Study of $J/\psi \rightarrow \ell^+ \ell^- \pi^0 / \eta^{(\prime)}$ at BESIII/STCF

Vindhyawasini Prasad Email: vindy@jlu.edu.cn

College of Physics Jilin University, Changchun, China

Motivation

► Electromagnetic Dalitz decays, such as $\psi \to l^+ l^- P$ (P = π^0, η, η'), proceed via an offshell photon (γ^*).

Experimentally measured differential decay rate.

Predicted by Quantum electrodynamics (QED)

✓ Within the Vector Meson Dominance (VMD) model, coupling of the γ^* to the ψ is governed by the TFF through intermediate vector mesons V' in the time-like region.

$$F_{AB}(q^2) = N \sum_{V'} \frac{m_{V'}^2}{m_{V'}^2 - q^2 - i\Gamma_{V'}m_{V'}}$$
[Phys. Rept. 128, 301 (1985)]
Here, V'= ρ , ω , ϕ resonances

Possible **rho-omega interference** arises because the ρ and ω mesons have nearly degenerate masses but different isospin properties (I=1 for ρ , I=0 for ω), leading to quantum mechanical interference in processes like $e^+e^- \rightarrow \pi^+\pi^-$.

$$\sigma(e^+e^- \to \pi^+\pi^-) \propto \left| \frac{1}{q^2 - m_\rho^2 + im_\rho\Gamma_\rho} + \frac{\epsilon}{q^2 - m_\omega^2 + im_\omega\Gamma_\omega} \right|^2 \qquad \text{where } \epsilon \text{ represents the relative coupling strength} \\ (\epsilon \sim 1/10 \text{ due to isospin suppression for } \omega \to \pi^+\pi^-)$$

STCF-2025 conference

ψ

Transition form factor

Ρ

Why VMD

The VMD provides a very accurate prediction for the production of pions in e⁺e⁻ annihilation processes.
 Eur. Phys. J. C 77, 827 (2017)
 Phys. Rev. Lett. 132, 231903 (2024)

Hadronic cross-section measurements are used for the evaluation of the hadronic vacuum polarization contribution to the muon g-2

- Discrepancy in Standard Model (SM) predictions of the muon *g*-2 arises from inconsistencies in the measurements of the cross-section of $e^+e^- \rightarrow \pi^+\pi^-$ by various e^+e^- collider experiments.
- Observing the $\rho-\omega$ interference pattern in $J/\psi \rightarrow V\pi^0$ (where $V=\rho,\omega$) would be useful for understanding this discrepancy

VMD prediction of $\psi \rightarrow \ell^+ \ell^- P(=\pi^0, \eta, \eta')$

Some other BESIII measurements:

 $\underline{J/\psi \rightarrow e^+e^-\eta(1405)}, \underline{\psi(3686) \rightarrow \ell^+\ell^-\eta_c}, \underline{h_c \rightarrow e^+e^-\eta_c}, \underline{\eta/\eta' \rightarrow e^+e^-\gamma}, \underline{J/\psi \rightarrow \ell^+\ell^-X(1835)}, \underline{X(2120)}, \underline{X(2370)} \text{ etc.}$

> Large discrepancy between experimental and theoretical results in $J/\psi \rightarrow \ell^+ \ell^- \pi^0$ decay.

Our objective is to update the VMD predictions of $\psi \to \ell^+ \ell^- \pi^0$ including $\rho - \omega$ interference using a Data-driven method

TFF measurements of $J/\psi \rightarrow e^+e^-\eta/\eta'$

Phys. Rev. D 89, 092008 (2014)

Phys. Rev. D **99**, 012006 (2019)

Erratum: Phys. Rev. D 104, 099901 (2021)

Precision of these measurements can be improved using 10 billion J/ ψ events collected by the BESIII experiment

STCF-2025 conference

Theoretical status of $\psi \to \ell^+ \ell^- \pi^0$

Effective Lagrangian-based analysis

Phys. Rev. D 107, 034022 (2023)			Phys. Rev. D 91 , 014010 (2015)	Mod. Phys. Lett. A 27, 1250223 (2012).	
	Experiment	This Work	Ref. [20]	Ref. [54]	Ref. [55]
$\psi ightarrow \pi^0 e^+ e^-$	0.076 ± 0.014	0.1294 ± 0.0044	0.1191 ± 0.0138	$0.0389^{+0.0037}_{-0.0033}$	
$\psi ightarrow \eta e^+ e^-$	1.42 ± 0.08	1.35 ± 0.02	1.16 ± 0.08	1.21 ± 0.04	1.38
$\psi ightarrow \eta' e^+ e^-$	6.59 ± 0.18	6.08 ± 0.05	5.76 ± 0.16	5.66 ± 0.16	6.06
$\psi ightarrow \pi^0 \mu^+ \mu^-$		0.0304 ± 0.0010	0.0280 ± 0.0032	$0.0101\substack{+0.0010\\-0.0009}$	
$\psi ightarrow \eta \mu^+ \mu^-$		0.40 ± 0.01	0.32 ± 0.02	0.30 ± 0.01	0.46
$\psi ightarrow \eta' \mu^+ \mu^-$		1.64 ± 0.02	1.46 ± 0.04	1.31 ± 0.04	1.72

Effective Lagrangian models also fall short. Large inconsistency in predictions underscores the need for a data-driven update.

