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Dispersion Relation

Scattering process ij → kl with amplitude Aijkl, and i, j, k, l = 1, 2, ..., N , particles
in the low energy effective theory.

Aijkl(s, t) =
1

2πi

∮
C
ds′

Aijkl(s
′, t)

s′ − s

▶ Analyticity

▶ Froissart-Martin bound

(M. Froissart, 1961; A.
Martin, 1963)

Aijkl(s, t) =
λijkl

−s
+

λijkl

−t
+

λijkl

−u
+ a

(0)
ijkl(t) + a

(1)
ijkl(t)s

+

∫ ∞

Λ2

dµ

π(µ+ t
2
)2

[
(s+ t

2
)2

µ− s
ImAijkl(µ, t) +

(u+ t
2
)2

µ− u
ImAilkj(µ, t)

]
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Unitarity and Positivity

UV Unitarity of S-matrix: S†S = 1, S = 1+ iT ,

Positivity : 2ImT = T †T ⪰ 0

.
▶ The allowed space of Wilson coefficients is a convex cone.

(C. Zhang & S.-Y. Zhou, 2005.03047; B. Bellazzini, L. Martucci & R. Torre, 1405.2960; C. Zhang,

2112.1665)

4

mapping to the operator coe�cients, obtain:

CT,2 � 0, 4CT,1 + CT,2 � 0, (8)

CT,2 + 8CT,10 � 0, 8CT,0 + 4CT,1 + 3CT,2 � 0, (9)

12CT,0 + 4CT,1 + 5CT,2 + 4CT,10 � 0, (10)

4CT,0 + 4CT,1 + 3CT,2 + 12CT,10 � 0. (11)

Again, the corresponding operators OT,n are defined in
Refs. [74] [75]. All these bounds except for CT,2 � 0
have not appeared previously in the literature, and are
indeed stronger than those presented in Refs. [27, 29].
These coe�cients parameterize the anomalous quartic-
gauge-boson couplings, currently being measured at the
LHC [60–62], so they alone are important results. The
first four bounds can be identified as positivity bounds
by scattering various superposed states of |W 1,2

x,y i [super-
scripts for SU(2)L and subscripts for polarization]. The
last two bounds, Eqs. (10) and (11), deserve more atten-
tion: They cannot be derived from any elastic scattering
between superposed states, so they are beyond elastic
positivity.

More than elastic positivity .— As explained al-
ready, elastic positivity fails to give a complete descrip-
tion of C, because, in general, C⇤ contains more elements
than Q. The two bounds in Eqs. (10) and (11) are indeed
from the following elements of C⇤, not contained in Q:

T1 = 6E1,1 + 3E2,1 + 6E2,2 + 3/2E3,1 + 3E3,3 (12)

T2 = 5/2E1,1 + 5E1,2 + E1,3 + 15/2E2,1 + 3E3,3. (13)

One can show that T ijkl
1,2 M ijkl � 0, which lead to

Eqs. (10) and (11) respectively, and that T1,2 /2 Q, which
implies that those bounds cannot be derived from scat-
tering between superposed states (See the Appendix for
a proof with more details).

The fact that T1,2 /2 Q suggests that the dispersion re-
lation of scattering amplitudes with entangled states can
provide additional information about the UV completion.
Positivity bounds would not capture this information un-
less there is a systematic and e�cient way to tackle all
elements in C⇤. Note that the T1,2 tensors are indepen-
dent of this specific problem, and may lead to new bounds
also for other operators or EFTs, whenever the number of
states n � 6. Our extremal approach naturally captures
all such cases.

The fermion circular cone .— Lastly, we consider
SM-like chiral fermions, with left- and right-handed
components carrying di↵erent hypercharges but other
symmetries neglected for simplicity. Defining Jµ

L,R ⌘
f̄L,R�

µfL,R, we use the following basis:

O1 = �@µJ⌫
L@µJL⌫ , O2 = �@µJ⌫

R@µJR⌫ ,

O3 = @µJ⌫
L@µJR⌫ , O4 = Dµ

�
f̄LfR

�
Dµ

�
f̄RfL

�
. (14)

We simply show the PERs, in terms of the coe�cient

vector ~C = (C1, C2, C3, C4):

ML : (1, 0, 0, 0),

MR : (0, 1, 0, 0),

DS : (0, 0, 0, 1),

DA : (0, 0,�1, 1),

V : (1, r2,�2r, 0),

V 0 : (0, 0,�1, 2).

