at the same loop order.

▶ The tree level bound $c_1^{[8]} \ge 0$ does not necessarily hold at loop level!

- Dim-4 and dim-6 contributions are important at the one-loop level (because of the log s terms)!
- If ϕ_1 is a NGB, the positivity bound $c_1^{[8]} \ge 0$ is robust.
- In general $\beta_1^{[8]}$ can take either sign.

$$\mathcal{L} = \frac{1}{2} \left(\partial^{\mu} \Phi \partial_{\mu} \Phi - \mathbf{M}^{2} \Phi^{2} \right) + \frac{1}{2} \partial^{\mu} \phi_{1} \partial_{\mu} \phi_{1} + \frac{1}{2} \partial^{\mu} \phi_{2} \partial_{\mu} \phi_{2} - \mathbf{g} \mathbf{M} \Phi \phi_{1} \phi_{2} - \frac{1}{4} \lambda \phi_{1}^{2} \phi_{2}^{2} ,$$

- $\blacktriangleright \ \frac{c_1^{[8]}}{2} \left(\partial_{\mu} \phi_1 \right) \left(\partial^{\mu} \phi_1 \right) \left(\partial_{\nu} \phi_1 \right) \left(\partial^{\nu} \phi_1 \right) \text{ is only generated at one-loop level.}$
- c₁^[8] needs to be matched to the one-loop level, which is (at matching scale *M*):

$$c_1^{[8]}(M) = \frac{1}{16\pi^2} \frac{g^2}{M^4} \frac{1}{45} \left(55\lambda - 166g^2\right) ,$$

Other coefficients are matched to the tree level

$$c_{12}^{[4]}(M) = 2g^2 - \lambda \,, \qquad c_{12}^{[6]}(M) = -\frac{g^2}{M^2} \,, \qquad c_{12,su}^{[8]}(M) = \frac{g^2}{M^4} \,,$$

• Plug them in Σ , run $c_1^{[8]}$ down to $\mu \dots$

Jiayin Gu

Back to the $\Phi \phi_1 \phi_2$ model

• This gives (the dependence on μ cancels as intended)

$$\begin{split} \Sigma &= \frac{\lambda^2}{64\pi^2} \frac{1}{s_0^2} + \frac{\lambda g^2}{16\pi^2} \left(-\frac{1}{s_0^2} + \frac{3\pi}{8} \frac{1}{M^2 s_0} + \frac{5}{9} \frac{1}{M^4} + \frac{4}{3} \frac{1}{M^4} \log \frac{s_0}{M^2} \right) \\ &+ \frac{g^4}{16\pi^2} \left(\frac{1}{s_0^2} - \frac{3\pi}{4} \frac{1}{M^2 s_0} - \frac{47}{20} \frac{1}{M^4} - \frac{11}{3} \frac{1}{M^4} \log \frac{s_0}{M^2} \right) \,, \end{split}$$

- ► It can be verified by calculating $\frac{2}{\pi} \int_0^\infty ds \frac{s^4 [\sigma(\phi_1\phi_1 \to \phi_2\phi_2) + \sigma(\phi_1\phi_1 \to \Phi\Phi)]}{(s^2 + s_0^2)^3}$ at tree level and expand to $\mathcal{O}(M^{-4})$.
- The beta function is now

$$\beta_1^{[8]} = \frac{1}{16\pi^2} \left(\frac{4}{3} \frac{\lambda g^2}{M^4} - \frac{11}{3} \frac{g^4}{M^4} \right) \,.$$

- Consider the limit $\lambda \gg g^2$, obviously $\beta_1^{[8]}$ can take either sign in this case!
- ▶ In the opposite limit $\lambda \to 0$, it seems that the positivity bound is violated when $s_0 \approx M$, but when $s_0 \approx M$ the EFT expansion breaks down and we cannot truncate Σ at $\mathcal{O}(M^{-4})$...

Scalar QED EFT current work with Xiao Cao, Yuhang Wu, Yunxiao Ye

- The situation is quite different if external photons (gauge bosons) are involved!
 - Gauge invariance imposes strong constraints on the form of the UV completion.
- For simplicity, we focus on scalar QED EFT here, where the only light d.o.f. are a complex (charge 1) scalar and a photon.
- We assume heavy particles have spin ≤ 1 .
 - ▶ No tree-level BSM contribution to $\phi\gamma \rightarrow \phi\gamma$ and $\gamma\gamma \rightarrow \gamma\gamma$.
 - At one loop, SM and BSM contributions are separately positive. Only SM contributes to $\sigma(SM \rightarrow SM)$. (By SM I mean scalar QED...)

