

Yuxiang Zhao(赵宇翔)

Institute of Modern Physics, Chinese Academy of Sciences

Outline

- 1. Introduction of Electron-Ion Collider in China (EicC)
- 2. EicC detector conceptual design
- 3. Hyperon-Nucleon Spectrometer (HNS) at HIAF
- 4. Summary

Building blocks of our visible universe

Experimentally... we need to determine each of the above contributions

Lepton-Nucleon Scatterings

QED tool to study QCD nature of the nucleon

• QED probe is clean

- $\alpha_{\text{EM}} \sim 1/137$ with broad Q coverage
- One-photon exchange approximation: ~1% accuracy
- Detection scale is determined by Q: 200MeV ~ nucleon size

Observe scattered electron/muon Observe current jet/hadron Observe remnant jet/hadron as well

[1] [1]+<mark>[2]</mark> [1]+<mark>[2]</mark>+[3] → inclusive
→ semi-inclusive
→ exclusive

HIAF > EICC

Picture in 2025-05

今年年底调试束流

EicC white paper (arXiv: 2102.09222)

Published in the *Frontiers of Physics* (2021)

https://link.springer.com/article/10.1007/s11467-021-1062-0

- Spin structure of the nucleon: 1D, 3D
 - polarized electron + polarized proton/light nuclei
- Partonic structure of nuclei and the Parton interaction with the cold nuclear environment
 - unpolarized electron + unpolarized various nuclei
- Quarkonium with c/cbar, b/bbar
- Origin of the proton mass study via J/Psi and Upsilon near-threshold production

Detector + Accelerator preliminary design

45 institutes and >100 physicists

EicC parameters

- EicC covers the kinematic region between JLab experiments and EIC@BNL
- EicC complements the ongoing scientific programs at JLab and future EIC project
- EicC focuses on moderate x and sea-quark region

Kinematic region VS physics See a video at: http://eicug.org/

Valence quarks

- Different x \rightarrow different picture
- Broad Q² coverage:
 - QCD evolution
 - ➢ Non-perturbative → perturbative

Gluon dominates

Detection of Electron-Ion Collision

Distributions

Detection requirements

Detector conceptual design

IP 5 m 10 m 15 m 13

EicC interaction region

EicC Central detector design

EicC Tracking system

R(cm)	Length(cm)	Pitch Size(µm)	$X/X_0\%$	Tech.
3.3	28.0	20	0.09	MIC7
4.4	28.0	20	0.09	MIC7
5.5	28.0	20	0.09	MIC7
27.5	73.42	30	0.85	MIC6
30.0	80.01	30	0.85	MIC6
65.5	174.88	$150(r-\phi) \ge 150(z)$	1.50	MPGD
67.5	174.88	$150(r-\phi)x150(z)$	1.50	MPGD

-	$R_{in}(\mathrm{cm})$	R_{out} (cm)	Z(cm)	Pitch Size(µm)	$X/X_0\%$	Tech.
	3.18	18.62	25.0	30	0.45	MIC6
	3.18	43.20	58.0	30	0.45	MIC6
	3.47	67.50	91.0	30	0.45	MIC6
	6.58	67.50	115.0	30	0.45	MIC6
	6.58	67.50	140.0	30	0.45	MIC6
	8.16	150.00	165.0	$50(r-\phi) \mathrm{x250(r)}$	1.50	MPGD

<i>R_{in}</i> (cm)	R_{out} (cm)	Z(cm)	Pitch Size(µm)	$X/X_0\%$	Tech.
3.18	18.62	-25.0	30	0.45	MIC6
3.18	43.20	-58.0	30	0.45	MIC6
3.95	67.50	-91.0	30	0.45	MIC6
5.26	67.50	-118.0	30	0.45	MIC6
5.26	67.50	-145.0	30	0.45	MIC6

EicC PID system

PID: ToF + (DIRC + RICH)

Forward Detector (Ion-Endcap)	e/π (GeV/c)	π/K (GeV/c)
dRICH(aerogel n=1.03)+(C_2F_6)	(0.6-4)+(3.5-15)	(2.0-13)+(12-50)
ToF(30 ps)	≤0.6	≤2.1
Barrel Detector	e/π (GeV/c)	π/K (GeV/c)
hpDIRC(quartz)	<1.2	1-6
ToF(30 ps, r=0.6 m, 1.5 T)	≤ 0.3	≤ 1.6
Backward Detector (e-Endcap)	e/π (GeV/c)	π/K (GeV/c)
mRICH(aerogel, n=1.03)	0.6-2	2-9
ToF(30 ps)	≤ 0.6	≤ 2.1

EicC PID system

PID: ToF + (DIRC + RICH)

EicC PID system

PID: ToF + (DIRC + RICH)

EicC Ecal system

Ecal: Shashlik + CsI crystal

Puzzle of Λ polarization since 1976

-12 years before "Proton Spin Crisis"

- In 1976 at Fermi–Lab, Hyperons were produced polarized in p + Be collisions: 300 GeV protons on Beryllium target
- Λ is observed to be polarized in e-e, e-p, p-p, p-A, A-A processes
- Unlike the case of "Proton spin crisis", it is lack of systematic studies both theoretically and experimentally

-What is the origin of Λ polarization? -What is the link between Λ spin structure and polarization?

EIC: Initial state is polarized -How do partons form up a polarized nucleon?

Λ polarization: **Final state** is polarized -How do partons form up a polarized Λ ?

Baryon spin structure: origin of nucleon spin VS origin of Λ polarization

HIAF: Allows for a multi-dimensional mapping of Λ polarization

$3 \text{ GeV} \rightarrow 9 \text{ GeV} \rightarrow 20 \text{ GeV}$

With proton beam and ion beam: **p-p**, **p-A**, **A-A** reactions \rightarrow study Λ polarization systematically

Hyperon-Nucleon Spectrometer (HNS)

目前参加单位:北京航空航天大学、复旦大学、国科大、华中师范大学、华南师范大学、近代物理研究所、清华大学、山东大学、香港中文大学(深圳)、中科大子系统研发: Silicon tracker, AC-LGAD, Target, Baryon

polarimeter, Calorimeter, Electronics, DAQ, Magnet, slow control, Beamline, Mechanics + Engineering

I. Physics:

- > Λ production and polarization (p+p)
 - Medium effect (p+A)
 - Global polarization of Λ hyperon (A+A)
- Hadron physics via p+p

II. Community:

- Supports both communities of hadron structure and heavy-ion physics
- International interests are expected: Japan

III. Detector R&D

- Many parts are similar for CEPC, HNS, EicC, and STCF. Save resources.
- HNS: a detector R&D platform for EicC, ½ EicC

Summary

- ●电子-离子对撞机:高能核物理的下一个前沿研究领域-质子自旋
 结构及质量起源
- ▪强子物理与重离子物理领域自然的交叉点
- 未来10年:依托HIAF,HNS将系统研究超子极化机制,同时提供 了新一代探测器预研及应用的平台

