
A Semi-analytic Approach Towards Curvaton

Abhishek Naskar

ShanghaiTech University

EFT, Gravity and Cosmology (HIAS)

arXiv: 2410.07694

In collaboration with N. Okada, A. Ghoshal

April 25, 2025

Abhishek Naskar



Motivation for Curvaton Scenario

In standard inflationary scenario inflaton field generates the
observed curvature perturbation

An alternative method to generate curvature perturbation where
inflaton is not responsible for it

Possibility of producing large non-Gaussianities

Can be interesting for PBH or secondary GWs
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Curvaton Picture

The curvaton field is subdominant in energy during inflation

Curvaton field is almost frozen during inflation

Curvaton does not affect the background inflationary evolution

Curvaton produces isocurvature perturbations

After inflation the curvaton starts to oscillate and converts it’s
isocurvature perturbation to observed curvature perturbation
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Curvaton dynamics

Background curvaton: ��; curvaton perturbation: ��

The system
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Z
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Inflaton and curvaton do not interact with each other
The background and perturbed curvaton equation of motion:

���+ 3H _��+ V;� = 0 (2)
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�� is almost frozen during inflation

Gaussian fluctuation: �� � Hinf
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�N formalism

Perturbed quantities can be computed from their unperturbed
solutions

If we follow the volume expansion rate starting from a flat
hypersurface to uniform density hypersurface for any field �
curvature perturbation can be estimated as,
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The powerspectrum:
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The bispectrum:
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The vanilla curvaton

The Lagrangian:

L = �1
2
(@��)

2 � m2

2
�2

Conisderation: m � Hinf

After H � m, � starts to oscillate

Curvaton energy density redshifs as, a�3 as opposed to the
radiation behavior a�4

If curvaton lives long enough it will dominate the energy density
of the universe
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Start with energy equation at the time of � decay with � as decay
width:

3M2
p�

2 = �rad;0e�4N + ��;0e�3N

Differentiating w.r.t �

@N
@�

=
2r

4 + 3r
1
��

with, r =
��;decay

�rad;decay

For sufficient curvaton domination, r !1) @N
@�

� 2
3��

For r ! 0 ) @N
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=
r
2

1
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Non-Gaussianity: fNL =
5
12

(�3 +
4
r
+

8
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For r !1) fNL = �15
12
) constant and negative
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Axion as curvaton

The system:

L = �1
2
@��@

��� �4
�
1� cos

�
�

f

��

�4 = m2f 2 with f 2 is the decay constant

Considering curvaton energy density redshifts as a�3, analytical
estimation results in:

P� =

�
Hinf

2�

�2 � r
4 + 3r

�2 �1 + cos ��
sin ��

�2
with,

� =
�

f
, [arXiv:2007.01741, T. Kobayashi]

At � ! 0 limit the axion potential behaves like vanilla curvaton
and the powerspectrum follows the same form
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Numerical analysis

Any potential beyond quadratic (m2�2) needs to be analyzed
numerically. Reason: Analytical computation assumes energy of
the curvaton redshifts as a�3 irrespective of the potential’s nature

We need to numerically solve (post-inflation):

dN
dx

=

"
�e�4N +

1
3M2

P

(
1
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�
d�
dx

�2
+ V(�)

)# 1
2

d2�

dx2 = �3
dN
dx

d�
dx
� dV(�)

d�

(4)

[arXiv: 0902.2619; P. Chingangbam, Q. Huang]

x = mt; The integration has to be done from x = 1 (H = m) to
x =

m
�
(H = �)
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Comparison Between Analytical and Numerical Approach
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[ Eur.Phys.J.C 84 (2024)(2302.00668); A. Ghoshal, A.N.]

Abhishek Naskar



Our Method

We use �N formalism

For any polynomial potential the curvaton evolution is separated
into distinct region where a single term of the potential
dominates

The whole scenario can be characterised by transition field value
and time from one region to another

We compute the post-inflationary Hubble parameter by properly
connecting transitions from one region to another

Compute number of e-folds N from H (dN = Hdt); compute
derivatives of N w.r.t curvaton initial field value to estimate the
observables
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Example: m2=2�2
+ �=4�4

Consider a � and initial curvaton field value such that initially �4

term dominates

Curvaton potential dominated by �4; radiation energy density

dominates! �4 domination ends at �T =

s
2
�

m and curvaton

transits to �2 region; radiation still dominates! radiation
domination ends and curvaton starts to dominate the energy
density

Two important times:1. �4 ! �2 transition time tT = tI
�

2

�
�I

m

�2

2. Radiation domination ending time: tMD = tT

 
�R;T

��;T

!2
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During �4 domination the equation of state of the curvaton,
w = 1=3; during �2 domination w = 0