Positivity Bounds at one-loop level

Jiayin Gu

Scalar QED EFT

$$\begin{split} \mathcal{L}_{[\mathcal{O}] \leq 4} &= -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + (D^{\mu}\phi)^{\dagger} (D_{\mu}\phi) - \frac{1}{4} \lambda_{1} (\phi^{\dagger}\phi)^{2} , \\ \mathcal{L}_{6} \cdot \Lambda^{2} &= & c_{\phi^{6}} \frac{1}{36} (\phi^{\dagger}\phi)^{3} + c_{D^{2}\phi^{4}} \phi^{\dagger}\phi (D_{\mu}\phi)^{\dagger} D^{\mu}\phi + c_{F^{2}\phi^{2}} \frac{1}{4} \phi^{\dagger}\phi F^{\mu\nu} F_{\mu\nu} , \\ \mathcal{L}_{8} \cdot \Lambda^{4} &= & c_{F^{4}}^{(1)} \frac{1}{16} F_{\mu\nu} F^{\mu\rho} F^{\nu\sigma} F_{\rho\sigma} + c_{F^{4}}^{(2)} \frac{1}{16} (F_{\mu\nu} F^{\mu\nu}) (F_{\rho\sigma} F^{\rho\sigma}) \\ &+ c_{\phi^{8}} \frac{1}{576} (\phi^{\dagger}\phi)^{4} + c_{D^{2}\phi^{6}} \frac{1}{4} (\phi^{\dagger}\phi)^{2} (D_{\mu}\phi)^{\dagger} D^{\mu}\phi \\ &+ c_{D^{4}\phi^{4}}^{(1)} \frac{1}{4} ((D_{\mu}\phi)^{\dagger})^{2} (D_{\nu}\phi)^{2} + c_{D^{4}\phi^{4}}^{(2)} \phi^{\dagger}\phi (D_{\mu} D_{\nu}\phi)^{\dagger} (D_{\mu} D_{\nu}\phi) \\ &+ c_{F^{2}\phi^{4}} \frac{1}{16} (\phi^{\dagger}\phi)^{2} F_{\mu\nu} F^{\mu\nu} \\ &+ c_{F^{2}D^{2}\phi^{2}}^{(1)} \frac{1}{4} (D_{\mu}\phi)^{\dagger} (D_{\nu}\phi) F^{\mu\rho} F^{\nu}_{\rho} + c_{F^{2}D^{2}\phi^{2}}^{(2)} \frac{1}{4} (D^{\mu}\phi)^{\dagger} (D_{\mu}\phi) F_{\nu\rho} F^{\nu\rho} . \end{split}$$

Tree level positivity bounds:

$$\mathbf{C}_{\mathbf{D}^4\phi^4}^{(1)} + 2\mathbf{C}_{\mathbf{D}^4\phi^4}^{(2)} \geq 0\,, \quad \mathbf{C}_{\mathbf{F}^2\mathbf{D}^2\phi^2}^{(1)} < 0\,, \quad \mathbf{C}_{\mathbf{F}^4}^{(1)} > 0\,, \quad \mathbf{C}_{\mathbf{F}^4}^{(1)} + 2\mathbf{C}_{\mathbf{F}^4}^{(2)} > 0\,.$$

$\phi\gamma \to \phi\gamma$

- Consider γ in the helicity basis, now φ is a complex scalar. However, the charge conjugation symmetry in (scalar) QED ensures the amplitude still has a s ↔ u symmetry.
- Repeating what we did in the scalar case, we find

