

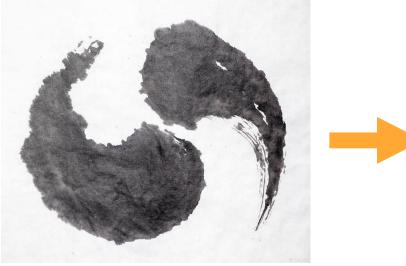
Machine learning in high energy physics at LHC

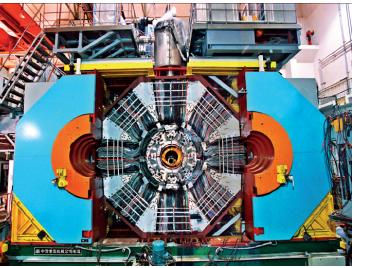
- 张瑞(南京大学)
- 2025年超级陶粲装置研讨会(湖南科技大学) 2025.7.2 - 2025.7.5

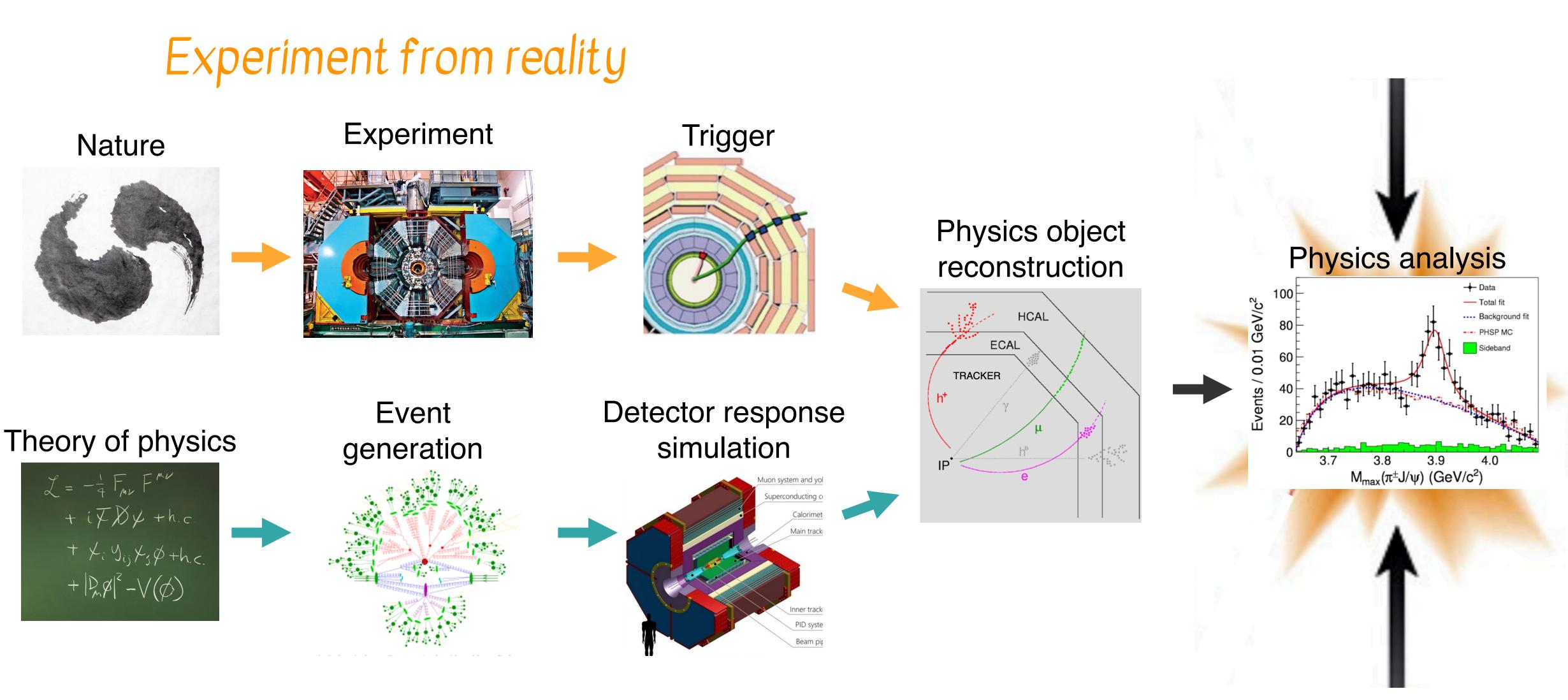
Contents

- Motivation to use machine learning (ML) • How to map a HEP problem to a ML problem
- Examples of recent ML applications
- Summary

Physics analysis workflow



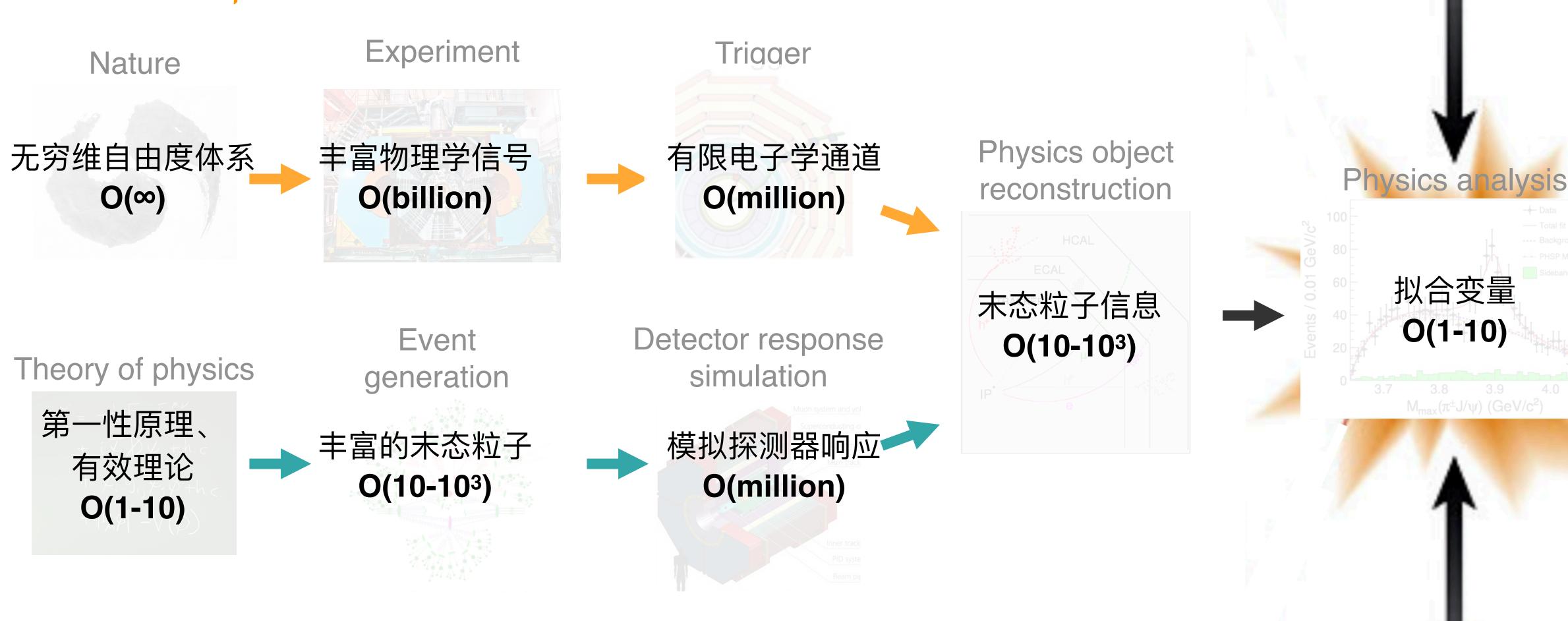




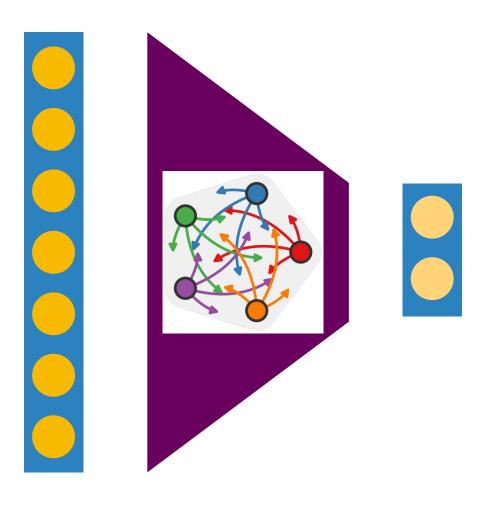
Simulation from knowledge

From data (dimension) perspective

Experiment from reality



Simulation from knowledge



Dimension reduction:

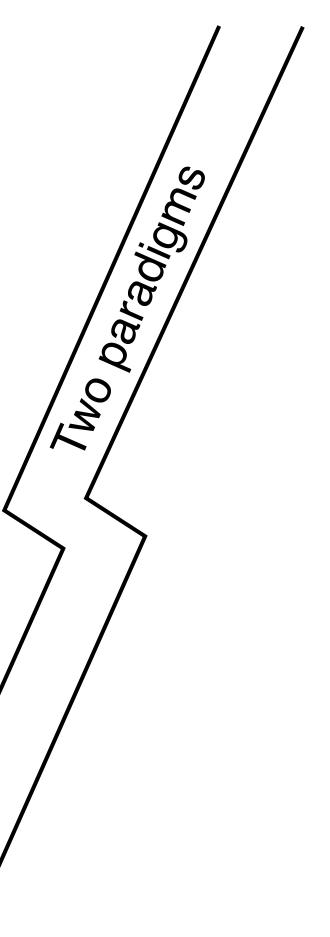
- Trigger decision
- Reconstruction

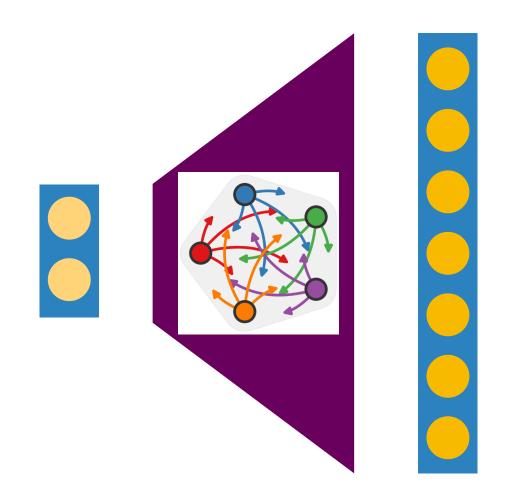
• • •

Sig-Bkg separation

Can machine learning help?

Changes of dimensionality of data is condensing / inflating information





Dimension increase:

Evt generation

•••

Detector simulation

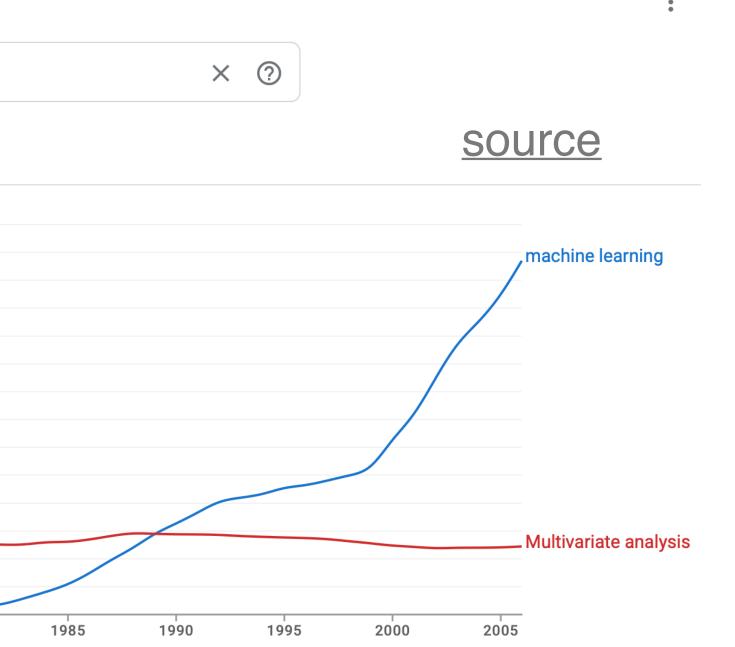
Did machine learning help?