ML,R are from Majorana-type scalar couplings with two
fL’s or two fR’s. D is from a Dirac-type scalar cou-
pling, with subscripts S,A indicating the exchange sym-
metry. V (V 0) is from the vector coupling formed by
same(opposite)-chirality fermions. r is the ratio between
R/L couplings. Since V is continuously parameterized
by r, C has a curved boundary. In Figure 2 we show a
3D slice of C. The boundaries are given by C1, C2, C4 � 0
and 2

p
C1C2 � max(C3,�C3 � C4).

FIG. 2. A slice of the 4D fermion cone, taken to be perpen-
dicular to the direction (1, 1, 0, 1). The three axes are taken
to be (1,�1, 0, 0), (0, 0, 1, 0) and (�1,�1, 0, 2).

A geometric view for UV-determination .— Let
us reiterate what the Higgs example tells us in more gen-
eral cases. Let E\a be the convex hull of all PERs with

one of them, ~Ea, removed. If the measured coe�cients,
denoted as ~Cexp, are not contained by E\a, then a tree-
level UV completion must contain a particle that couples
with the Ea irrep. This feature extends to loop-generated
cases. For example, in the blue region of Figure 1, there
must exist some multi-particle state that couples to HH,
carries hypercharge 1, and contains a SU(2)L singlet.

Quantitative statements can be made. For a measured
~Cexp in the blue region, there is a minimum � such that
~Cexp��~E1 2 E\1. This sets a lower bound on the strength

of the UV coupling that generates ~E1. Similarly, an up-
per bound can be set using ~Cexp ��~Ei 2 C for all ~Ei. As
a second example, consider the fermion cone and assume
~Cexp / (1, 0.8, 1.4, 1) is observed (see the black point in
Figure 2). If a small arc on V (shown in black) is re-
moved, the convex hull of remaining PERs does not con-
tain ~Cexp. It follows that a UV state exists and couples
to the fermions with V/A-type couplings, and an upper
bound on the coupling ratio |gV /gA| < 0.35 can be set.
There are many other interesting and phenomenologi-
cally relevant examples, where convex hulls can be used
to infer UV states. This is not possible at dim-6, as the
PERs would positively span the entire space.

In the last column, we also give the resulting Wilson coefficients at dim-6. They are the
coefficients of the Warsaw basis operators

Q'⇤ = @µ

⇣
H†H

⌘
@µ

⇣
H†H

⌘
(4.28)

Q'D =
⇣
H†DµH

⌘⇣
DµH†H

⌘
(4.29)

and are normalized such that when each state is integrated out, the corresponding dim-6
coefficient vector is ~C(6) = g2/M2~c(6). These are mainly for a discussion in Section 5.2.2.

The 6 generator vectors in the dim-8 coefficient space can be read out:

~g1 = (1, 0,�1) ~g1S = (0, 0, 2) ~g1A = (�2, 2, 0)

~g3 = (0, 1, 0) ~g3S = (4, 0,�2) ~g3A = (2, 2,�4)
(4.30)

Among the 6 generators, the three SU(2) singlets are extremal. The positivity region is
thus a triangular cone, whose bounds are simply

C2 � 0, C1 + C2 � 0, C1 + C2 + C3 � 0 (4.31)

The cone and its generators are shown in Figure 5 with a 2-dimensional slice.
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Figure 5. The positivity cone for 4-Higgs operators, with the corresponding generators. Colors
represent different irreps. They are only labeled with SU(2) irrep (1, 3) and the exchange symmetry
(S,A). The cone is shown in the left plot, while the right plot shows a slice of the cone. The latter
can be thought of as intersecting the cone with a hyperplane 2C1 + 3C2 + C3 = 1.

Finally, for completeness, we also present the extremal positivity approach to this
problem, but using complex fields. The treatment of symmetry group projectors is similar
to what we will use for the fermions in Section 4.3. A difference is that we will follow
Eq. (3.28) but without imposing the i $ j, j $ l symmetry, as this is automatic from the
SU(2) irreps.

– 30 –
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Unitarity and Positivity

Also inequalities from the relation 2ImT = T †T itself: non-positivity part of UV

unitarity conditions.