$$\begin{split} \Sigma &= \frac{e^4}{8\pi^2} \frac{1}{s_0^2} - \frac{1}{\Lambda^4} \frac{1}{8} c_{F^2 D^2 \phi^2}^{(1)} \\ &+ \frac{1}{\Lambda^4} \frac{1}{192\pi^2} \bigg[3e^2 c_{F^2 D^2 \phi^2}^{(1)} \left(\frac{1}{\epsilon^2} - \frac{1}{\epsilon} \log \left(\frac{-t}{\mu^2} \right) + \frac{1}{2} \log^2 \left(\frac{-t}{\mu^2} \right) - \frac{1}{2} \zeta_2 \right) \\ &+ e^2 (c_{D^4 \phi^4}^{(1)} + 2c_{D^4 \phi^4}^{(2)} + 9c_{F^2 D^2 \phi^2}^{(1)} + 9c_{F^4}^{(1)} + 12c_{F^4}^{(2)}) \left(-\log \left(\frac{-t}{\mu^2} \right) + 2 \right) \\ &+ (3e^2 c_{F^2 D^2 \phi^2}^{(1)} + c_{F^2 \phi^2}^{(2)}) \left(-\frac{3}{2} - 2 \log \left(\frac{s_0}{\mu^2} \right) + 4 \right) \bigg] \\ &+ \frac{1}{1152\pi^2 \Lambda^4} \bigg[7e^2 c_{D^4 \phi^4}^{(1)} + 14e^2 c_{D^4 \phi^4}^{(2)} - 36e^2 c_{F^4}^{(1)} + 2c_{F^2 \phi^2}^2 + 6e^2 c_{F^2 D^2 \phi^2}^{(1)} - 48e^2 c_{F^2 D^2 \phi^2}^{(2)} \bigg] \,. \end{split}$$

- No t-channel simple pole in this case.
- ► IR divergence may exist for fixed order amplitudes (but here we only need to worry about the leading order contribution of c⁽¹⁾_{F2D²φ²})
- log *t* can be regulated by giving ϕ a small mass *m*.

• We can subtract the SM contribution by requiring at least one final state heavy particle in $\sigma_{tot}(\phi\gamma)$.

$$\Sigma' = \Sigma - \Sigma_{\rm SM} \ge 0$$
.

- ► Only c⁽¹⁾_{D⁴φ⁴} and c⁽²⁾_{D⁴φ⁴} can be generated at the tree level (under our assumptions).
- Up to one loop in the UV, we have (omitting $\mathcal{O}(m^2)$ corrections)

$$\Sigma' = -\frac{1}{\Lambda^4} \frac{1}{8} c^{(1)}_{F^2 D^2 \phi^2} + \frac{1}{\Lambda^4} \frac{19 e^2}{1152 \pi^2} (c^{(1)}_{D^4 \phi^4} + 2 c^{(2)}_{D^4 \phi^4}) - \frac{1}{\Lambda^4} \frac{e^2}{192 \pi^2} (c^{(1)}_{D^4 \phi^4} + 2 c^{(2)}_{D^4 \phi^4}) \log \frac{\mathbf{m}^2}{\mu^2} + \frac{1}{2} \frac{1$$

Jiayin Gu

Fudan University

18

Up to one loop in the UV, we have

$$\Sigma' \approx -\frac{1}{\Lambda^4} \frac{1}{8} c^{(1)}_{F^2 D^2 \phi^2} + \frac{1}{\Lambda^4} \frac{19 e^2}{1152 \pi^2} (c^{(1)}_{D^4 \phi^4} + 2 c^{(2)}_{D^4 \phi^4}) - \frac{1}{\Lambda^4} \frac{e^2}{192 \pi^2} (c^{(1)}_{D^4 \phi^4} + 2 c^{(2)}_{D^4 \phi^4}) \log \frac{m^2}{\mu^2}$$

- Here Σ' has no s_0 dependence (because only *t* enters these loops) ...
- The leading order β function for c⁽¹⁾_{F²D²φ²} is (which can also be obtained by requiring μ d/dμ Σ' = 0)

$$\beta(\mathbf{c}_{\mathbf{F}^2 \mathbf{D}^2 \phi^2}^{(1)}) = \frac{\mathbf{e}^2}{12\pi^2} \left(\mathbf{c}_{\mathbf{D}^4 \phi^4}^{(1)} + 2\mathbf{c}_{\mathbf{D}^4 \phi^4}^{(2)} \right) \,.$$

c⁽¹⁾_{F²D²φ²} does not necessarily obey the tree-level bound (c⁽¹⁾_{F²D²φ²} < 0).
 Taking the limit m → 0, Σ' is dominated by the log term, which seems to imply a bound on β (which drives c⁽¹⁾_{F²D²φ²} in the same direction as the tree-level bound in IR).

Is this always the case if we have symmetric diagrams?

UV models

• A heavy scalar Φ with charge 2

$$\begin{split} \mathcal{L} &= -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + (D^{\mu}\phi)^{\dagger} (D_{\mu}\phi) + (D^{\mu}\Phi)^{\dagger} (D_{\mu}\Phi) - M^{2}\Phi^{\dagger}\Phi \\ &- \frac{1}{4} \lambda_{1} (\phi^{\dagger}\phi)^{2} - \frac{1}{4} \lambda_{2} (\Phi^{\dagger}\Phi)^{2} - \lambda_{3}\Phi^{\dagger}\Phi\phi^{\dagger}\phi - (\frac{1}{2}gM\Phi^{\dagger}\phi\phi + h.c.) \,. \end{split}$$

• Tree level matching: $c_{D^4\phi^4}^{(1)} = 4g^2$, $c_{D^4\phi^4}^{(2)} = 0$.