Machine learning (ML) is a modern term; in HEP we used to know something called "Multivariate analysis"

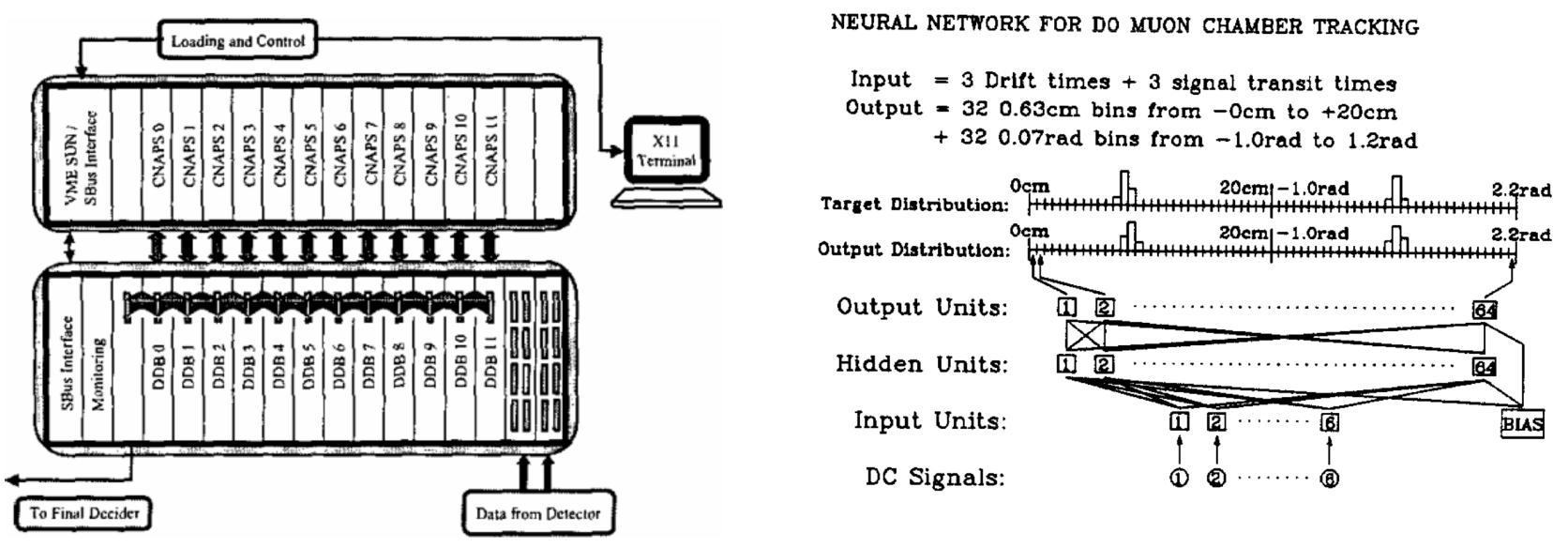
Google Books Ngram Viewer

Q machine learning,Multivariate analysis								
1960 - 2006 🗸	English -	Case-Insensi	tive	hing -				
0.0000700% -								
0.0000650% -								
0.0000600% -								
0.0000550% -								
0.0000500% -								
0.0000450% -								
0.0000400% -								
0.0000350% -								
0.0000300% -								
0.0000250% -								
0.0000200% -								
0.0000150% -								
0.0000100% -								
0.0000050% -								
0.0000000%	1965	1970	1975	1980				

• We know for a long time more variables together could provide stronger distinction power, thus the term multivariate analysis

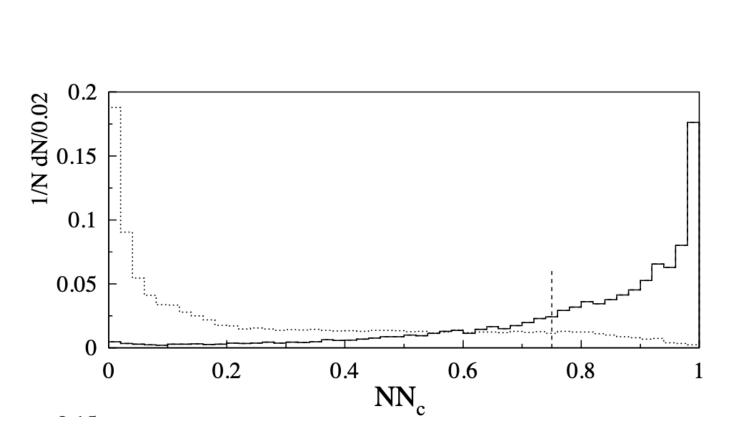


Examples of early ML applications



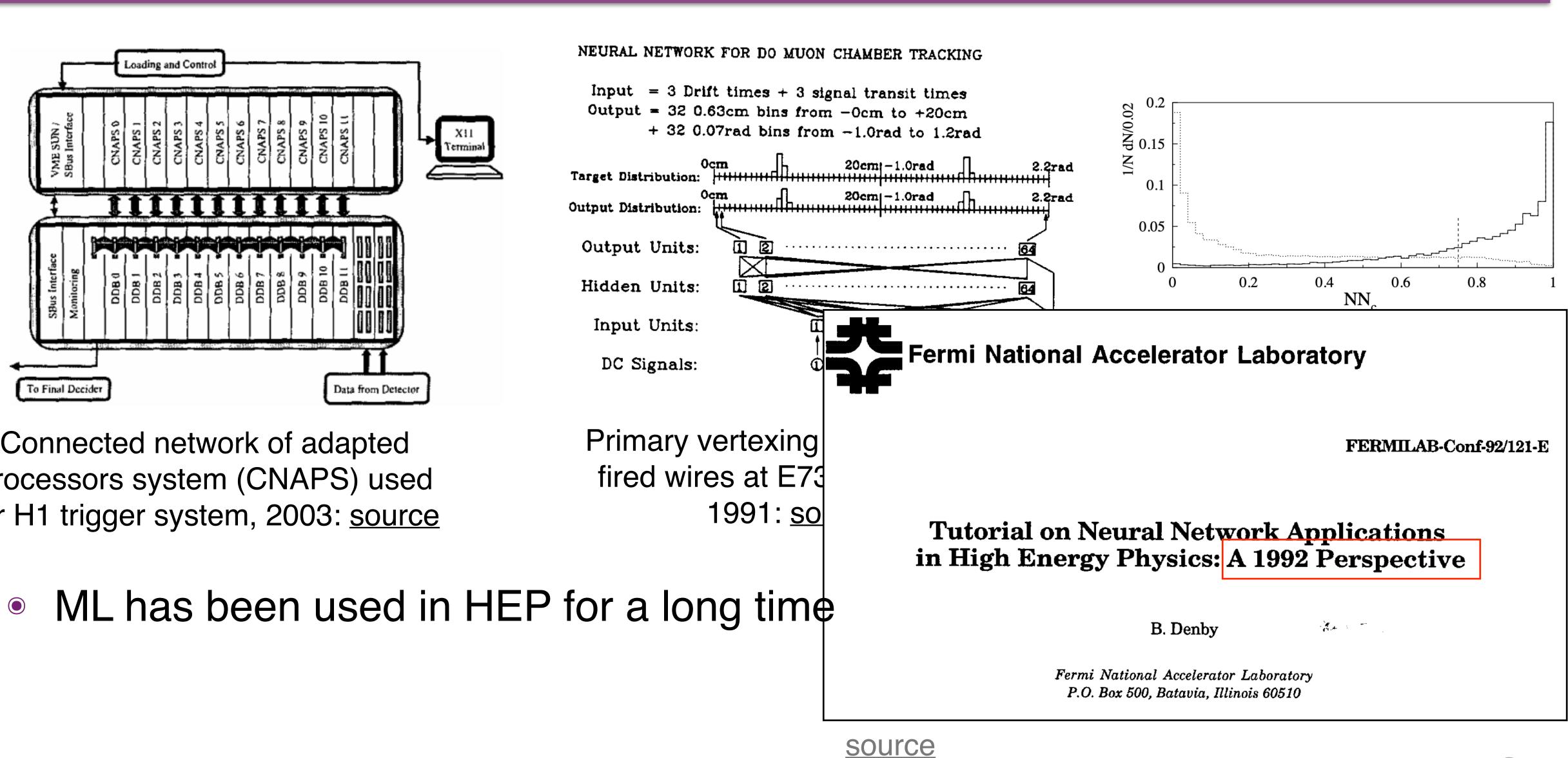
Connected network of adapted processors system (CNAPS) used for H1 trigger system, 2003: <u>source</u> Primary vertexing based on the fired wires at E735, Fermilab, 1991: <u>source</u>

ML has been used in HEP for a long time



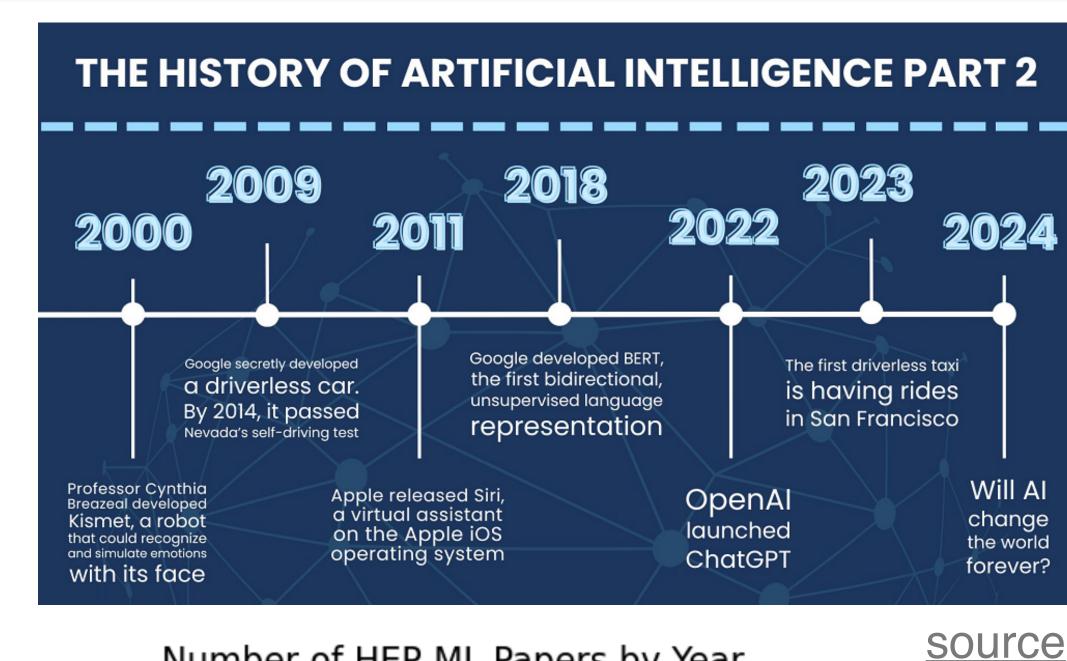
Selection of b hadrons at ALEPH, 1999: source

Examples of early ML applications

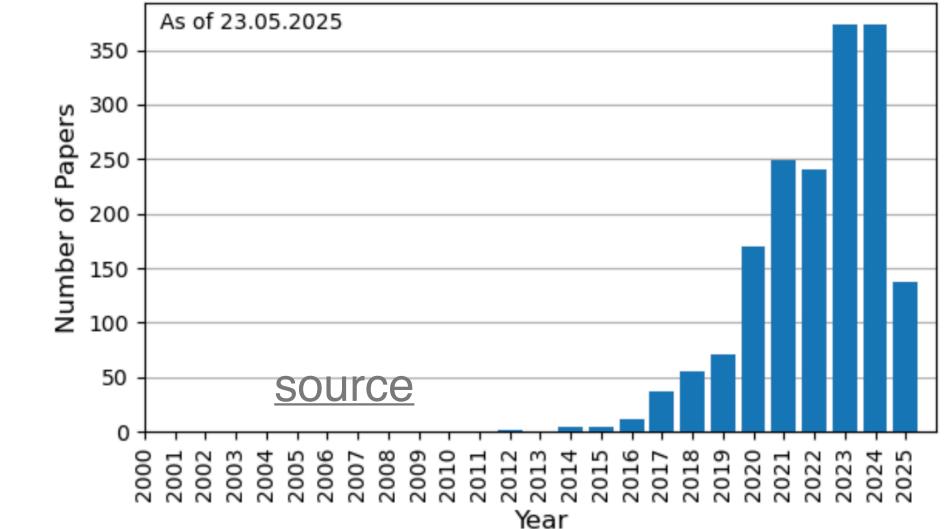


Connected network of adapted processors system (CNAPS) used for H1 trigger system, 2003: <u>source</u>

