

Study of $\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$ and $\tau^+ \to K^+ \pi^0 \overline{\nu}_{\tau}$ at STCF

Shanshan Li¹, Shulei Zhang¹, Xiaolin Kang², Huijing Li³

¹Hunan University, ²China University of Geosciences ,³Henan Normal University

2025/07/04

Outline

- > Motivation
- ➢ MC sample
- $\succ \quad \tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$
 - Event selection
 - Branching fraction measurement
- $\succ \quad \tau^+ \to K^+ \pi^0 \overline{\nu}_{\tau}$
 - Event selection
 - Branching fraction measurement
- > Summary

Motivation

- ➤ The strong coupling constant \$\alpha_s\$ is a fundamental parameter of the Standard Model (SM) of particle physics and Quantum Chromodynamics (QCD).
 Measuring the branching ratio of \$\tau^+ \rightarrow \pi^+ \pi^0 \bar{\nu}_\tau\$ the decay process provides significant experimental input for determining \$\alpha_s\$.
- ➤ The τ lepton is the sole lepton with a mass large enough to decay into hadrons. Its decays to hadronic final states occur via W - exchange, and the decay rates to final states containing a strange quarkare suppressed by the factor $(|V_{us}|/|V_{ud}|)^2$.
- Solution Given a value of m_s , $|V_{us}|$ can be determined with unprecedented precision from the inclusive sum of the branching fractions of $\tau^+ \rightarrow K^+ \pi^0 \overline{\nu}_{\tau}$.

\sqrt{s} = 3.773 GeV

- ➤ 400,000 signal MC
- ➢ signal MC Generator model: tauhadnu.

\sqrt{s} = 4.260 GeV

- ➤ 3,000, 000 Inclusive ditau MC
- ➢ Inclusive ditau MC Generator model: madgraph5 + pythia8.
- ➢ signal MC : from ditau inclusive MC.

MC sample

Double tag method

$$B(\tau^{+} \to \pi^{+} \pi^{0} \overline{\nu}_{\tau} / \tau^{+} \to K^{+} \pi^{0} \overline{\nu}_{\tau})$$
$$= \frac{N_{\text{sig}}}{2N_{\tau\tau} \varepsilon B(\tau^{-} \to e^{-} \nu_{\tau} \overline{\nu}_{e}) B(\pi^{0} \to \gamma \gamma)}$$

 N_{sig} : Signal yields $\varepsilon : \tau^- \to e^- \nu_\tau \overline{\nu}_e$ and $\tau^+ \to \pi^+ \pi^0 \overline{\nu}_\tau / \tau^+ \to K^+ \pi^0 \overline{\nu}_\tau$ efficiency

$\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$

$\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$

Event selection

Charge tracks

 $V_{xy} < 1$ cm, $|V_z| < 10$ cm cos $\theta < 0.93$;

 \succ π^0 Reconstruction

 $\chi^2 < 200(1-c \text{ kinematic})$

Photon selection

 $E_{\gamma} > 0.025 \text{ GeV}$ in the barrel section $E_{\gamma} > 0.050 \text{ GeV}$ in the end cap $0 \le \text{TDC} \le 14(\times 50 \text{ns})$ $N_{\gamma} \ge 2$ > PID requirement Using PID system: Global PID $e:Prob_e > Prob_{\pi}; Prob_e > Prob_K$ $\pi:Prob_{\pi} > Prob_e; Prob_{\pi} > Prob_K$ $N_{\pi} = 1, N_e = 1$

 $\tau^+ \rightarrow \pi^+ \pi^0 \overline{\nu}_{\tau}$

 $\sqrt{s} = 3.773 \text{ GeV}$

Compare with BESIII at $\sqrt{s} = 3.773$ GeV

$$\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$$

Compare with BESIII at $\sqrt{s} = 3.773$ GeV

 $\sqrt{s} = 3.773 \text{ GeV}$

$$\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$$

 $\sqrt{s} = 3.773 \text{ GeV}$

Compare with BESIII at $\sqrt{s} = 3.773$ GeV

	SigMC num	Efficiency	BESIII efficiency
No cut	108515	55.08%	50.24%
$0.12 \le m(\pi^0) \le 0.15$	82454	41.85%	43.94%
$\frac{E}{P}(\pi) < 0.9,$ $0.8 < \frac{E}{P}(e) < 1.05$	70372	35.72%	39.18%
$P_e < 1.2 P_{\pi} < 1.2$	69968	35.52%	39.00%
$exN(\gamma) = 1, N(\pi^0) = 1$	65830	33.42%	30.36%
the(rhoe)<3.1413	43965	22.32%	20.63%
$2 < \operatorname{mrec}(\pi\pi^0) < 3,$ 0.5 < $\operatorname{mrec}(\pi\pi^0 e) < 2.8$	43424	22.04%	20.47%

