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The Role of Factorization in Quantum Field Theory

• Factorization is a cornerstone of scattering amplitudes:   


• Reflects the principles of: Locality,  Unitarity, Gauge invariance.


• Used extensively in modern amplitude theory: Britto–Cachazo–Feng–
Witten (BCFW) recursion, Collinear limits, Soft theorems, Unitarity cuts


• Takeaway:  
Factorization is not just a computational trick.  
It is a structural manifestation of fundamental physical principles.


• Natural question:  
Are poles the only loci where meaningful factorization occurs?

𝒜n ∼ ∑
𝒜L 𝒜R

P2



Beyond Traditional Factorization
Recent developments in scalar theories have revealed new types of splittings:

• Semi-local factorization [Cachazo et al., 2112]:

• Three-part splitting near zeros [Arkani-Hamed et al.,2312]:

• Unified by the 2-split framework [Cao et al., 2403][Cao et al., 2406]:

• Factorization under algebraic kinematic constraints

• Extended to biadjoint φ³, Nonlinear Sigma Model (NLSM), special Galileon, and even 

Yang-Mills/gravity


📌 Key phenomenon underlying all these structures:

The appearance of hidden zeros [Arkani-Hamed et al., 2312]— 
amplitude contributions that vanish without any apparent symmetry or pole.


🎯 These results suggest that:

Factorization may also emerge away from poles, 
driven by internal algebraic constraints, not just physical propagation.



Hidden Zeros in Scattering Amplitudes

🔍 What are hidden zeros?


• Amplitude contributions that vanish under specific kinematic constraints,  
but not due to any symmetry or gauge invariance


• Hidden zeros were first observed in scalar theories  
when certain Mandelstam variables within a rectangle are set to zero: 




• In Yang-Mills and gravity, additional polarization constraints are needed,  such 
as setting  and   to zero to achieve cancellation [Arkani-Hamed et al., 2312].


• Not obvious in Feynman diagrams. 
See recent progress [Rodina, 2406] [Rodina et al, 2503] [Zhou, 2411] [Zhou et al, 2502] 

• Extended to cosmological waveform [Spradlin et al., 2503]


• What is the structure of the amplitude near such a zero?
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New Factorization Formula

Setting certain two-point Mandelstam variables  in a rectangle to zero,   the full YM color-ordered 
amplitude  decomposes into a sum of gluings of lower-point YM amplitudes [YZ, 2406] [YZ, 2412]
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New Factorization Formula
 

▶ The structure is nonlocal but recursive
🎯 We can make hidden zeros explicit by turning off polarization contractions involving the constrained particles:
For each vanishing ,  we let  .

→ Under these conditions, the entire gluon amplitude vanishes. 
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gluon pair contribution

si j → 0 ϵi ⋅ ϵj, ϵi ⋅ kj, ki ⋅ ϵj → 0 ⇒ AYM
3 (ij − ̂j ) = 0
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Example — 5-Point Yang-Mills Amplitude

🧩 Under a rectangular constraint (e.g. ), the 5-point YM amplitude decomposes into:

 

• Each term corresponds to a gluon pair contribution from a vanishing   inside the rectangle

• The internal gluon   is exchanged

📌 Key features of the example:

• Polarization structure is respected term by term

💡 This gives a structured, recursive-like decomposition of the 5-point amplitude without relying on any physical pole.

Setting ,             

s13, s14 → 0

AYM(𝕀5) →
1
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3 (1,3, − 3̂), AYM
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More Examples
• For four points,

setting      

• For six points, there are two types of new factorizations:

Setting     

Setting    
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1

s12 ∑
ϵ3̂

AYM
3 (1,3, − 3̂)AYM

3 (2,3̂,4)

s13, s14, s15 → 0,
AYM(𝕀6) → −

1
s12

[∑
ϵ3̂

AYM
3 (1,3, − 3̂)AYM

5 (2,3̂,4,5,6) + ∑
ϵ4̂

AYM
3 (1,4, − 4̂)AYM

5 (2,3,4̂,5,6) + ∑
ϵ5̂

AYM
3 (1,5, − 5̂)AYM

5 (2,3,4,5̂,6)]

s14, s15
s24, s25

→ 0,

AYM(𝕀6) →

s26

s12s123 [∑ϵ4̂
AYM

3 (1,4, − 4̂)AYM
5 (2,3,4̂,5,6) + ∑ϵ5̂

AYM
3 (1,5, − 5̂)AYM

5 (2,3,4,5̂,6)]
+

s13

s12s123 [∑ϵ4̂
AYM

3 (2,4, − 4̂)AYM
5 (1,3,4̂,5,6) + ∑ϵ5̂

AYM
3 (2,5, − 5̂)AYM

5 (1,3,4,5̂,6)]