Rapid development of ML technology



Number of HEP-ML Papers by Year



Images made by different <u>MidJourney</u> versions

V1 Feb 2022

V2 Apr 2022

V3 Jul 2022

V4 Nov 2022

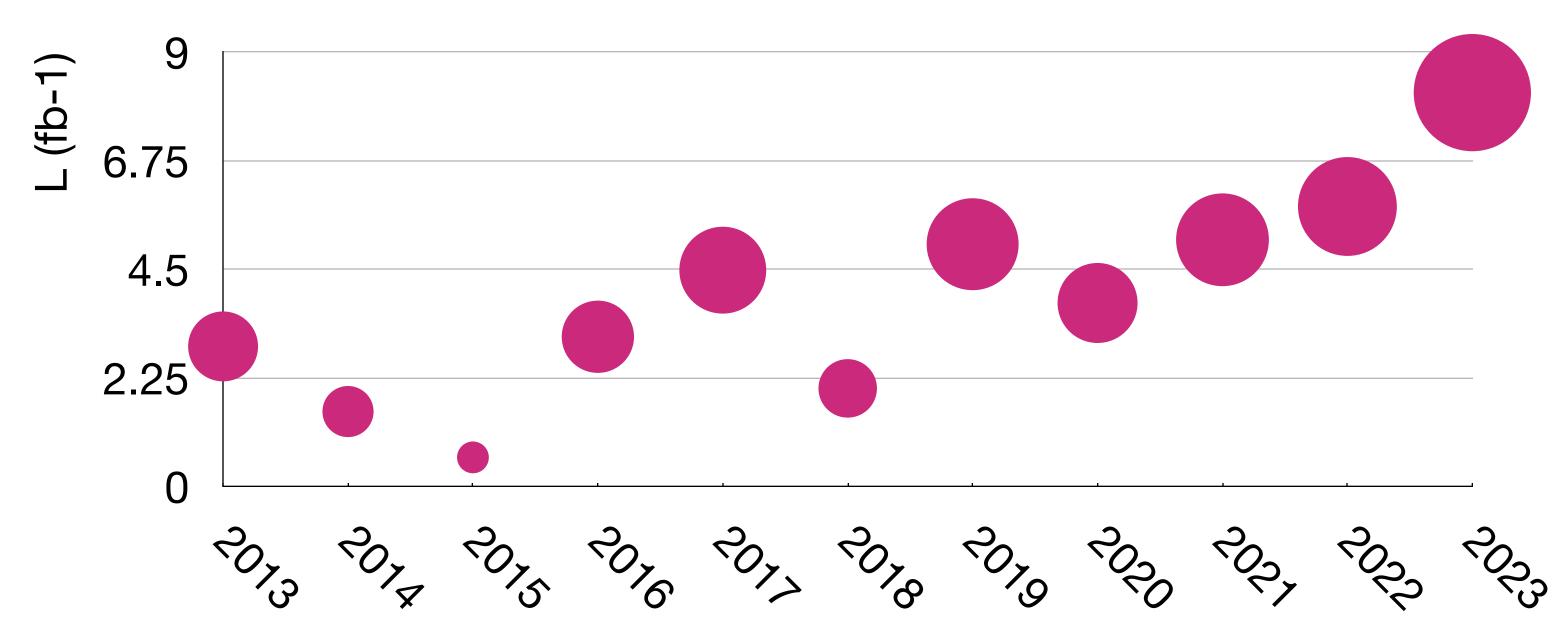
V5 Mar 2023

Dec 2023

Now that ML technology is used in daily life and everywhere thanks to the large dataset and powerful machine to train

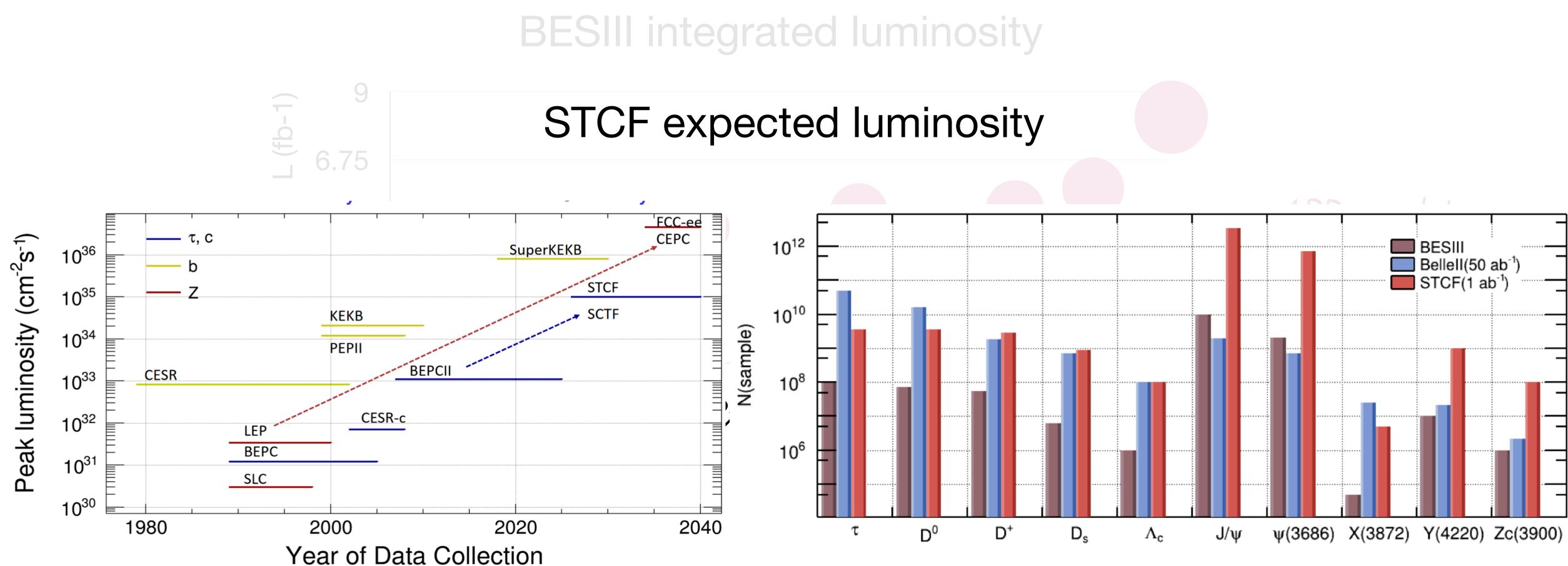
• HEP is known as data science

BESIII integrated luminosity



~1PB raw data ~1PB DST data

<u>source</u>

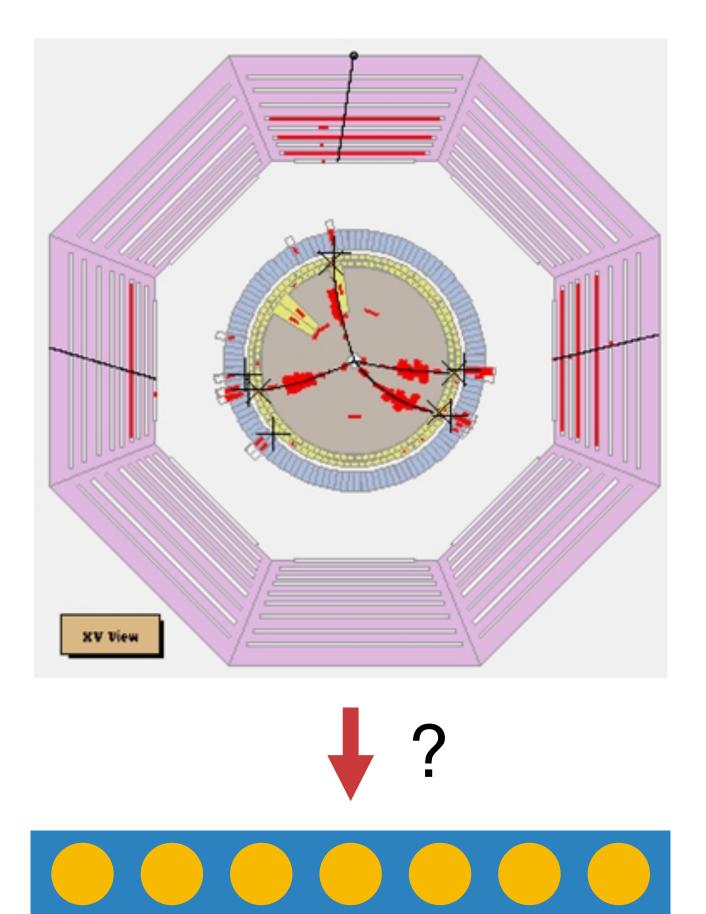


Data volume

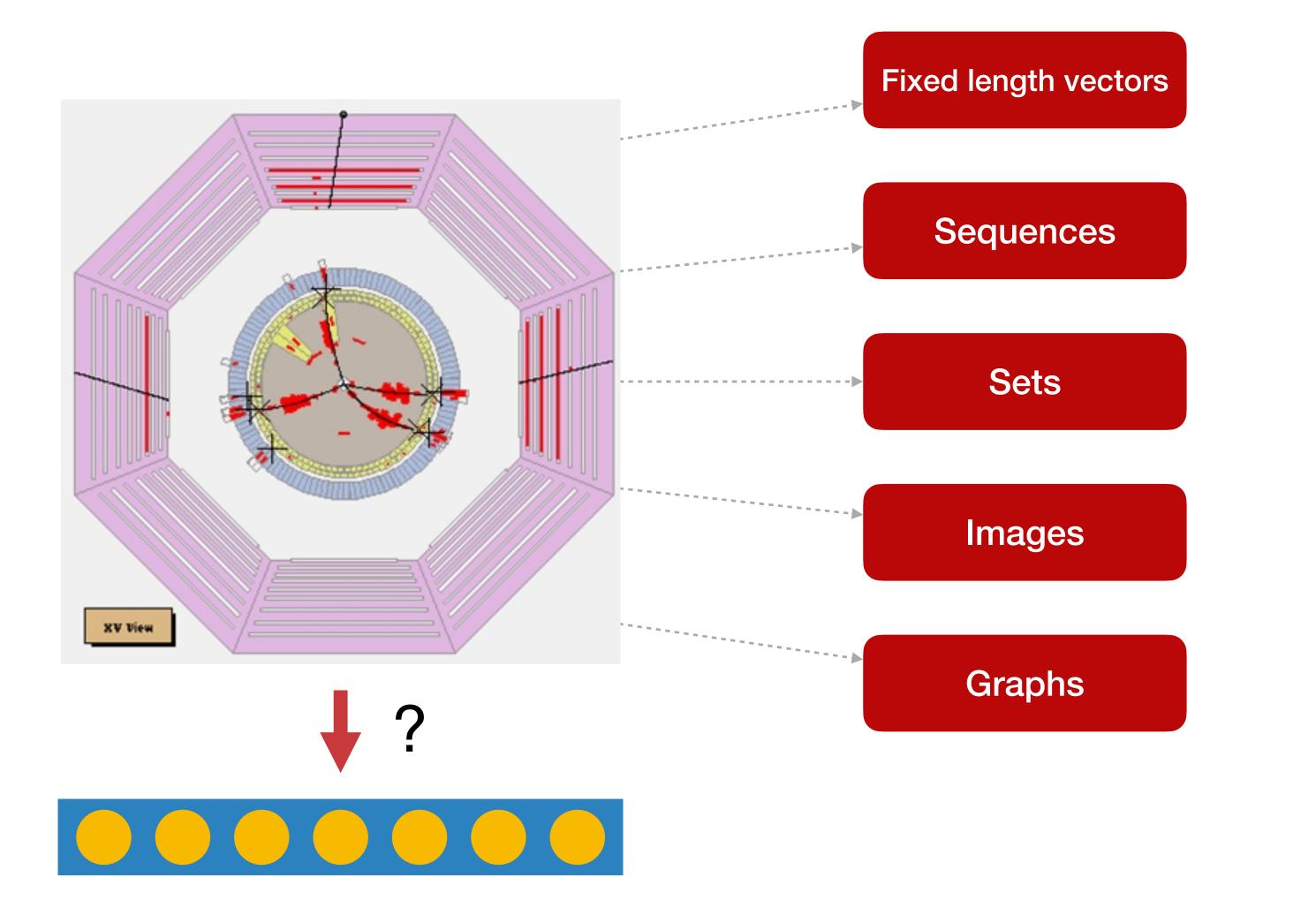
Contents

- Motivation to use machine learning (ML) • How to map a HEP problem to a ML problem
- Examples of recent ML applications
- Summary