$\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$

Comparison chart

 $\sqrt{s} = 4.260 \text{ GeV}$

Compare STCF at $\sqrt{s} = 4.260$ GeV with BESIII at $\sqrt{s} = 4.270$ GeV

$\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$

Comparison chart

Compare STCF at $\sqrt{s} = 4.260$ GeV with BESIII at $\sqrt{s} = 4.270$ GeV

Shanshan Li

 $\sqrt{s} = 4.260 \, \text{GeV}$

$$\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$$

Signal selection criteria

At $\sqrt{s} = 4.26 \ GeV$, m($\pi^+\pi^0$) is used to identify semileptonic decay, combined tag and signal selection.

Shanshan Li

 $\sqrt{s} = 4.260 \, \text{GeV}$

$\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$

Event selection

2025/7/3

$$\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$$

 $\sqrt{s} = 4.260 \text{ GeV}$

Signal selection criteria

$$\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$$

	ditau sigMC num	Efficiency	BESIII efficiency	ditau bkgMC num	bkg ratio
No cut	151492	55.7%	48.3%	90351	37.4%
$0.115 < m(\pi^0) < 0.15$	116461	42.8%	45.0%	35756	23.5%
$0.8 < \frac{E}{P}(e) < 1.05$	100881	37.1%	40.8%	28160	21.8%
$N(\pi^0) = 1, \ e x N(\gamma) = 0$	92117	33.9%	31.1%	3350	3.5%

Shanshan Li

 $\sqrt{s} = 4.260 \text{ GeV}$

$\tau^+ \rightarrow \pi^+ \pi^0 \overline{\nu}_{\tau}$ Branching fraction measurement $\sqrt{s} = 4.260 \text{ GeV}$

Signal Fit

\sqrt{s} = 4.260 GeV

- Signal shape: From 2,000,000 ditau inclusive MC;
- ➢ Background shape: From 2,000,000 ditau inclusive MC;
- > Data:1,000,000 ditau inclusive MC serve as data.

$\tau^+ \rightarrow \pi^+ \pi^0 \overline{\nu}_{\tau}$ Branching fraction measurement

Calculation details

$$\begin{array}{l} & \mathcal{B}(\ \tau^{+} \rightarrow \pi^{+} \pi^{0} \overline{\nu}_{\tau}) = \frac{N_{\text{sig}}}{2N_{\tau\tau} \varepsilon B(\tau^{-} \rightarrow e^{-} \nu_{\tau} \overline{\nu}_{e}) B(\pi^{0} \rightarrow \gamma \gamma)} \\ & \text{where } \varepsilon \pm \varepsilon_{err} = \varepsilon \pm \frac{\sqrt{N_{sel}}}{N_{gen}} \\ & \mathcal{B}(\tau^{-} \rightarrow e^{-} \nu_{\tau} \overline{\nu}_{e}) & 0.1782 \pm 0.0004 \\ & \mathcal{B}(\tau^{-} \rightarrow e^{-} \nu_{\tau} \overline{\nu}_{e}) & 0.1782 \pm 0.0004 \\ & \mathcal{B}(\pi^{0} \rightarrow \gamma \gamma) & \mathcal{N}(\frac{B(\tau^{-} \rightarrow e^{-} \nu_{\tau} \overline{\nu}_{e})err}{B(\tau^{-} \rightarrow e^{-} \nu_{\tau} \overline{\nu}_{e})})^{2} + (\frac{B(\pi^{0} \rightarrow \gamma \gamma)err}{B(\pi^{0} \rightarrow \gamma \gamma)})^{2} \\ & \mathcal{B}(\pi^{0} \rightarrow \gamma \gamma) & 0.9880 \pm 0.00034 \\ & \text{stat.} = B \left(\tau^{+} \rightarrow \pi^{+} \pi^{0} \overline{\nu}_{\tau}\right) & \mathcal{N}(\frac{N_{sigerr}}{N_{sig}})^{2} + (\frac{\varepsilon_{err}}{\varepsilon})^{2} \end{array}$$

Measurement result

	data volume	Bf(%)	stat.	input sys./ <mark>sys</mark> .
Our work (4.260 GeV)	1,000,000 MC	25.39	0.21(0.83%)	0.06(0.24%)
	Estimated cumulative retrieval 1ab-1	25.39	0.0036(0.01%)	0.06(0.24%)
ALEP		25.47	0.097(0.38%)	0.085(0.33%)
Belle		25.24	0.01(0.04%)	0.39(1.55%)

$\tau^+ \to K^+ \pi^0 \overline{\nu}_{\tau}$

$\tau^+ \to K^+ \pi^0 \overline{\nu}_{\tau}$

Event selection

> The Event selection for charge tracks , π^0 reconstruction and photon selection in process of

 $\tau^+ \to K^+ \pi^0 \overline{\nu}_{\tau}$ are the same as for the previous channel.