CHY Formalism Recap
▶ The Cachazo–He–Yuan (CHY) formalism provides a powerful worldsheet representation of scattering amplitudes [CHY, 1307]:

                        

• Integration is over the moduli space of  n punctures on the Riemann sphere

•
Localized on solutions of the scattering equations:       with  

📌 Key ingredients:

•  :  CHY measure, includes delta functions for the scattering equations

•  :  Parke–Taylor factor encoding color ordering

• : reduced Pfaffian encoding polarization and kinematics 

AYM(𝕀n) = ∫ dμn PT(𝕀n) Pf′ (Ψ)

Ea := ∑
b≠a

ka ⋅ kb

σa b
= 0 σa b := σa − σb

dμn = (σ1,n−1σn−1,nσn,1)2
n−2

∏
a=2

dσiδ(Ei)

PT(𝕀n) :=
1

σ12σ23…σn1
Pf′ (Ψ)

Ψ = ( A C
−CT B), Aab =

ka ⋅ kb

σab
, a ≠ b

0, a = b
, Bab = {

ϵa ⋅ ϵb

σab
, a ≠ b

0, a = b
, Cab =

ϵa ⋅ kb

σab
, a ≠ b

− ∑
b′ ≠a

ϵa ⋅ kb′ 

σab′ 
, a = b



Hidden Zeros as Vanishing CHY Residues
▶ In the CHY formalism, tree-level amplitudes are expressed as sums of residues:

    where the typical element of   is  

🎯 Key observation:  Let’s parameterize all vanishing    with .  

All of the solutions are singular with one or more pairs of pinched punctures 

Obviously,   

            is regular.  
 is divergent. The degree of divergence depends on the number of pinched pairs of punctures in the singular solution.

det’ A is regular.

📌 If further setting   , obviously all elements in  are regular and hence   are regular.

YM amplitudes vanish. 

▶ Easily extended to prove the hidden zeros of other theories, GR, biadjoint φ³, NLSM, sGal, etc..
A universal proof across many theories, without relying on intricate combinatorial structures from double-copy relations. [Trnka et al., 
2403] [Li et al., 2403]

AYM(𝕀n) = ∑
solns of scattering eqs

PT(𝕀n)Pf′ (Ψ)
det′ Φ

Φ
∂Eb

∂σb
=

sab

σ2
ab

sij → τ ̂sij τ → 0
σij ∼ 𝒪(τ)

1
σij

∼ 𝒪(τ−1),
sij

σij
∼ 𝒪(τ0),

sij

σ2
ij

∼ 𝒪(τ−1) .

⇒ PT(𝕀n)
det′ Φ

ϵi ⋅ ϵj, ϵi ⋅ kj, ki ⋅ ϵj → 0 Ψ Pf′ (Ψ)
⇒



CHY-Based Proof of the New Factorization

▶  If    are regular,    is as divergent as   , depending on the number of 
pinched pairs of punctures.
🧩 Key observation: Only single-pinch solutions survive, while all other contributions cancel 
algebraically — proven for arbitrary multiplicity.
📌 For a single pinch solution with ,   

resulting in a gluon pair contribution in the new factorization formula

where  as ratios of Mandelstam variables are determined by Bern–Carrasco–Johansson 
relations of -pt Yang-Mill amplitudes.

