
Bootstrapping SU(3) Lattice YM Theory

Gang Yang

ITP, CAS  &  HIAS, UCAS

Effective Field Theories, Gravity and Cosmology

April 24-29 2025, HIAS

Based on 2502.14421 with Yuanhong Guo, Zeyu Li, Guorui Zhu



What is bootstrap

Difficulties:

• Do not know fundamental Lagrangian

• Do not know how to compute (e.g., non-perturbative)

• Known methods too complicated

Physical 
properties

Constrain physical 
results directly

Bootstrap



“Pull yourself up by your bootstraps”

The Surprising Adventures of 
Baron Munchausen, (1781)

What is bootstrap



中国武侠轻功 
“梯云纵” (Ladder Cloud Leap)：

陆⼩凤更吃惊，脚尖点地，身⼦⽴刻蹿起。⼤
殿上的横梁离地⼗丈。没有⼈能⼀掠⼗丈。他
身⼦蹿起，左⾜⾜尖在右⾜⾜背上⼀点，竟施
展出武林中久已绝传的“梯云纵”绝顶轻功，居
然掠上了横梁。

What is bootstrap

A Chinese Kung Fu 
in martial arts novels



S-matrix Program

Bootstrap

Modern 
Amplitudes

Methods
Conformal 
Bootstrap

Matrix bootstrap
EFT Wilson 
coefficients

Bootstrap
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Constraints

Symmetry F(2)
4 (1,2,3,4)

q

IR divergences

Collinear limit

Other possible constraints like unitarity cuts, OPE, …

F(2)
4 |divergence

F(2)
4 |pi//pi+1

→ F(2)
3

∼ (F(1)
4 )2 + 2-loop cusp/ 

collinear ADs

(+ splitting functions)

cyclicly permuting and flipping external momenta



Guo, Wang, GY  2022

determine the two-loop results !

Bootstrapping the two-loop FF

Only change           terms𝒪(ϵ)

IR divergence

Collinear }

q



how the specific Yang-Mills theories which appear in Nature behave. In fact,
among the most difficult steps in the creation of the present ‘standard model’
of particle physics was the realization that Yang-Mills theory can reproduce
the observed qualitative features of the major forces of Nature.

In trying to create theories of Nature at shorter distances, we can try to use
again the qualitative features that we have already found in Yang-Mills theory
or we can discover new ways in which these theories can behave. The most
basic information we can give about the qualitative behavior of a quantum
field theory is the manner in which its symmetries are realized in the vacuum
state. So the general question that we will be interested in is the following:
Given a Yang-Mills theory with gauge group Gc and global symmetry G, how
are Gc and G realized in the vacuum state of the theory?

2.1 A familiar example

In this section, I will give a specific example of an answer to this question and
a survey of the possible choices for this qualitative behavior. The example I
would like to consider is an SU(3) gauge theory with three flavors of massless
fermions. The Lagrangian of the theory is

L = −
1

4

(
F a

µν

)2
+ qf

Li D̸qf
L + qf

Ri D̸qf
R , (1)

for f = 1, 2, 3. The gauge symmetry is Gc = SU(3). At the classical level, the
global symmetry is U(3) × U(3), separate general unitary transformations on
qf
L and qf

R. However, the U(1) transformation

qL → eiαqL qR → e−iαqR (2)

is spoiled by the anomaly, so that the global symmetry of the quantum theory
is G = SU(3) × SU(3) × U(1).

This example is, of course, QCD, the correct theory of the strong inter-
actions. I have only made the idealization of ignoring the masses of the light
quarks u, d, and s. For this case, there is an enormous amount of evidence
from experiment, theoretical considerations, and simulations which leads to a
definite picture of the realization of Gc and G. For Gc, we observe experimen-
tally the permanent confinement of quarks in to color-singlet bound states.
This property is also seen in studies of the strong-coupling limit of QCD on
a lattice5, and in lattice simulations of QCD in the region of intermediate
coupling.6 The theory is asymptotically free at short distances, and the lattice
results show that there is no barrier to the coupling becoming strong at large
distances.

4

Asymptotically
 FreeConfinement

The key point is:

β0 > 0

Non-perturbative QCD



Millennium Prize Problem

Yang–Mills Existence and Mass Gap. 
Prove that for any compact simple gauge group G, a non-trivial 

quantum Yang–Mills theory exists on R4 and has a mass gap ∆ > 0.  

Existence includes establishing axiomatic properties at least as strong 
as those cited in [45, 35]. 

by Jaffe and Witten

[45]  R. Streater and A. Wightman, “PCT, Spin and Statistics and 
all That”, W. A. Benjamin, New York, 1964.  
[35]  K. Osterwalder and R. Schrader, “Axioms for Euclidean 
Green’s functions”, Comm. Math. Phys. 31 (1973), 83–112, and 
Comm. Math. Phys. 42 (1975), 281–305. 



Some known methods

Lattice simulation: most successful quantitative method

Exactly solvable toy model:

Effective field theories:

• low dimensional models

• specific symmetries: supersymmetry, conformal symmetry

• Chiral perturbation, 

• heavy quark effective theory, 

• Nambu-Jona-Lasinio (NJL) model, etc

New “positivity bootstrap” strategy



Positivity bootstrap
First proposed by Anderson and Kruczenski in 2016, and later 
improved by Kazakov and Zheng.

• No EFT but using fundamental QCD action


• No ask for special symmetries


• For general spacetime dimensions


• A method with “analytic” control

Anderson, Kruczenski, arXiv:1612.08140
Kazakov, Zheng, arXiv:2203.11360, 2404.16925



New progress

Previous studies focus on large N YM, or SU(2) YM, where 
only single-trace Wilson loops operators are necessary.