Experimental status of $J/\psi \rightarrow e^+e^-\pi^0$

Previous BESIII measurement: $B(J/\psi \to e^+e^-\pi^0) = (7.56 \pm 1.32 \pm 0.50) \times 10^{-7}$ for $m_{e^+e^-} < 0.4 \text{ GeV/c}^2$ (@ 225 million J/ ψ events) Phys. Rev. D 89, 092008 (2014)

Non-resonant VMD prediction: $B(J/\psi \to e^+e^-\pi^0) = (3.89^{+0.37}_{-0.33}) \times 10^{-7}$

New BESIII measurement (in full $m_{\rho^+\rho^-}$ spectrum) BESIII Collaboration: arXiv:2501.04344 (2025) (a) 10 billion $/\psi$ events) A clear $\rho - \omega$ interference pattern $J/\psi \rightarrow \gamma \pi^0 MC$ Signal MC Entries / (0.030 GeV/c²) 10³ Entries / (1.0 MeV/c²) $J/\psi \rightarrow \pi^+\pi^-\pi^0 MC$ sideband data 200 γ^2 /NDF = 89.8/85 Combined MC+sideband data – J/ψ data 10² 100 10 10 $\mathbf{\times}$ 10^{-2} 0.1 $m_{\gamma\gamma}$ (GeV/ c^2) $m_{\rm e^+e^-}$ (GeV/ c^2)

Mod. Phys. Lett. A 27, 1250223 (2012).

New BESIII measurement of $J/\psi \rightarrow e^+e^-\pi^0$

Results (a) 10 billion J/ψ events

New BESIII measurement (in full $m_{e^+e^-}$ spectrum)

 $B(J/\psi \rightarrow e^+e^-\pi^0) = (8.06 \pm 0.31 \pm 0.38) \times 10^{-7}$

Large deviation from non-resonant VMD prediction: $B(J/\psi$ $\rightarrow e^+ e^- \pi^0) = (3.89^{+0.37}_{-0.33}) \times 10^{-7}$

BESIII Collaboration: arXiv:2501.04344 (2025)

TFF is an important input in the calculation of the hadronic light by-light contribution of the anomalous magnetic moment of the muon, $a_{\mu} = (g_{\mu} - 2)/2$ J. High Energy Phys. **09**, 074 (2015) STCF-2025 conference

7/3/2025

VMD formula for pion form factor

VMD formula for the pion form factor taken from BaBar's paper [Phys. Rev. D 86, 032013 (2012)]

TFF of $J/\psi \rightarrow e^+e^-\pi^0$ versus pion form factor

 ρ width of the TFF of $J/\psi \rightarrow e^+e^-\pi^0$ data seems to be narrow than the pion form factor (measured by BaBar measurement).

BESIII data reveals both

- Non-resonant component
- Resonant contributions via intermediate vector mesons $J/\psi \rightarrow V(\rightarrow e^+e^-)\pi^0, \quad V = \rho, \omega$

- Interference arises from:
 - $J/\psi
 ightarrow
 ho \pi^0$ isospin-conserving (I=1)
 - $J/\psi
 ightarrow \omega \pi^0 {
 m isospin-violating} \ (I=0)$
- Analogous to:

 $ho o \pi^+\pi^- ~~(I=1), \qquad \omega o \pi^+\pi^- ~~(I=0)$

But, need to understand the reason of narrow ρ resonance

TFF of J/ $\psi \rightarrow e^+e^-\pi^0$ versus pion form factor

Use this modified TFF formula to take into account of resonant and non-resonant processes of $J/\psi \rightarrow e^+e^-\pi^0$

$$F_{\psi\pi^0}(q^2) = N \sum_{V'} \frac{m_{V'}^2}{m_{V'}^2 + q^2 - i\Gamma_{V'}m_{V'}} \approx F_{\pi}^V(q^2) + A_{\Lambda} \frac{1}{1 - q^2/\Lambda^2}$$

(values of A_{Λ} and Λ are taken from the <u>BESIII</u> measurement and rest of the other parameters are taken from <u>BaBar measurement</u>)

Perfect agreement between <u>BaBar</u> and <u>BESIII</u> measurements in the ρ/ω mass region.

Thus, <u>BESIII</u> measurement about TFF of $J/\psi \rightarrow e^+e^-\pi^0$ can provide an alternative way to extract the hadronic vacuum polarization (HVP) contribution to the muon g-2.