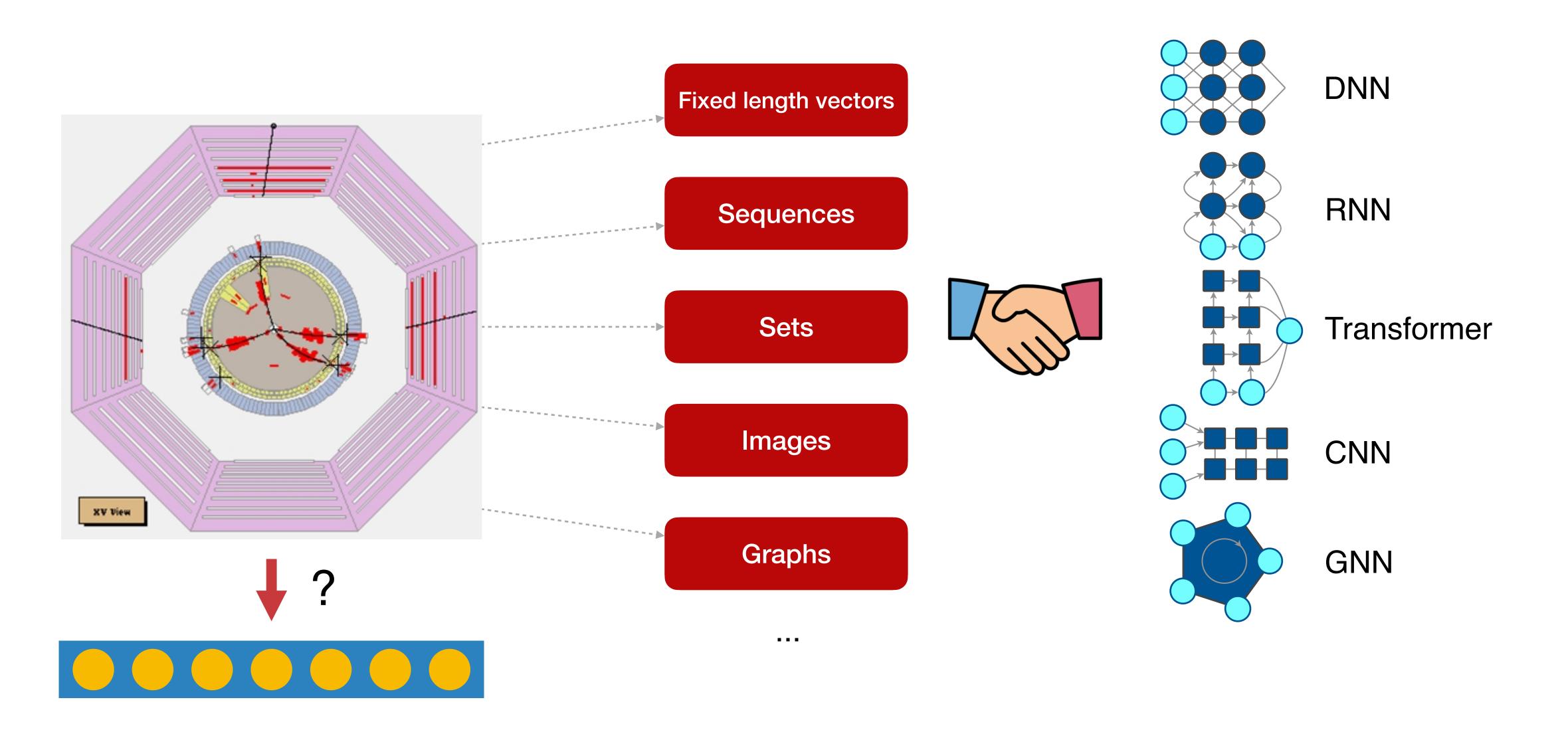
From Raw HEP Data to ML-Ready Formats



From Raw HEP Data to ML-Ready Formats



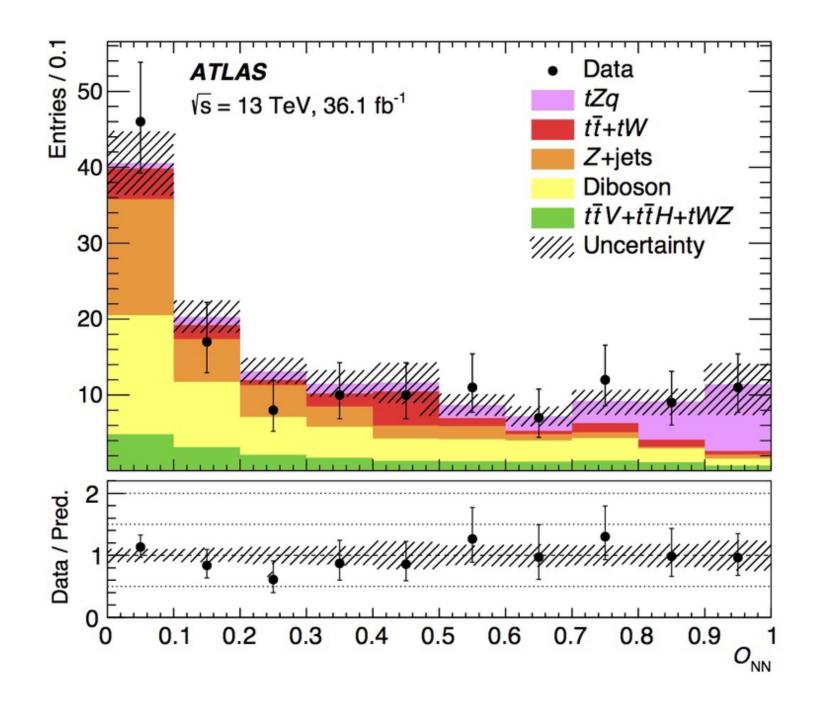
From Raw HEP Data to ML-Ready Formats



Fixed length vectors and DNN applications

(DNN)

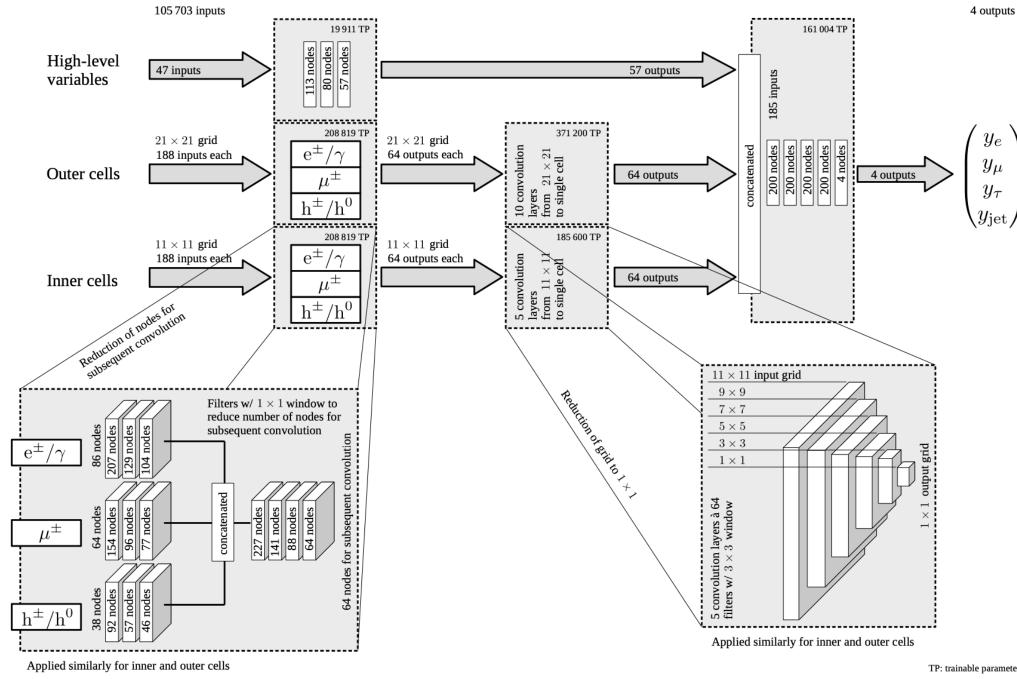
A typical signal extraction using NN



Phys. Lett. B 780 (2018) 557

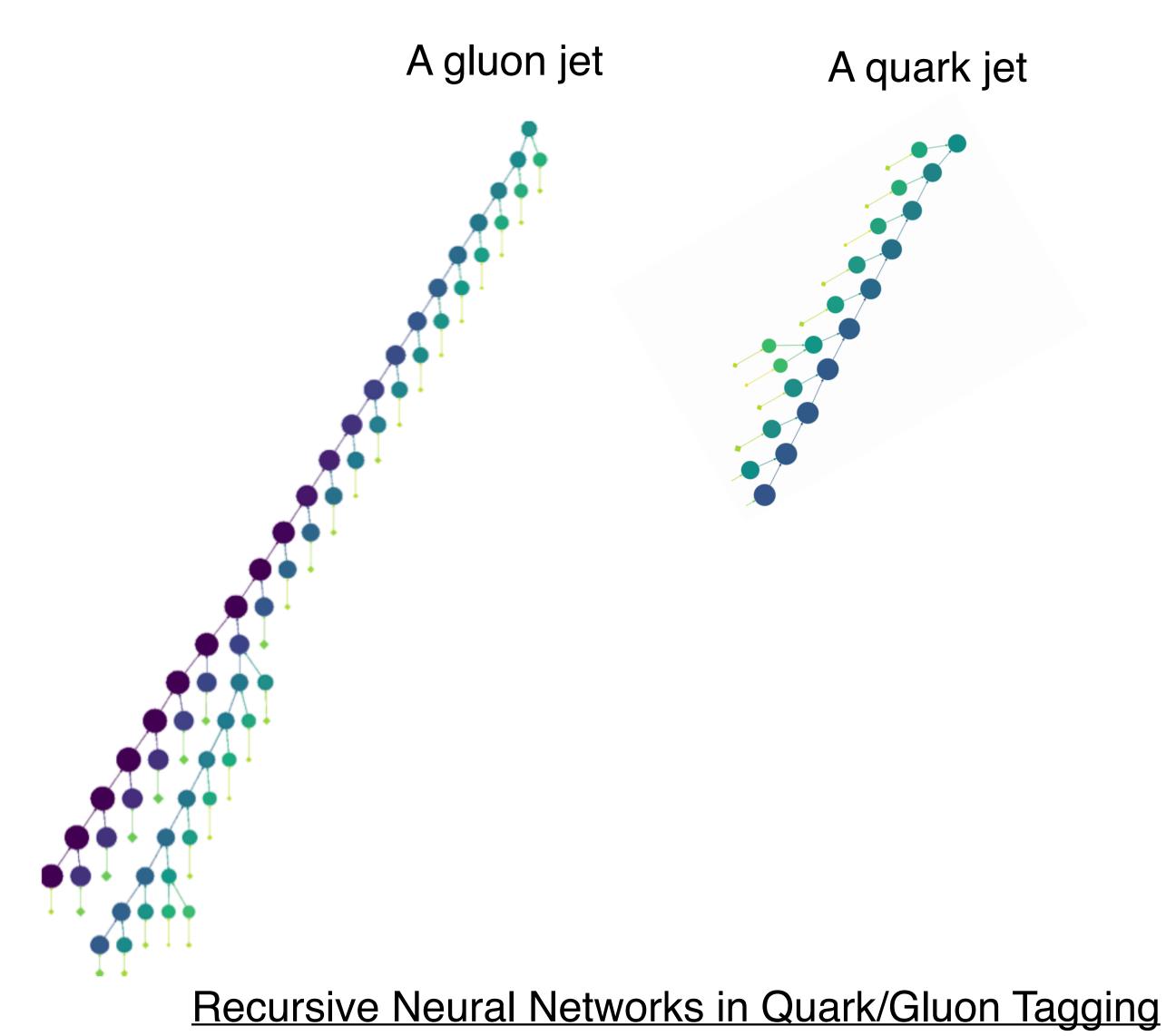
Decide variable list for training in advance and train a deep neural network

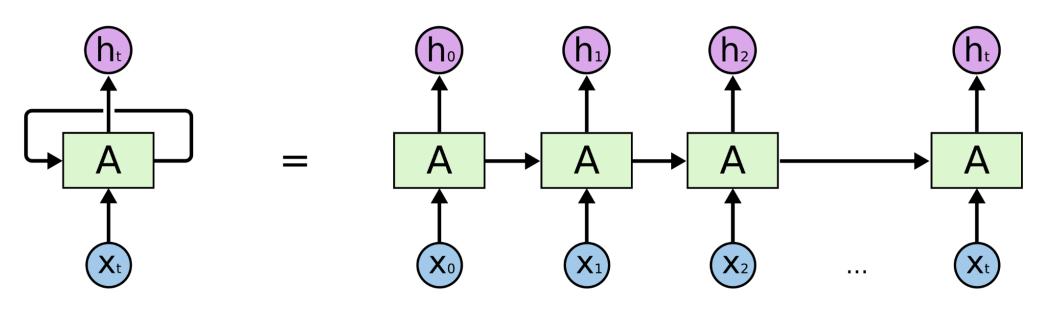
CMS tau ID deep network



JINST 17 (2022) P07023

- Sometimes fixed length vector is not applicable
 - e.g. Jets contain a variable number of particles
 - Recurrent Neural Networks shows great performance for Natural Language Processing tasks
 - Information across the entire sequence can be accumulated and used