> PID requirement:

```
Using PID system: Global PID

e:Prob_e > Prob_{\pi}; Prob_e > Prob_K;

K:Prob_K > Prob_e; Prob_K > Prob_{\pi};

N_K = 1, N_e = 1
```

 $\tau^+ \to K^+ \pi^0 \overline{\nu}_{\tau}$

 $\sqrt{s} = 3.773 \text{ GeV}$

Compare with BESIII at $\sqrt{s} = 3.773$ GeV

$\tau^+ \to K^+ \pi^0 \overline{\nu}_{\tau}$

Comparison chart

 $\sqrt{s} = 4.260 \text{ GeV}$

Compare STCF at $\sqrt{s} = 4.260$ GeV with BESIII at $\sqrt{s} = 4.270$ GeV

$$\tau^+ \to K^+ \pi^0 \overline{\nu}_{\tau}$$

Signal selection criteria

At $\sqrt{s} = 4.26 \ GeV$, m(K⁺ π^0) is used to identify semileptonic decay, combined tag and signal selection

Shanshan Li

 $\sqrt{s} = 4.260 \text{ GeV}$

$\tau^+ \to K^+ \pi^0 \overline{\nu}_{\tau}$

Event selection

$\sqrt{s} = 4.260 \text{ GeV}$

$$\tau^+ \to K^+ \pi^0 \overline{\nu}_{\tau}$$

 $\sqrt{s} = 4.260 \text{ GeV}$

Signal selection criteria

$$\tau^+ \to K^+ \pi^0 \overline{\nu}_{\tau}$$

	ditau sigMC num	Efficiency	BESIII efficiency	ditau bkgMC num	bkg ratio
No cut	1233	37.59%	41.7%	7560	85.98%
0.115< m(π ⁰) <0.15	892	24.07%	37.9%	3805	81.01%
$0.8 < \frac{E}{P}(e) < 1.05$	781	20.92%	34.3%	3173	80.25%
$N(\pi^0) = 1, e x N(\gamma) = 0$	689	16.86%	22.3%	1983	74.21%

Shanshan Li

 $\sqrt{s} = 4.260 \text{ GeV}$

$\tau^+ \to K^+ \pi^0 \overline{\nu}_{\tau}$ Branching fraction measurement $\sqrt{s} = 4.260 \text{ GeV}$

Signal Fit

\sqrt{s} = 4.260 GeV

- Signal shape: From 2,000,000 ditau inclusive MC;
- ➢ Background shape: From 2,000,000 ditau inclusive MC;
- ➤ Data:1,000,000 ditau inclusive MC serve as data.

$\tau^+ \to K^+ \pi^0 \overline{\nu}_{\tau}$ Branching fraction measurement

Measurement result

	data volume	Bf(10 ⁻³)	stat.	input sys./ <mark>sys</mark> .
Our work (4.260GeV)	1,000,000 MC	2.91	0.32(11%)	0.006(0.21%)
	Estimated cumulative retrieval 1ab-1	2.91	0.0054(0.19%)	0.006(0.21%)
BABR		4.16	0.03(0.72%)	0.18(4.33%)
ALEP		4.71	0.59(12.53%)	0.23(4.88%)
CLEO		4.44	0.26(5.86%)	0.24(5.41%)

Summary

- → We have compared the BESIII results at $\sqrt{s} = 3.773 \ GeV$ and $\sqrt{s} = 4.26 \ GeV$. Apart from significant differences in the distributions of m(π^0), *E/P*(*hadron*), and the emcenergy of hadron, the distributions of other variables are relatively similar.
- \succ We have also measured the branching fractions of the decay $\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$ and

$$\tau^+ \to K^+ \pi^0 \overline{\nu}_{\tau}$$
 at $\sqrt{s} = 4.26 \ GeV$.

Next to do

- ➤ To use more MC samples.
- > To estimate the strong coupling constant and $|V_{us}|$.