▶ The convex cone is capped from above and we have two-sided bounds.
(QC, Ken Mimasu, Tong Arthur Wu, Guo-Dong Zhang & Shuang-Yong Zhou, 2309.15922)
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Unitarity and Positivity

For a subspace of the whole external particle states space,

S†S ⪯ 1

(1− ImT )2 + (ReT )2 ⪯ 1

A weaker condition (1− ImT )2 ⪯ 1 leads to

ImT ⪰ 0 , 21− ImT ⪰ 0
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Partial Wave Positivity

Partial waves expansion: ImAijkl(µ, t) = 16π
∑∞

ℓ=0(2ℓ+ 1)Pℓ

(
1 + 2t

µ

)
Imaijklℓ (µ),

Pℓ: Legendre Polynomial, ρijklℓ ≡ Imaijklℓ : partial wave spectral density

Unitarity: Im aijklℓ =
∑

aij→X
ℓ

(
akl→X
ℓ

)∗

ii → ii : Imaiiiiℓ ≥ 1

2
|aiiiiℓ |2 = 1

2

(
Imaiiiiℓ

)2
+

1

2

(
Reaiiiiℓ

)2 ⇒ 0 ≤ Imaiiiiℓ ≤ 2,

ij → ij : Imaijijℓ ≥ |aijijℓ |2 + |aijjiℓ |2 ≥ 2
(
Imaijijℓ

)2 ⇒ 0 ≤ Imaijijℓ ≤ 1/2,

...
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Null Constraints

The Mandelstam s, t, u crossing symmetry leads to a set of constraints on
pole-subtracted amplitude Ãijkl =

∑∞
m=0

∑∞
n=0 c

m,n
ijkl

(
s+ t

2

)m
tn,

s ↔ u : Ãijkl(s, t) = Ãilkj(u, t)

s ↔ t : Ãijkl(s, t) = Ãikjl(t, s)

Null constraints:

s ↔ u : c1,nijkl + c1,nilkj = 0

s ↔ t : np,q
ijkl =

p+q∑

a=p

Γ(a+ 1) ca,p+q−a
ijkl

2a−pΓ(p+ 1)Γ(a− p+ 1)
−

p+q∑

b=q

Γ(b+ 1) cb,p+q−b
ikjl

2b−qΓ(p+ 1)Γ(b− p+ 1)
= 0
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Semi-definite Program

Dispersion relation:

L.H.S IR cm,n
ijkl

.
=

∫
ρijklℓ UV R.H.S

Positivity bound of dim-8 coefficient c2,0ijkl by semi-definite program:

Variables

ρijklℓ

Maximize/Minimize

c2,0ijkl =
∑

ℓ

16(2ℓ+ 1)

∫ ∞

Λ2

dµ

µ3

[
ρijklℓ (µ) + ρilkjℓ (µ)

]
(dispersion relation)

Subject to Positivity inequalities of ρijklℓ (UV unitarity)

Null constraints of ρijklℓ (crossing symmetry)
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Single-field Positivity Bound

A single real scalar odd under Z2, we only have one dim-8 coefficient c2,0.

Variables

ρℓ,n

Maximize

c2,0 =
1

Λ4

∑

ℓ=0,2,...,ℓM ;ℓ∞

(2ℓ+ 1)

N∑

n

1

N

n

N
32ρℓ,n

Subject to

0 ≤ ρℓ,n ≤ 2

∑

ℓ=0,2,...,ℓM ;ℓ∞

(2ℓ+ 1)

N∑

n

1

N

( n

N

)3
(
ℓ4 + 2ℓ3 − 7ℓ2 − 8ℓ

)
ρℓ,n = 0

...
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Single-field Positivity Bound

The upper bound of single scalar dim-8 coefficient is solved numerically by Linear
Programming.

▶ The bound is

0 ≤ c2,0

(4π)2
≤ 1.506

Λ4

(QC, Ken Mimasu, Tong Arthur Wu,

Guo-Dong Zhang & Shuang-Yong

Zhou, 2309.15922)

1 2 3 5 7 9 12 15 18 22

Number of null constraints

0 2 4 6 8 10
Order of null constraints (r)

1.50

1.52

1.54

1.56

1.58

1.60

c2,0

(4π)2
[Λ−4]

N = 3200, `M = 30
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Higgs EFT

The SM Higgs is an SU(2) doublet complex scalar field H = 1√
2
(ϕ1 + iϕ2, ϕ3 + iϕ4)

T .