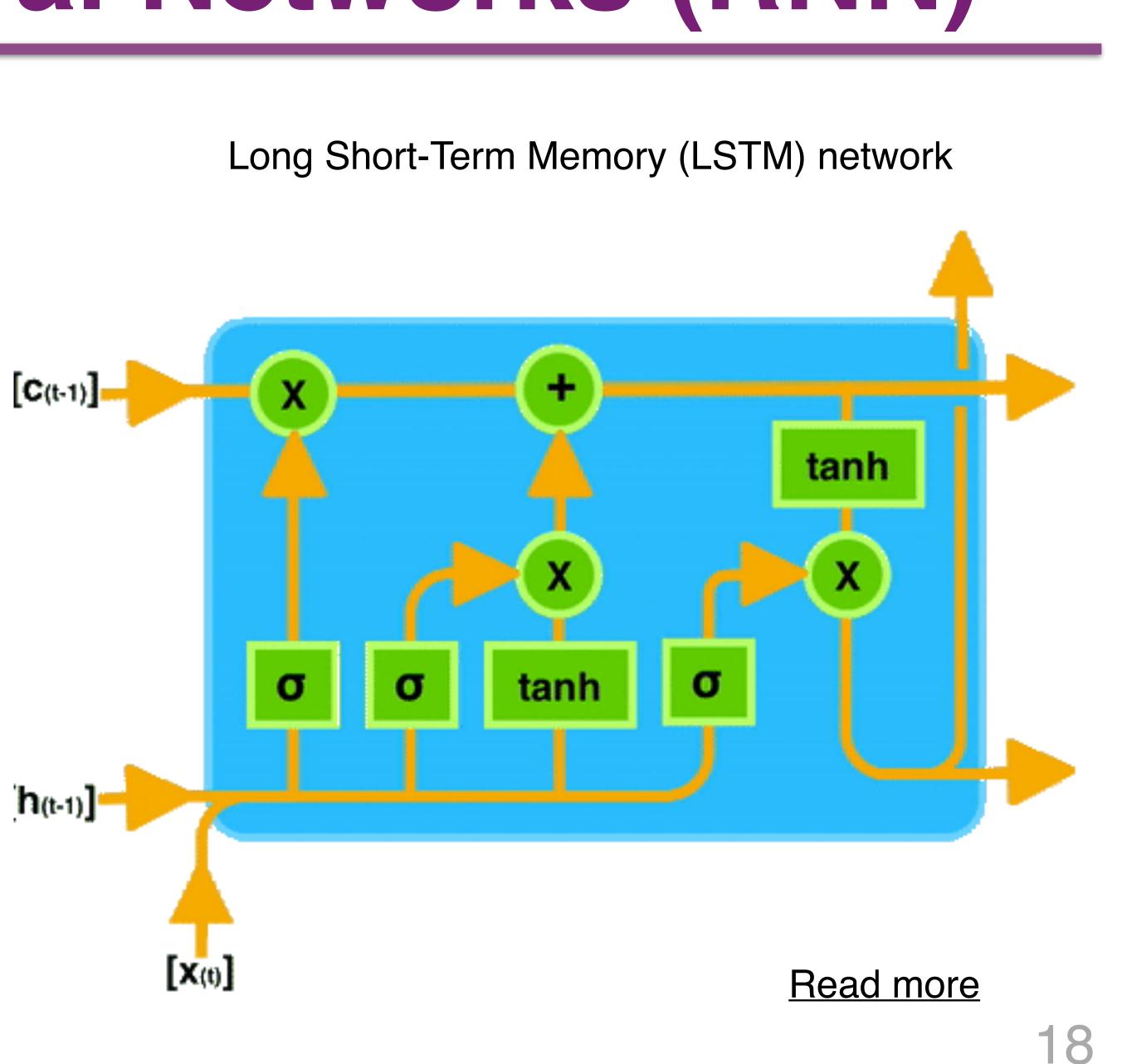




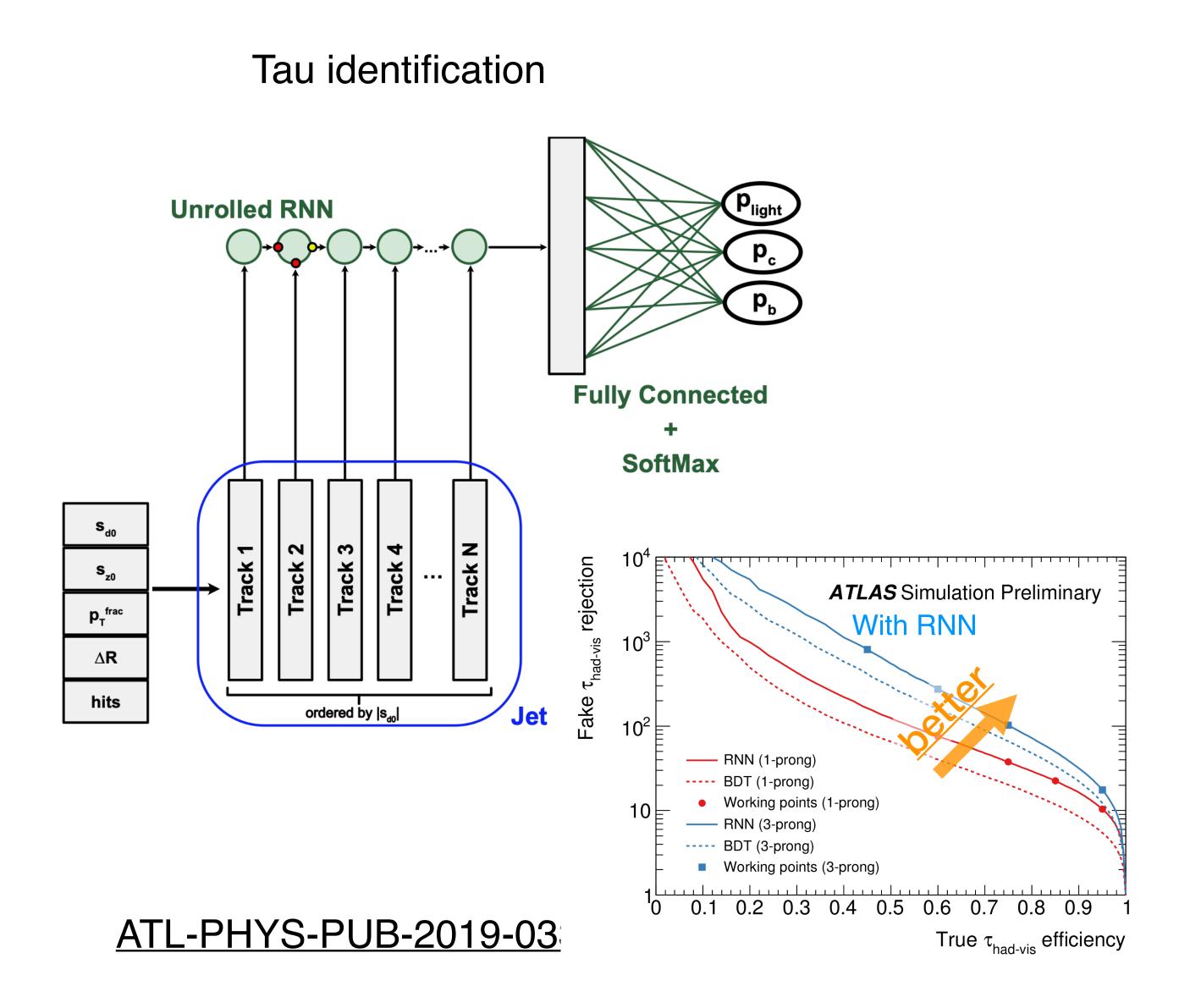
An unrolled recurrent neural network.

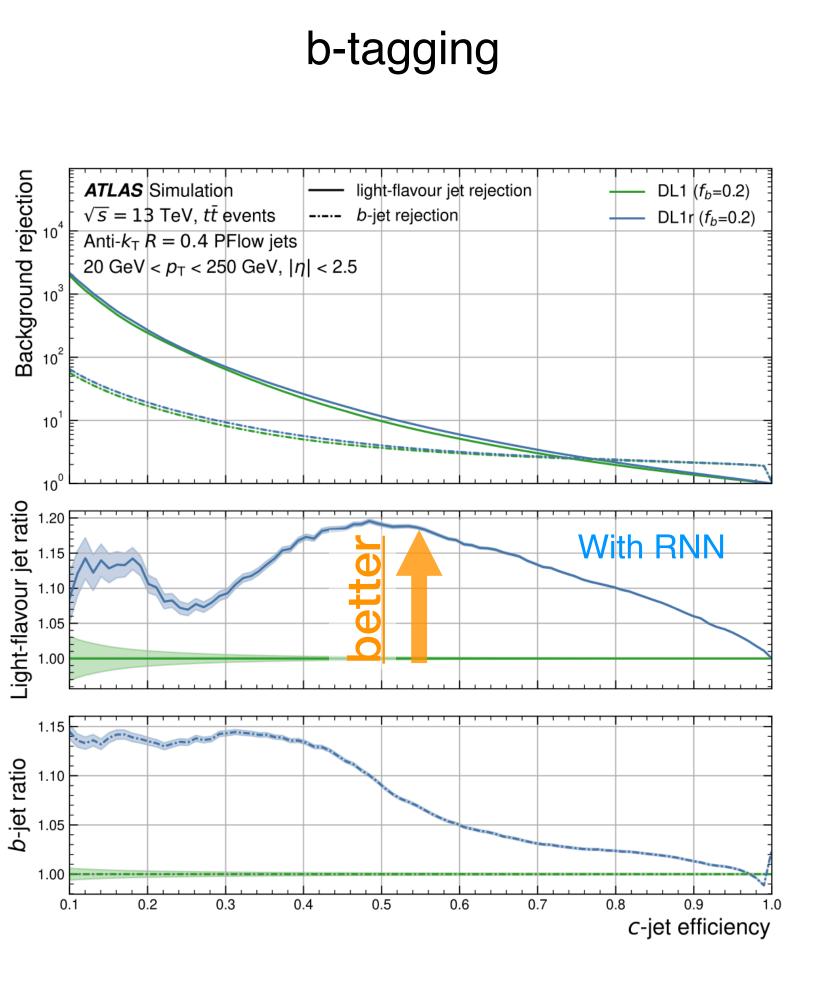
Success in applying RNNs to a variety of problems:

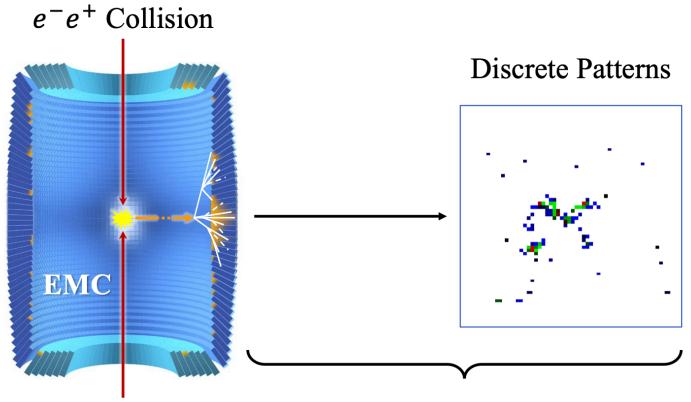
- Speech recognition
- Language modeling
- Translation
- Image captioning