We consider for the first time the SU(3) case which involves 
single- and double-trace operators. 

U(1) case also studied by Li, Zhou, arXiv:2024.17071

Anderson, Kruczenski, arXiv:1612.08140
Kazakov, Zheng, arXiv:2203.11360, 2404.16925
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Setup of the theory

S = −
N
2λ ∑

P

tr(UP + U†
P)

Z = ∫ 𝒟Ue−S = ∫ ∏
x, ̂μ

dU ̂μ(x)e+ N
2λ ∑P tr(UP+U†

P)

Action:

Partition function:



Physical quantity
Expectation value:

⟨𝒪⟩ = Z−1 ∫ 𝒟Ue−S𝒪 = Z−1 ∫ ∏
x, ̂μ

dU ̂μ(x)e+ N
2λ ∑P tr(UP+U†

P)𝒪

The fundamental quantities are the Wilson loops.

• Area law for confinement


• Spectrum from loop correlators



Main strategy

Positivity property

+
Schwinger-Dyson 

equations

Constrain the value of 
Wilson loop operators



Positivity condition

∫ 𝒟U e−S | f(U) |2 ≥ 0

∫ 𝒟U+ e−S+f(U+)
2

≥ 0

Hermitian positivity:

Reflection positivity:

⟨𝒪†𝒪⟩ ≥ 0

⟨𝒪R
+𝒪+⟩ ≥ 0

K. Osterwalder and R. Schrader, 

“Axioms for Euclidean Green’s functions”, 1973



⟨𝒪R
+𝒪+⟩ ≥ 0

We consider a twist version of 
Reflection positivity (twist-RP): 
exact in 2d lattice.

Reflection positivity:

Positivity condition



Example
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⟨𝒪†𝒪⟩ ≥ 0

Hermitian positivity:

Sewing a set of paths gives the positivity matrix:



Loop equations

Schwinger-Dyson equation for Wilson loops:

Examples:

(Quantum E.o.M. for Wilson loops)

Makeenko and Migdal, 1980
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Constrain the value 
of Wilson loops

An explicit example

Here only 1 loop equation is related. “Semi-definite Programming”



An explicit example



An explicit example
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SDE is more complicated in SU(3)

Examples:

General SDE for double-trace operators:



Large number of loop variables

Good convergence as in SU(2)?

Independent single-trace loops:

In SU(3) one also needs to consider double-trace loops, 
and there are much more loop variables.



Dimension reduction

Consider operators that are in (d-1) sub-plane.

2d loops, extending in only one direction:

Compare number of loops:

Does this reduction have good convergence?

3d loops in a 2d sub-plane



Results：2d SU(3)



Results：2d SU(3)

With twist-reflection, 3 digits precision



Red dots from MC data: Athenodoroua, Teper, arXiv:1609.03873 (3d), 2106.00364 (4d)

Results：3d SU(3)



Red dots from MC data: Athenodoroua, Teper, arXiv:1609.03873 (3d), 2106.00364 (4d)

Results：3d SU(3)

Compare with SU(2)



Red dots from MC data: Athenodoroua, Teper, arXiv:1609.03873 (3d), 2106.00364 (4d)

Results：4d SU(3)



Red dots from MC data: Athenodoroua, Teper, arXiv:1609.03873 (3d), 2106.00364 (4d)

Results：4d SU(3)

Compare with SU(2)



Summary

Our new progress for bootstrapping lattice gauge theory:

Consider SU(3) that involves multi-trace operators 
for the first time. Show that the method works well.

“Dimension reduction” by consider (d-1) sub-plane 
operators.

Introduce new twist-reflection positivity, 
which is exact in 2d lattice theory.

Bootstrap methods play increasingly important roles in 
various studies.



Outlook

Generalization: higher N, QCD with dynamic quarks, …

• How to make “good” truncation for the loops?


• How to derive the SDE efficiently?


• How to improve the SDP computation?


• New constraints?


• More general loops?

Challenges:

Thank you for your attention!



Backup slides



SDP computation

2 hours, 33GB

40 min, 18GB

30 seconds

30 min, 8.5GB

MacBook Pro with Apple M3 Max (using single thread)



Reduction of high-trace operators

SU(3): need single- and double-trace operators

SU(2): only single-trace operators



Semi-definite programming

A mathematical problem:  “Semi-definite Programming”

• Simple problem: using Mathematica directly

• Complicated problem: need specific software
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Positivity matrices

Consider operator:

Figure 2. The strategy of positivity bootstrap.

Positivity conditions

The origin of the positivity is very simple.

Given a linear operator

O =
NX

i=1

↵ioi , (2.5)

hOOi =
X

i,j

↵i↵jhoioji � 0 , (2.6)

for any ↵i,↵j . This is equivalent to that the following matrix for wi,j = hoioji is semi-definite

positive: ⇣
wi,j

⌘

N⇥N

⌫ 0 . (2.7)

The meaning of the “semi-definite positive” is that the determinant of each main sub matrix

is non-negative.

For the lattice YM theory, we will use the types of positivity conditions:

• Hermitian positivity:

MH = hO
†
Oi � 0 . (2.8)

This case is straightforward to understand.

• Reflection positivity:

MR = hO
R

+O+i � 0 . (2.9)

We will discuss the reflection positivity (RP) in more detail in Section 3.

Schwinger-Dyson equation

Operators satisfy equation of motions, which is a quantum version of the classical Euler-

Lagrangian equations.

– 4 –
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Figure 2. The strategy of positivity bootstrap.
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Reflection positivity:

⟨𝒪R
+𝒪+⟩ ≥ 0
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An explicit example
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