The dim-8 Higgs operators are

O(1)
H4 =

(
DµH

†DνH
) (

DνH†DµH
)

O(2)
H4 =

(
DµH

†DνH
) (

DµH†DνH
)

O(3)
H4 =

(
DµH†DµH

) (
DνH†DνH

)

C1 = −c2,01212 + 2c2,01313

C2 = c2,01212

C3 = c2,01111 − 2c2,01313

2c2,01122 = c2,01111 − c2,01212

2c2,01133 = c2,01144 = c2,01111 − c2,01313

c2,01414 = c2,01313

2c2,01234 = c2,01212 − c2,01313

c2,01234 + c2,01243 = 0

c2,01324 = 0

c2,0ijkl = c2,0ijkl

∣∣∣
1↔3, 2↔4

c2,0ijkl = c2,0ijkl

∣∣∣
1↔2, 3↔4
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Higgs Positivity Bounds

Semi-definite program for coefficients of Higgs dim-8 operators:

Variables

R1111
ℓ,n , R11ii

ℓ,n , R1i1i
ℓ,n , ρ1jklℓ,n , i, j, k, l ∈ {2, 3, 4}

Maximize/Minimize∑
I

αICI , where

C1 =
1

Λ4

ℓM ;ℓ∞∑
ℓ=0

(2ℓ+ 1)

N∑
n=1

1

N

n

N
32(−R1212

ℓ,n + 2R1313
ℓ,n ) ,

C2 =
1

Λ4

ℓM ;ℓ∞∑
ℓ=0

(2ℓ+ 1)
N∑

n=1

1

N

n

N
32R1212

ℓ,n ,

C3 =
1

Λ4

ℓM ;ℓ∞∑
ℓ=0

(2ℓ+ 1)
N∑

n=1

1

N

n

N
32(R1111

ℓ,n − 2R1313
ℓ,n ) ,

Subject to

Positivity inequalities

Null constraints and gauge symmetry constraints

Qing Chen (Anhui U. of Sci. & Tech) Two-Sided Bounds of Higgs Operators 13 / 22



Higgs Positivity Bounds
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Figure: 2D bounds for Higgs dim-8 operators.(QC, Ken Mimasu, Tong Arthur Wu, Guo-Dong Zhang &

Shuang-Yong Zhou, 2309.15922)
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Experimental Comparison

The positivity bounds are complementary to experimental limits.
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Figure: Bounds of Higgs dim-8 operators coefficients, compared to experimental limits.
(QC, Ken Mimasu, Tong Arthur Wu, Guo-Dong Zhang & Shuang-Yong Zhou, 2309.15922)
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Higgs Positivity Bounds

Figure 1: Positivity regions in the 2D subspaces of C1, C2 and C3 by using linear and

nonlinear unitarity conditions. Here, C̄i = Ci⇤
4/(4⇡)2. The orange and red regions are the

results of the current paper using linear and nonlinear unitarity conditions respectively, while

the blue region are from [73], which uses linear unitarity conditions but without using full

Higgs symmetries. The orange and red regions are the same. We choose N = 10, `M = 20

and use 42 null constraints.

the presence of strong internal symmetries. To see why this happens, let us compute the

eigenvalues of the matrices ImT` and 2I � ImT`, which are given respectively

Distinct eigenvalues of ImT` :

� 2(�1 + (�1)`)⇢t
` , (1 + (�1)`)⇢t

` , 2(1 + (�1)`)⇢t
` , 2(�1 + (�1)`)⇢u

` ,

2(1 + (�1)`)⇢u
` , 2(�1 + (�1)`)(2⇢s

` + ⇢u
` ) , 2(1 + (�1)`)(2⇢s

` + ⇢u
` ), (4.1)

Distinct eigenvalues of 2I � ImT` :

2(1 � ⇢t
` + (�1)`⇢t

`) , � 2(�1 + ⇢t
` + (�1)`⇢t

`) , 2 � ⇢t
` � (�1)`⇢t

` ,

� 2(�1 � ⇢u
` + (�1)`⇢u

` ) , � 2(�1 � 2⇢s
` + 2(�1)`⇢s

` � ⇢u
` + (�1)`⇢u

` ) ,

� 2(�1 + ⇢u
` + (�1)`⇢u

` ) , � 2(�1 + 2⇢s
` + 2(�1)`⇢s

` + ⇢u
` + (�1)`⇢u

` ). (4.2)

The semi-positive definiteness of ImT` and 2I � ImT` are just the semi-positivity of these

eigenvalues. Remembering (2.9) and the relation ⇢ijkl
` (s) = (�1)`⇢ijlk

` (s), it is easy to see

that the positivity of these eigenvalues exactly give rise to the linear unitarity conditions for

the SMEFT Higgs.