RNN applications



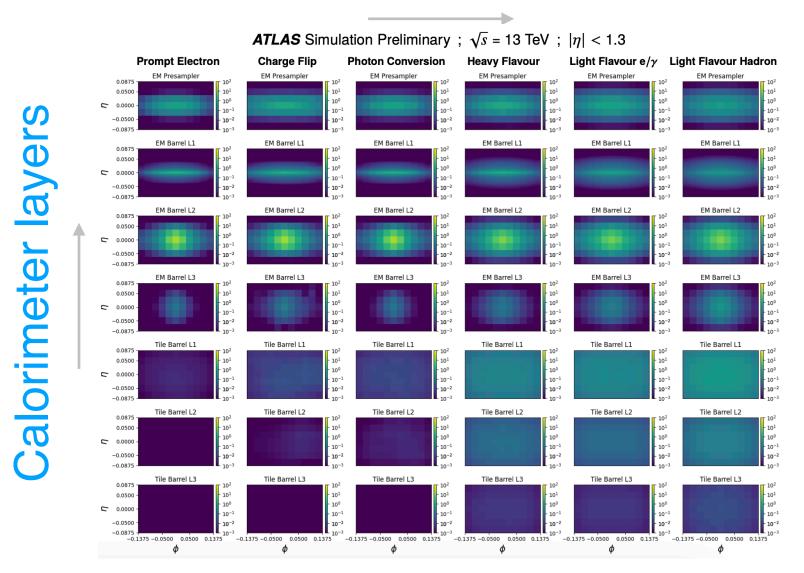




High-energy Particle Imaging

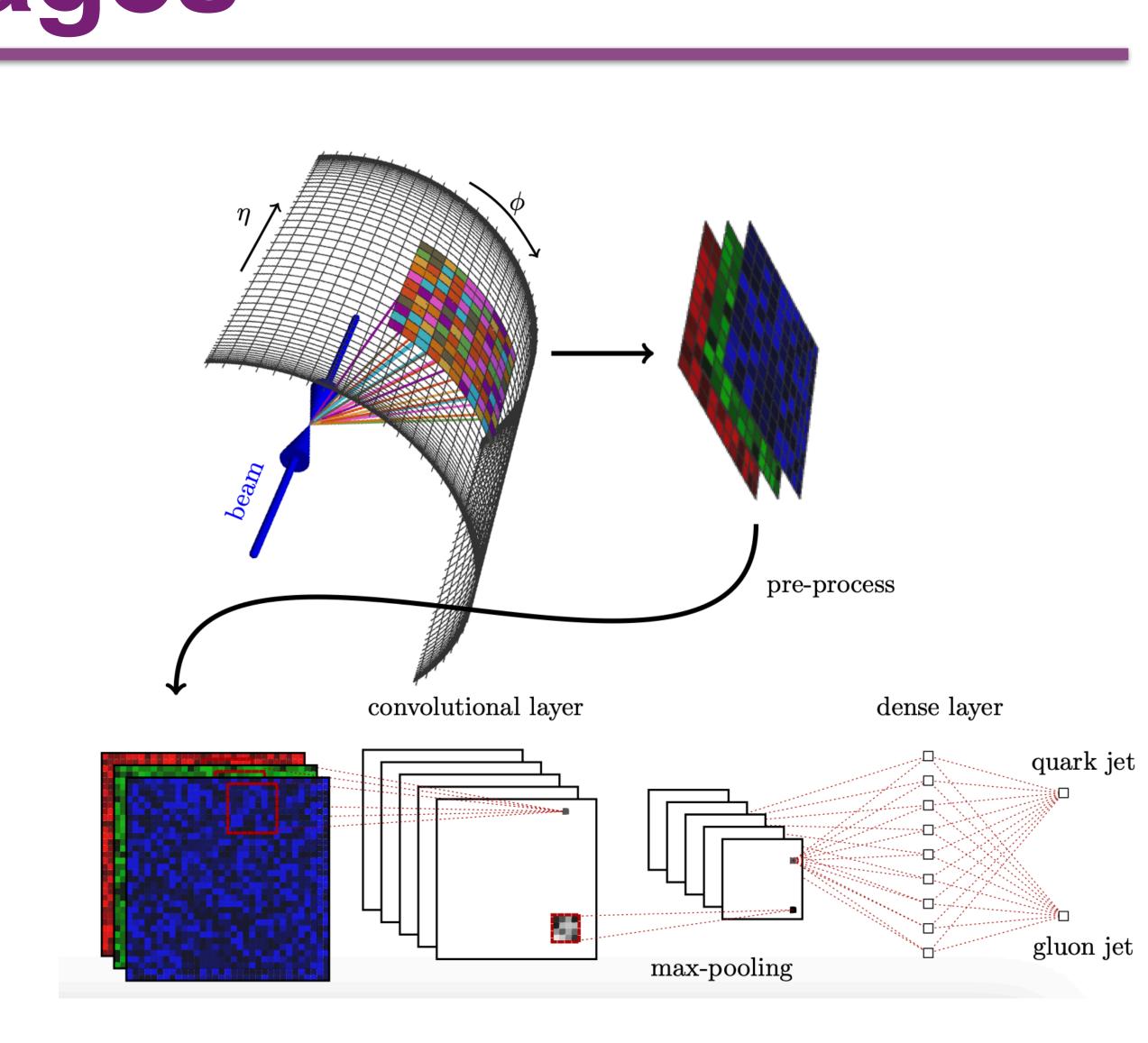
Hongtian Yu et al, Vision Calorimeter, <u>arXiv:2408.10599</u>

Electron classes

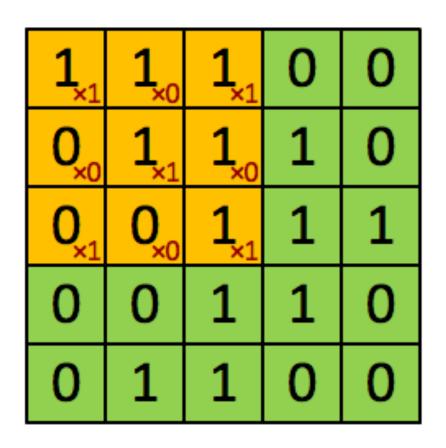


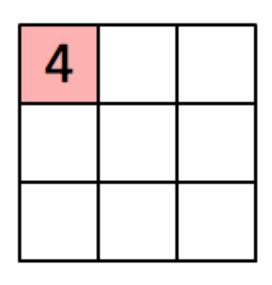
ATL-PHYS-PUB-2023-001

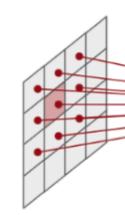
<u>JHEP 01 (2017) 110</u>



Convolutional neural networks (CNN)





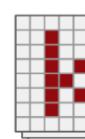


Image

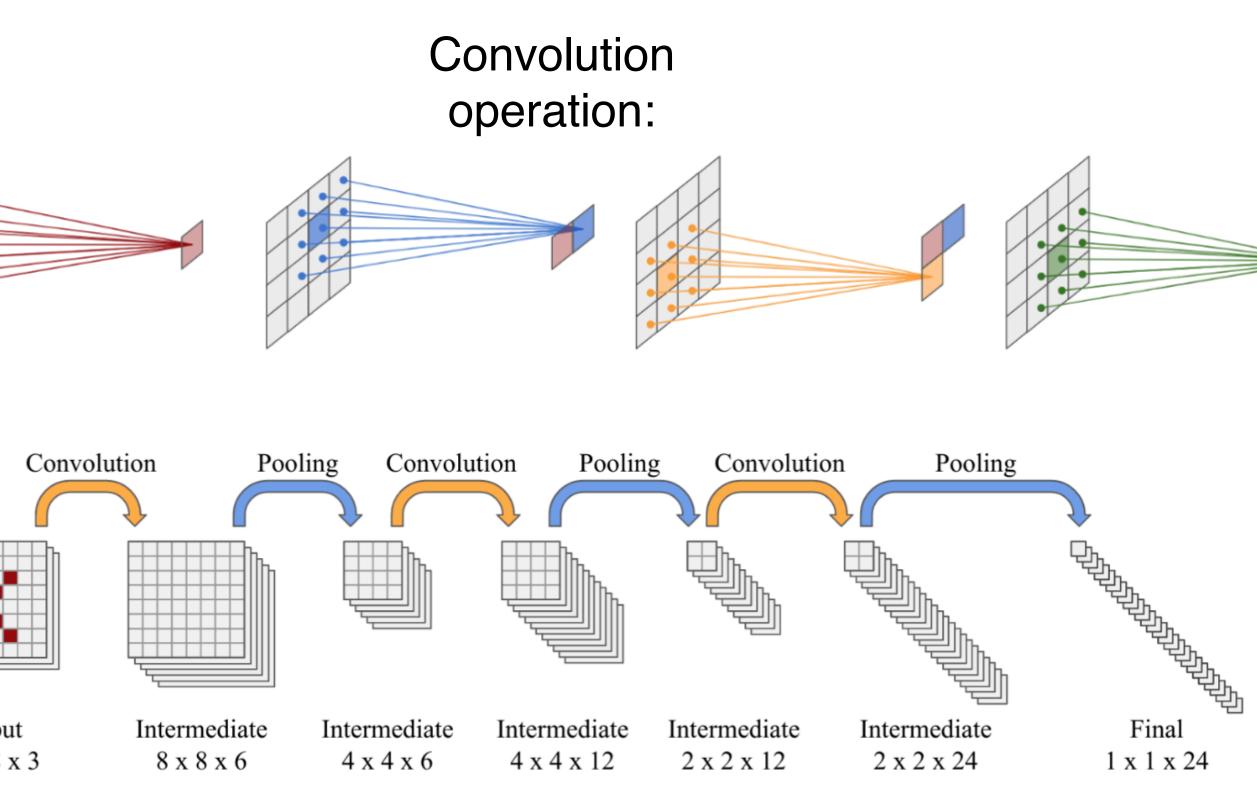
Convolved Feature

Success in applying CNNs to a variety of problems:

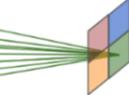
- Computer vision
- Face Recognition
- Medical Imaging



Input 8 x 8 x 3

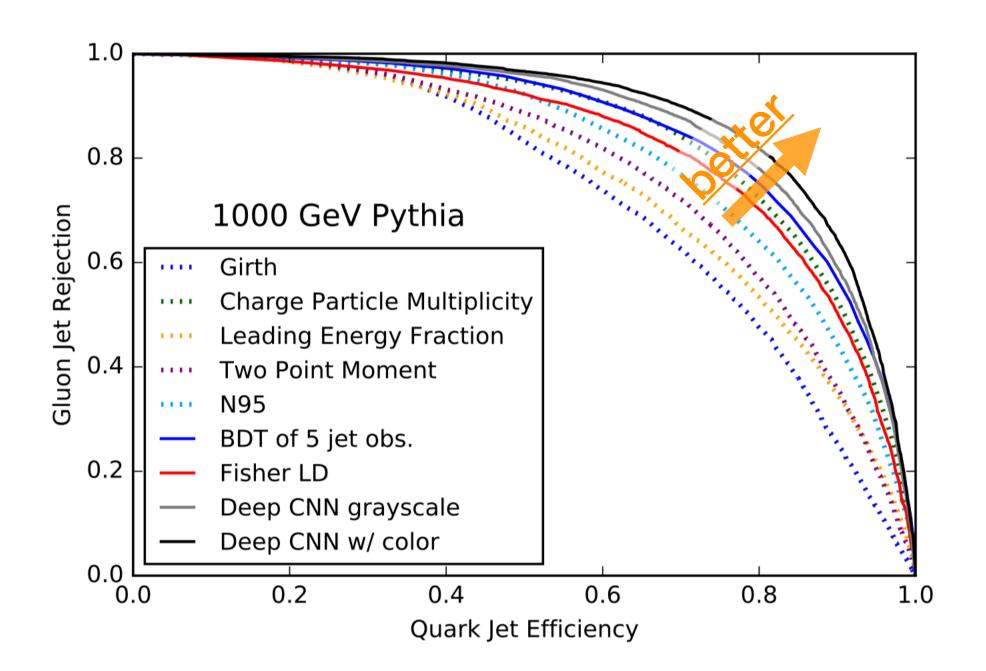


PDG Machine Learning Goodfellow et al. Deep learning. MIT press, 2016.