One loop matching (and running):

$$\mathbf{c}_{\mathbf{F}^{2}D^{2}\phi^{2}}^{(1)} = \frac{1}{16\pi^{2}} \frac{2}{3} \mathbf{g}^{2} \mathbf{e}^{2} \left(9 + 4\log\left(\frac{\mu^{2}}{\mathbf{M}^{2}}\right)\right) \,,$$

- Tree-level positivity bound "violated" for $\mu \gtrsim 0.3 M$.
- Note: λ₃ does not contribute to c⁽¹⁾_{F²D²φ²}! (Otherwise we can get a violation of positivity bound.)
- Σ' is given by (with g, e defined at the matching scale M)

$$\Sigma' = \frac{e^2 g^2}{576 M^4 \pi^2} \left(11 - 12 \log \left(\frac{m^2}{M^2} \right) \right) > 0.$$

Positivity Bounds at one-loop level

Jiayin Gu

$\gamma\gamma\to\gamma\gamma$

• Orthogonal linear polarization ($\gamma_y \gamma_x \rightarrow \gamma_y \gamma_x$)

$$\begin{split} \Sigma' = & \frac{1}{\Lambda^4} \left[\frac{c_{F4}^{(1)}}{4} + \frac{1}{384\pi^2} e^2 c_{F^2 D^2 \phi^2}^{(1)} \left(\frac{3}{2} + 2 \log \left(\frac{s_0}{\mu^2} \right) + 2 \log \left(\frac{-t}{\mu^2} \right) - 8 \right) \right. \\ & \left. - \frac{7}{576\pi^2} e^2 c_{F2 D^2 \phi^2}^{(1)} \right]. \end{split}$$

• Same linear polarization ($\gamma_y \gamma_y \rightarrow \gamma_y \gamma_y$)

$$\begin{split} \Sigma' &= \frac{1}{\Lambda^4} \left[\frac{1}{2} (c_{F^4}^{(1)} + 2c_{F^4}^{(2)}) + \frac{1}{64\pi^2} c_{F^2 \phi^2}^2 \left(-\frac{3}{2} - 2\log\left(\frac{s_0}{\mu^2}\right) + 4 \right) \right. \\ &\left. - \frac{1}{384\pi^2} e^2 c_{F^2 D^2 \phi^2}^{(1)} \left(-\frac{3}{2} - 2\log\left(\frac{s_0}{\mu^2}\right) - 2\log\left(\frac{-t}{\mu^2}\right) + 8 \right) \right. \\ &\left. - \frac{1}{576\pi^2} e^2 (25 c_{F^2 D^2 \phi^2}^{(1)} + 72 c_{F^2 D^2 \phi^2}^{(2)}) \right]. \end{split}$$

- If all operators above are generated at one-loop level, the contributions from c⁽¹⁾_{F4}, c⁽²⁾_{F4} and c²_{F2b²} are two-loop effects from the UV model.
- ► If $c_{D^4\phi^4}^{(1)}$ or $c_{D^4\phi^4}^{(2)}$ are generated at tree level, their contribution to the above equations are also at the two-loop level from the UV model.

Jiayin Gu

Conclusion

- The interpretation of positivity bounds are more subtle at the loop level.
- Something is positive, but that something can have several contributions!
 - It is important to include all contributions to each fixed loop order in the UV model.
 - Dim-4 and dim-6 contributions can be important.
 - Contributions that correspond to the interference term of the cross section are not necessarily positive!
- In scalar theories, we've found examples where the 1-loop generated dim-8 coefficient and the corresponding β function are not subject to the tree-level positivity bounds.
- For φγ → φγ and γγ → γγ scatterings in scalar QED (EFT), the one-loop diagrams are "symmetrical" and the β-functions always tend to make the coefficient more "positive" at IR.
 - Accidental? (Does it hold beyond 1-loop level?)
- Other more practical one loop cases?
 - ► $2f \rightarrow 2f$, $f\gamma \rightarrow f\gamma$,?

backup slides

Jiayin Gu

Positivity Bounds at one-loop level

Fudan University