ϵi ⋅ ϵj, ϵi ⋅ kj, ki ⋅ ϵj Pf′ (Ψ) det′ Φ

σij ∼ 𝒪(τ) Pf′ (Ψn) → ∑
ϵ ̂j

AYM
3 (i, j, − ̂j )Pf′ (Ψn−1)

AYM (𝕀n) ∑
(i,j) in a rectangle

(−1)n+1

s12…m+1 ∑
ϵ ̂j

AYM
3 (ij − ̂j ) ∑
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n−1(ρ(12…i − 1i + 1…m)m + 1m + 2… ̂j…n)

X(s, ρ)
(m + 2)

s12…m+1
̂PT(12…m + 1) =

m

∑
v=1

∑
ρv∈Sm−1

X (s, ρv) ̂PT (ρv, m + 1)( sv1

σv1
+

sv2

σv2
+ … +

sv,m+1

σv,m+1
)



Applicability to Other Theories
▶ The core mechanism behind our factorization is:
Hidden zeros in CHY residues, arising under rectangular Mandelstam constraints
This suggests the structure may extend to many other theory with a CHY representation.

CHY Integrand Hidden Zero Potential

PT(𝕀n) Pf′ (Ψ) ✅ Proven

Pf′ (Ψ) Pf′ (Ψ̃) 🔁 Strong candidate

det′ A Pf′ (Ψ) 🔁 Likely

PT(𝕀n) det′ (A) ⚠ Subleading behavior may 
carry structure

(det′ (A))2 ⚠ Subleading behavior may 
carry structure

Theory

Yang-Mills

Gravity 

Born-Infeld 

NLSM

Special Galileon 

String integrands CHY-like low-energy limits ❓ Worth exploring



Comparison with the 2-Split Structure
🔍 The 2-split framework [Cao et al., 2403][Cao et al., 2406] organizes amplitudes by:

•Selecting a subspace of Mandelstam variables
•Imposing zero conditions on both Mandelstam and polarization products
•Producing a factorization into two currents under strong constraints
📌 In contrast, our factorization only sets s to zeros:

2-Split

(sij = 0) + (ϵ ⋅ k, ϵ ⋅ ϵ = 0)

Single product of two currents

Scalar, YM, GR, stringy models

Our Structure

Only  (sij = 0)

Sum over gluon pair contributions 

Proven in YM, generalizable

Feature

Constraint type

Output

Applicable to

The combination of the two factorizations gives a split of 3 currents. For example,
Setting 

 

s14, s24 → 0, ϵ2 ⋅ ϵ4, ϵ2 ⋅ k4, k2 ⋅ ϵ4 → 0, ϵ2 ⋅ ϵ1, ϵ2 ⋅ ϵ3, ϵ2 ⋅ ϵ5 → 0, k2 ⋅ ϵ1, k2 ⋅ ϵ3, k2 ⋅ ϵ5 → 0
⇒ AYM(12345) →

s12 + s23

s12s123
Aμ,YM(14; − 4̂)JYM+ϕ3(5ϕ23ϕ; 4̃′ 

ϕ)JYM
μ (53; 4̃)



Summary of Main Results
✅ We proposed a new factorization structure 
for tree-level Yang-Mills amplitudes, 
based not on poles, but on hidden zeros under kinematic constraints.

✅ We proved this structure using the CHY formalism, 
by analyzing singular solutions and showing 
how residues organize into a sum over lower-point gluon-pair glueings.

✅ This new perspective reveals:

• A recursive-like, dimension-independent organization of amplitudes
• A structural role for hidden zeros beyond symmetry or gauge redundancy
• A blueprint for extending to gravity, EFTs, loop amplitudes, and beyond

▶ Our work suggests that hidden zeros are not exceptions — 
they are building blocks of new, non-pole-based factorization.



Broader Implications and Future Directions
🔍 Our new factorization raises deeper questions in amplitude theory, effective field theory, and moduli space 
geometry.
✅ Soft & Collinear Behavior
✅ Loop-Level Extensions [Rodina et al, 2503] 

✅ Moduli Space & Geometry
✅ Recursion & Algebra 

🎯 Next Steps
•Extend to GR, Born-Infeld, NLSM, special Galileon
•Apply in waveform generation [Spradlin et al., 2503], AdS mellin amplitudes,  BCJ structure, symbolic 

simplification

▶ Takeaway: Hidden-zero-based factorization may offer a new organizing principle beyond poles — with 
geometric, computational, and physical consequences.

Thank you!