STCF can play an important role to develop the ρ - ω interference in the leptonic-sector via EM Dalitz decays of $\psi \rightarrow e^+e^-P$ and to extract the HVP contribution of muon g-2

BESIII vs. Super Tau-Charm Facility (STCF) experiments

https://stcf.ustc.edu.cn

CME (GeV)	Lumi (ab ⁻¹)	Samples	$\sigma(nb)$	No. of Events	Remarks
3.097	1	J/ψ	3400	3.4×10^{12}	
3.670	1	$\tau^+\tau^-$	2.4	2.4×10^{9}	
		ψ(3686)	640	6.4×10^{11}	
3.686	1	$\tau^+\tau^-$	2.5	2.5×10^{9}	
		$\psi(3686) \rightarrow \tau^+ \tau^-$		2.0×10^{9}	
		$D^0 \tilde{D}^0$	3.6	3.6×10^{9}	
		$D^+ \overline{D}^-$	2.8	2.8×10^{9}	
3.770	1	$D^0 ar{D}^0$		7.9×10^{8}	Single tag
		$D^+ \overline{D}^-$		5.5×10^{8}	Single tag
		$\tau^+\tau^-$	2.9	2.9×10^{9}	

Multipole Transition form factor of $\psi \rightarrow \ell^+ \ell^- \pi^0$

✓ VMD Prediction: $F_{AB}(q^2) = N \sum_{V'} \frac{m_{V'}^2}{m_{V'}^2 - q^2 - i\Gamma_V m_{V'}}$ [Phys. Rept. 128, 301 (1985)] Here, V'=ρ, ω, φ resonances

✓ TFF function (including ρ - ω interference): $F_{J/\psi\pi^0}(q^2) = F_{J/\psi\pi^0}^{\text{GS}}(q^2) + A_{\Lambda} \frac{1}{1 - q^2/\Lambda^2}$

Expected branching fraction $J/\psi \rightarrow \ell^+ \ell^- \pi^0$

N_{sig} prediction is based on the parameters of BaBar's measurement

BaBar Collaboration, Phys. Rev. D 86, 032013 (2012)

Decay mode	Branching fraction (10 ⁻⁸)				Efficiency (%)	Expected N _{sig} (events)		
	QED	Single pole	Resonant (BaBar)	Resonant BESIII	Experiment		BESIII	STCF (10 ⁴)
$J/\psi \to e^+e^-\pi^0$	36.52±0.86	37.83±3.07	69.20±5.62	66.44±5.40	80.6±3.1±3.8	26.3	1814.5±147.5	61.16±5.00
$J/\psi \to \mu^+ \mu^- \pi^0$	8.58±0.20	9.86±1.10	42.07±3.4	39.77±3.23		26.3	1102.8±89.6	37.17±3.02

BESIII Collaboration: arXiv:2501.04344 (2025)

Expected branching fraction $\psi(2S) \rightarrow \ell^+ \ell^- \pi^0$

BESIII Collaboration: arXiv:2501.04344 (2025)	Large uncertainty occurs because of $B(\psi(3686) \rightarrow \gamma \pi^0)$	$= (1.04 \pm 0.22) \times 10^{-6}$
7/3/2025	STCF-2025 conference	15

 19.50 ± 3.50

 12.20 ± 2.30

26.3

26.3

3374±604

2204±377

 14.2 ± 2.5

8.9±1.6

 20.30 ± 3.60

 12.60 ± 2.30

 $\psi(2S) \rightarrow e^+ e^- \pi^0$

 $\psi(2S) \rightarrow \mu^+ \mu^- \pi^0$

 11.50 ± 2.43

2.91±0.62

 12.09 ± 2.56

 3.50 ± 0.74

Summary and future plan

- The study of electromagnetic Dalitz decays of charmonium mesons is important for understanding the internal structure of the involved hadrons..
- → A significant discrepancy is observed between experimental measurement of $J/\psi \rightarrow \ell^+ \ell^- \pi^0$ and the predction based on a simple pole approximation within the VMD model.
- > This discrepancy can't be explained without including contributions from possible intermediate light unflavored vector meson resonances and the interference between ρ and ω .
- > Try to update the VMD predictions for $\psi \rightarrow \ell^+ \ell^- \pi^0$ by incorporating ρ - ω interference using a data-driven method.
- ▶ Numerical study indicates that $J/\psi \rightarrow \mu^+ \mu^- \pi^0$ can be observed at BESIII, and $\psi(2S) \rightarrow \ell^+ \ell^- \pi^0$ decays can be observed at STCF.
- > STCF can play an important role in making a precise measurement of the ρ - ω interference pattern in the leptonic sector.
- \succ Next to do:

Try to extract the HVP contribution to the muon (g-2) from the TFF of $J/\psi \rightarrow e^+e^-\pi^0$

Thanks!