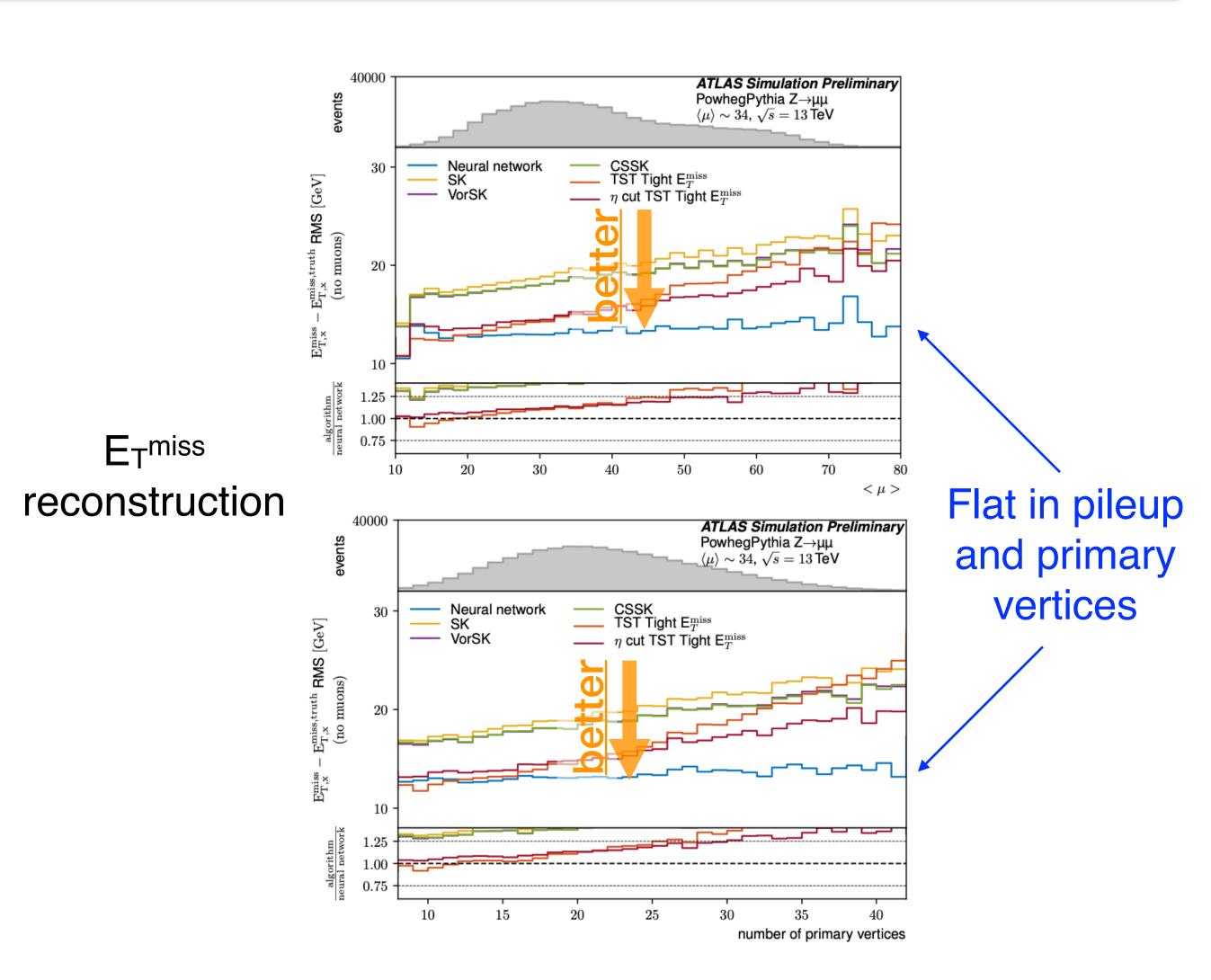


CNN applications

Quark-gluon jet discrimination



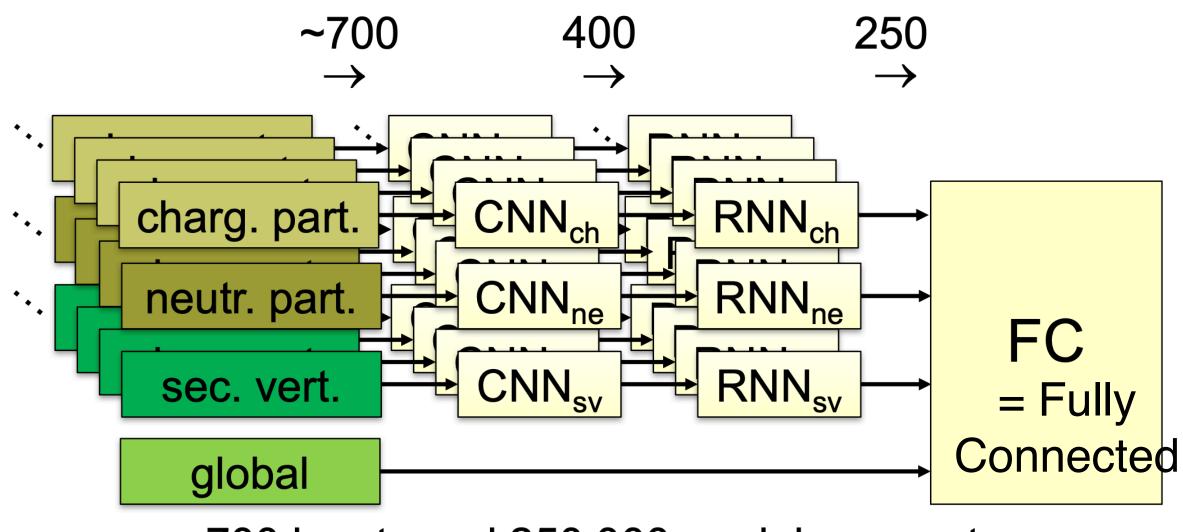
<u>JHEP 01 (2017) 110</u>



ATL-PHYS-PUB-2019-028

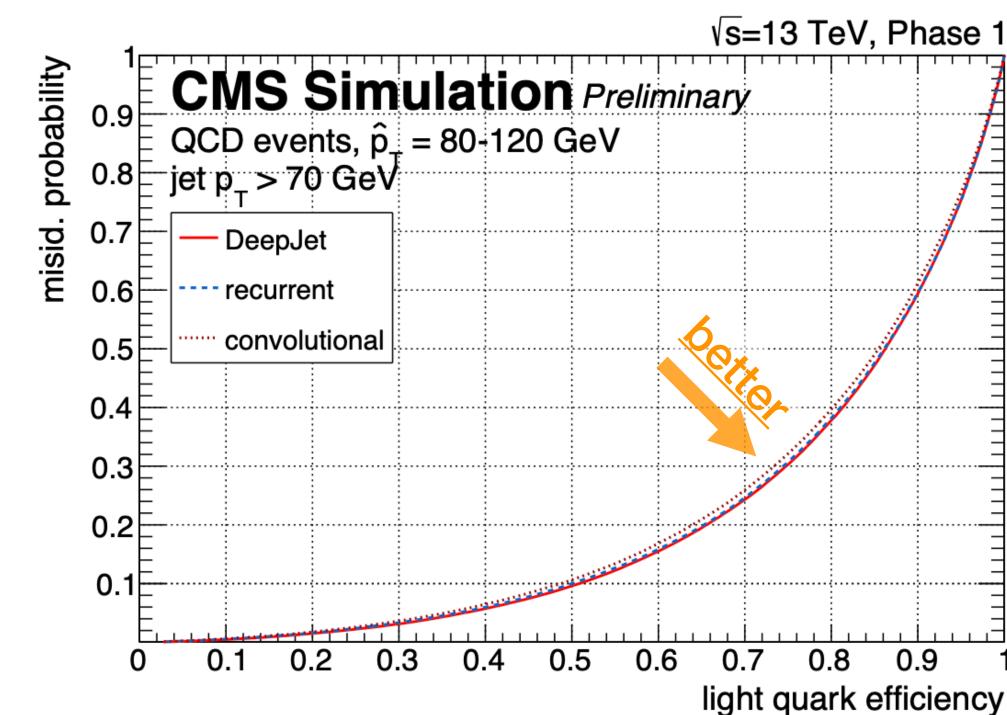
CMS DeepJet algorithm used CNN, RNN and fully connected DNN at the same time

Particle and vertex based DNN: Deeplet



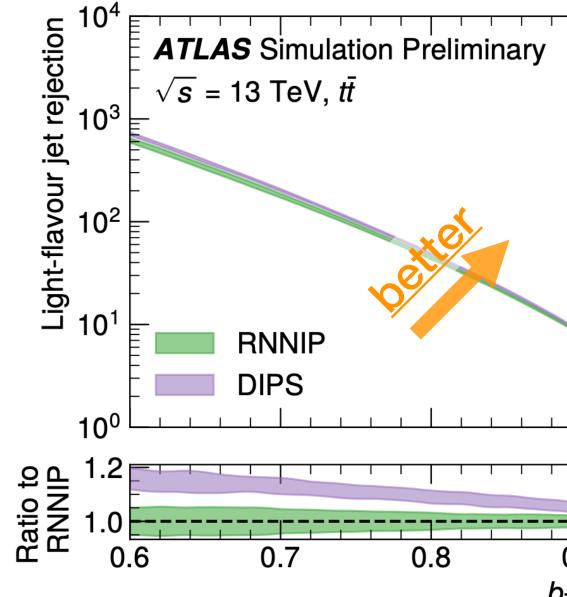
~ 700 inputs and 250.000 model parameters

Hybrid: DNN + RNN + CNN application



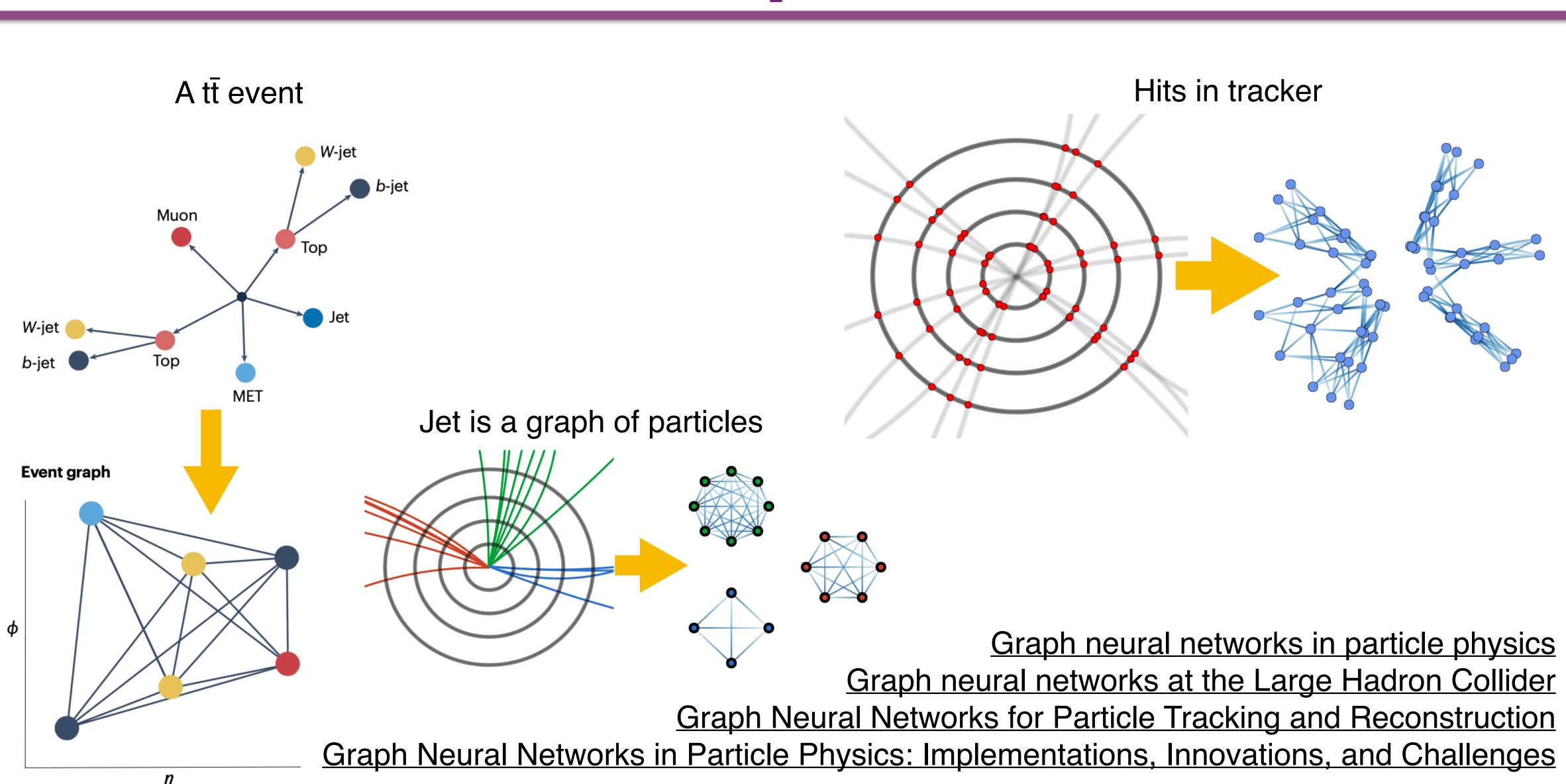
CERN-CMS-DP-2017-027

- Sequences and images imply a certain ordering
 - Lack of permutation invariance $f(x_1, x_2) \neq f(x_2, x_1)$
- Deepset [Manzil et al]
 - for any permutation $\pi : f(\{x_1, \ldots, x_M\}) = f(\{x_{\pi(1)}, \ldots, x_{\pi(M)}\})$
 - e.g. $f = \max$, mean, etc



Sets

Track n m trk features Track 2 100 relu units m trk features 100 relu units Track 1 (nJets, 1, m) m trk features 128 relu units units 100 relu units units (nJets, 1, 100) 100 relu units (nJets, 1, 100) (nJets, 1, 128) **128 relu units** Concatenate (nJets, 100) (nJets, 100) (nJets, n, 128) Φ)0 relu units Sum over the tracks (nJets, 128) Φ: Embed input to high-dim space to 0.9 1.0 preserve properties *b*-jet efficiency