Solve the curvaton and radiation energy evolution equations with
scale factor a(t) / t1=2 for radiation domination and a(t) / t2=3

for matter domination

The corresponding first derivative of N can be written as,

dNR;1

d�I
=

Z tT

tI
dt

dHR;1(�I; t)
d�I

+ HR;1(�I; tT)
dtT
d�I

;

dNR;2

d�I
=

Z tMD

tT
dt

dHR;2(�I; t)
d�I

+ HR;2(�I; tMD)
dtMD

d�I
� HR;2(�I; tT)

dtT
d�I

;

dNM

d�I
=

Z tf

tMD

dt
dHM(�I; t)

d�I
� HM(�I; tMD)

dtMD

d�I
:

For a scenario where curvaton does not dominate one can only
evaluate upto dNR;2=d�I
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Comparison with analytic vanilla curvaton

Our Method

Analytic
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Figure: Powerspectrum and bispectrum of vanilla curvaton: comarison
between our method and analytic expression in r !1 limit
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Quadratic + Quartic Curvaton Results

Quadratic
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Figure: Powerspectrum and bispectrum of vanilla curvaton: Quadratic +
Quartic system at r !1 limit
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An Application to Affleck-Dine Curvaton
Affleck-Dine mechanism for baryogenesis is realized with a potential
like:

V(�) = m2j�j2 + �j�j4 + i�0(�4 � �y4)

A non-zero �0 is responsible for the baryon number violation.
AD mechanism can also be realised with the following potential
(Lloyd-Stubbs,McDonald (2021)):

V(�) = m2(�y�) + �(�y�)2 + �m2
h
�2 + (�y)2

i
;

with,

� =
1p
2
�rei� =

1p
2
(�1 + i�2) ;

For �� 1 we identify the radial part �r as the curvaton sourcing
observable scalar fluctuations
But as � 6= 0, �1 and �2 evolves slightly differently and baryon
asymmetry is generated and stored as a difference between �

and �y
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The scenario:
@N
@�

= 0,
@N
@�r

6= 0

We explore a scenario where curvaton decays dominate the
energy density r � 1

Benchmark: HI = 3:21� 10�6;m = 10�7;

�T = 10�3; �I = 4�T ,rd = 10)
fNL � �0:55; � � 2:08� 10�8; nB=s � 10�10.

Curvaton needs to dominate the energy density in order to be
consistent with observational bounds on baryon isocurvature
perturbation

AD mechanism where higher dimensional operator is
responsible for the generation of baryon number may not be
realised as a curvaton because of isocurvature bounds
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Summary

Standard analytical computation for generic curvaton potential
does not agree with numerical estimations

We introduce a methodology for polynomial curvaton potential,
where a single term dominates the for curvaton evolution
depending on field value

The system is characterised by transition field value and time

We explored an Affleck-Dine curvaton scenario where AD field
can produce observable perturbations with sufficient
baryogenesis

Thank You
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The powerspectrum, P� =
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Evolution of Curvature perturbation

Observable curvature perturbation gets generated after inflation

The metric can be written as,

ds2 = �dt2 + a2(1 + �)gijdxidxj

� at large scales can be written as,

_� = � H
�+ P

�Pnad

�Pnad ! Non-adiabatic perturbation
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Amplification process

After inflation we have two components: radiation (rad) and
curvaton (�)

Gauge invariant perturbations : �i = � +
��i

_�i

The total curvature perturbation: � = (1� f )�rad + f ��

f =
3��

3�� + 4�rad

�i’s are conserved seperatly but the total curvature perturbation
evolves as,

_� = _f (�� � �rad) (5)

_f > 0 ) Growth of curvature perturbations

The non-adaibatic pressure: �Pnad / (�� � �rad)
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Methodology

Solve the axion equation of motion during inflation even if the
axion evolution is neglible
The coupled equation in post-inflationary evolution is hard to
handle; after certain x the code does not behave well

We solve the coupled equation upto some x = x1 where the code
behaves well) This is not r !1 limit
After this x1 we assume the curvaton potential behaves like
quadratic one and hence its energy density evolves as a�3

We solve
dN
dx

=
�
�e�4N

+ ��;x1 e�3N�1=2

from x1 to xdecay =
m
�
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�N: Implications in curvaton

During inflation the N does not depend on �
After inflation if � startes dominating the energy density,

@N
@�

6= 0

We get the amplification of initial curvaton density fluctuations and
can generate observable CMB fluctuations.
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NB = 2Q�m2��2
r;I sin(2�I)J;

where Q� ! baryon/lepton number of the AD field

J =
��

8�2m2 for �� ��
m

,

=
1

2��
for �� ��

m
,

nB = NB

�
aI

adec

�3
;

s =
2�2

45
g?T3

dec:
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