Nevertheless, the nonlinear unitarity conditions are in general stronger than the linear

unitarity conditions derived in Appendix A. In Appendix B, as a simple example, we show

that in a generic Z2 bi-scalar theory, the nonlinear bounds are indeed stronger than the linear

bounds.

Finally, we would like to point out that the convergences of our numerically results are

excellent. To see this, in Figure 2, we plot how the 1D bounds varies with the number of null

constraints used. In the above numerical results, we truncated the UV scales with N = 10 and

the UV spins with `M = 20, and we find that it is convenient to choose `1 = 100. With this

numerical setup, the computation of a single half-space bound uses about 110 CPU hours. As

– 10 –

Figure: Bounds of Higgs dim-8 operators coefficients. Orange and yellow regions are the results
of semi-definite program in complex basis (Dong-Yu Hong, Zhuo-Hui Wang & Shuang-Yong Zhou,

2404.04479) with nonlinear and linear unitarity conditions. Blue region is the result in real basis
with more decision variables with linear unitarity conditions (QC, KM, TW, GDZ & SYZ,

2309.15922).
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Summary

▶ UV unitarity conditions constrain low energy effective theory by “positivity”
bounds, which are two-sided bounds.

▶ The upper bounds are of order O(1) and are complementary to experimental
limits.

▶ The two-sided bounds of other effective operators can be similarly computed,
providing constraints of new physics.

Qing Chen (Anhui U. of Sci. & Tech) Two-Sided Bounds of Higgs Operators 17 / 22



Thank You!
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Linear unitarity conditions

0 ≤ ρiiiiℓ ≤ 2,
∣∣ρiijjℓ

∣∣ ≤ 1−
∣∣∣1− ρiiiiℓ + ρjjjjℓ

2

∣∣∣,

0 ≤ ρijijℓ ≤ 1

2
,

∣∣ρijklℓ

∣∣ ≤ 1

4
−
∣∣∣1
4
− ρijijℓ + ρklklℓ

2

∣∣∣, (i ̸= j ̸= k ̸= l)

∣∣(ρiijjℓ + ρkkllℓ )± (ρiikkℓ + ρjjllℓ )
∣∣ ≤ 2.
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R-variable Definitions

R1111
ℓ,n ≡

ρ1111ℓ,n + ρ2222ℓ,n + ρ3333ℓ,n + ρ4444ℓ,n

4
,

R1122
ℓ,n ≡

ρ1122ℓ,n + ρ3344ℓ,n

2
, R1212

ℓ,n ≡
ρ1212ℓ,n + ρ3434ℓ,n

2
,

R1133
ℓ,n ≡

ρ1133ℓ,n + ρ2244ℓ,n

2
, R1313

ℓ,n ≡
ρ1313ℓ,n + ρ2424ℓ,n

2
,

R1144
ℓ,n ≡

ρ1144ℓ,n + ρ2233ℓ,n

2
, R1414

ℓ,n ≡
ρ1414ℓ,n + ρ2323ℓ,n

2
.
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Complex Higgs Basis

More convenient to work in the complex basis to match the effective operators by
considering HH∗ → HH∗ scattering.

Aij̄kl̄(s, t) = δij̄δkl̄f(s, t) + δil̄δj̄kf(u, t)

where H∗ ≡ 1√
2
(H∗

1̄
, H∗

2̄
)T , i, j, k, l = 1, 2 and ī, j̄, k̄, l̄ = 1̄, 2̄.
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Complex Higgs Basis Program

Variables

ρsℓ, n, ρtℓ, n, ρuℓ, n

Maximize/Minimize

c1 =
1

Λ4

ℓM ,ℓ∞∑

ℓ=0

16(2ℓ+ 1)

N∑

n

1

N

n

N

[(
1− (−1)ℓ

) (
ρsℓ, n + ρtℓ, n

)
+
(
1 + (−1)ℓ

)
ρuℓ, n

]

c2 =
1

Λ4

ℓM ,ℓ∞∑

ℓ=0

16(2ℓ+ 1)

N∑

n

1

N

n

N

[(
−1 + (−1)ℓ

) (
ρsℓ, n + ρuℓ, n

)
+
(
1 + (−1)ℓ

)
ρtℓ, n

]

c3 =
1

Λ4

ℓM ,ℓ∞∑

ℓ=0

16(2ℓ+ 1)

N∑

n

1

N

n

N

[(
1− (−1)ℓ

) (
ρuℓ, n − ρtℓ, n

)
+
(
1 + (−1)ℓ

)
ρsℓ, n

]

Subject to

Positivity inequalities

Null constraints
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