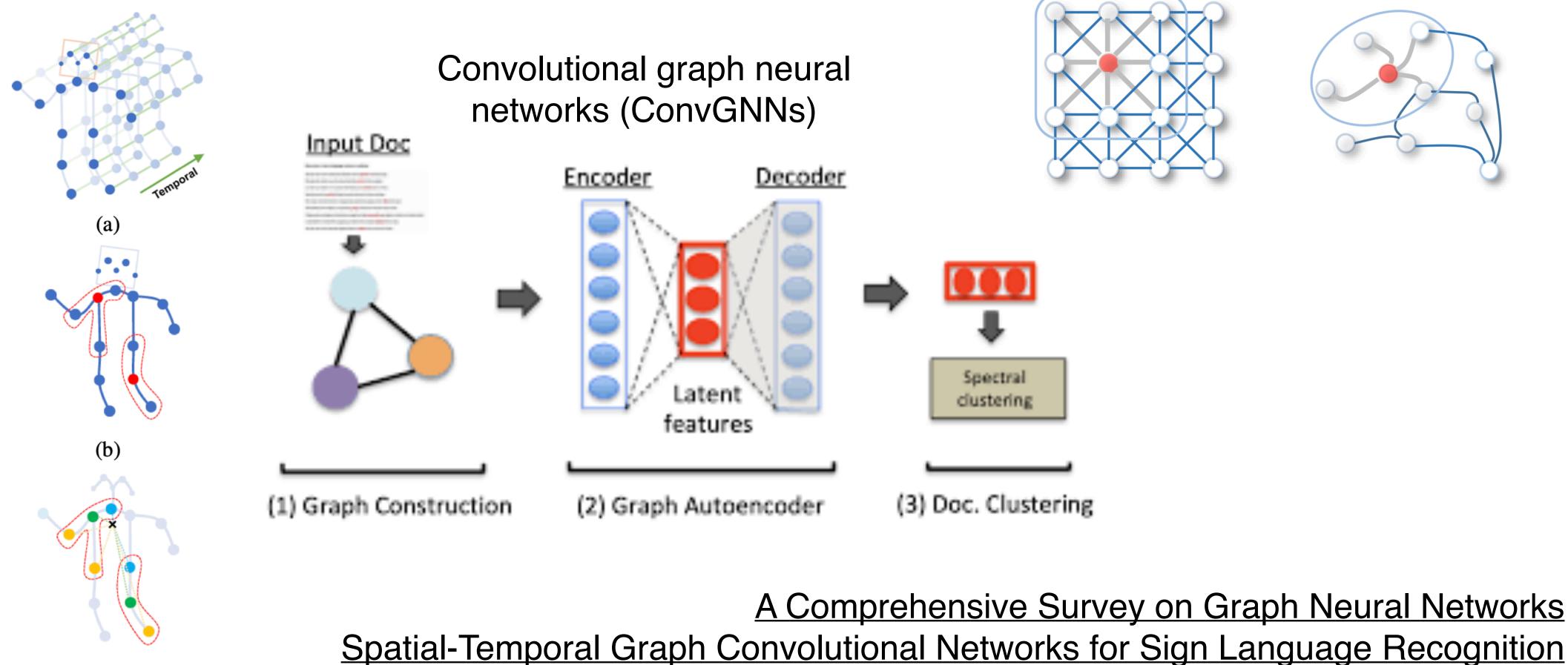


η

Graphs

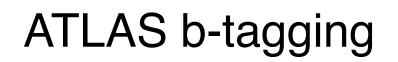
Spatial-temporal graph neural networks (STGNNs)

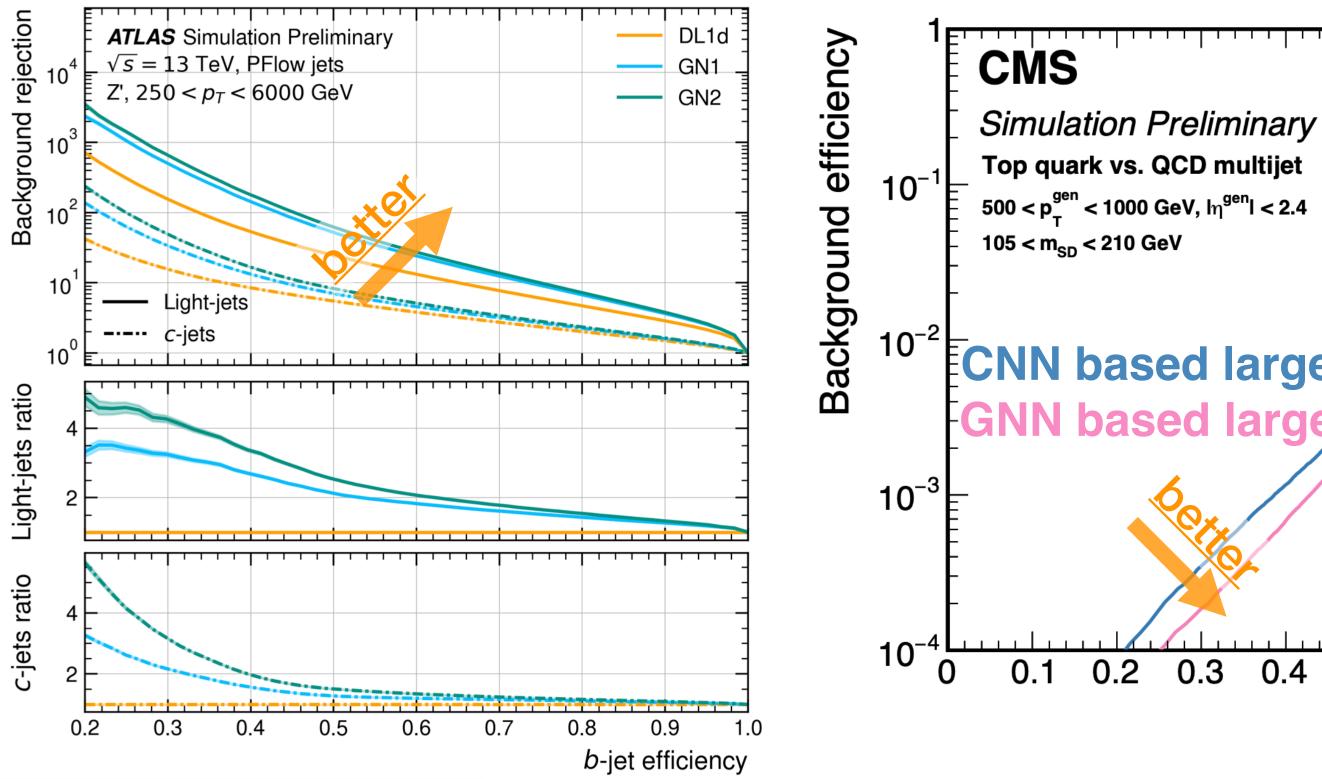
(c)



Graphs neural networks

A Comprehensive Survey on Graph Neural Networks





<u>arXiv:1706.03762</u>

GNN applications

CMS b-tagging

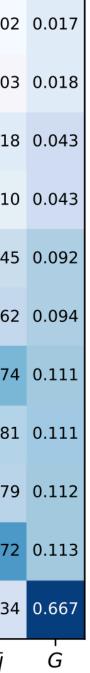
(13 TeV) 10⁻² CNN based large R jet tagger GNN based large By jet tagger -DeepAK8 -ParticleNet 0.5 0.6 0.7 0.8 0.3 0.4 Signal efficiency

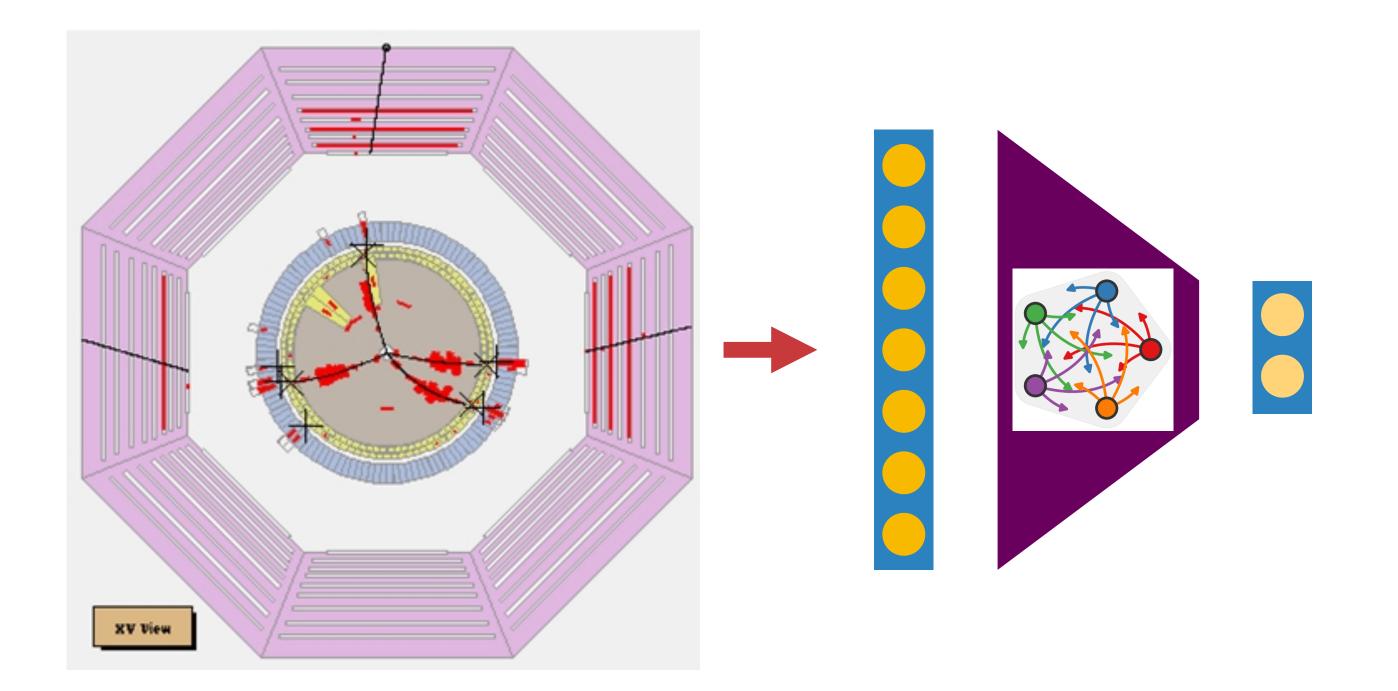
Jet origin identification at CEPC simulation

	b -	0.745	0.163	0.033	0.025	0.004	0.003	0.002	0.003	0.002	0.00
	b -	0.170	0.737	0.026	0.033	0.003	0.004	0.003	0.002	0.002	0.00
	с -	0.015	0.014	0.743	0.055	0.036	0.031	0.025	0.009	0.009	0.01
	. -	0.016	0.015	0.056	0.739	0.032	0.037	0.009	0.026	0.017	0.01
	s -	0.003	0.002	0.020	0.018	0.543	0.102	0.030	0.080	0.063	0.04
True	<u></u> -	0.003	0.003	0.018	0.020	0.102	0.542	0.084	0.028	0.045	0.06
	u -	0.002	0.003	0.020	0.011	0.044	0.131	0.367	0.055	0.080	0.17
	u -	0.003	0.003	0.011	0.019	0.132	0.043	0.062	0.356	0.178	0.08
	d -	0.003	0.003	0.012	0.019	0.112	0.092	0.082	0.207	0.277	0.07
	<u>d</u> -	0.003	0.003	0.020	0.012	0.092	0.112	0.219	0.076	0.079	0.27
	G -	0.015	0.014	0.024	0.024	0.052	0.052	0.043	0.041	0.034	0.03
		b	$\frac{1}{b}$	C		s S	$\frac{1}{5}$	u u	$\frac{1}{u}$	d	$\frac{1}{d}$
		Predicted									

PhysRevLett.132.221802

<u>CMS-DP-2020-002</u>





Un-supervised learning

High

Two paradigms

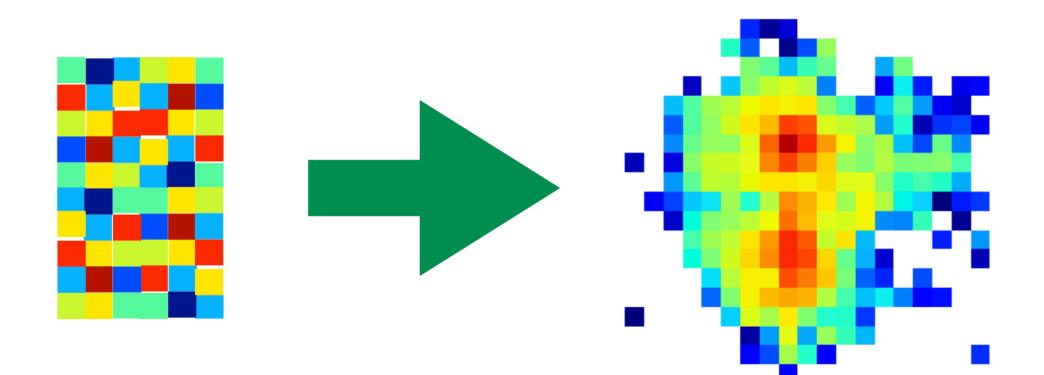
Supervised learning

Low

Dimension

Simulation

A generator is a function that maps random numbers to structure.



Low dimension

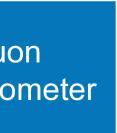
High dimension

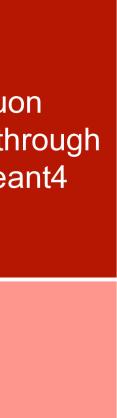
Un-supervised learning

Generative Adversarial Net (GAN) has been used in the ATLAS Fast simulation

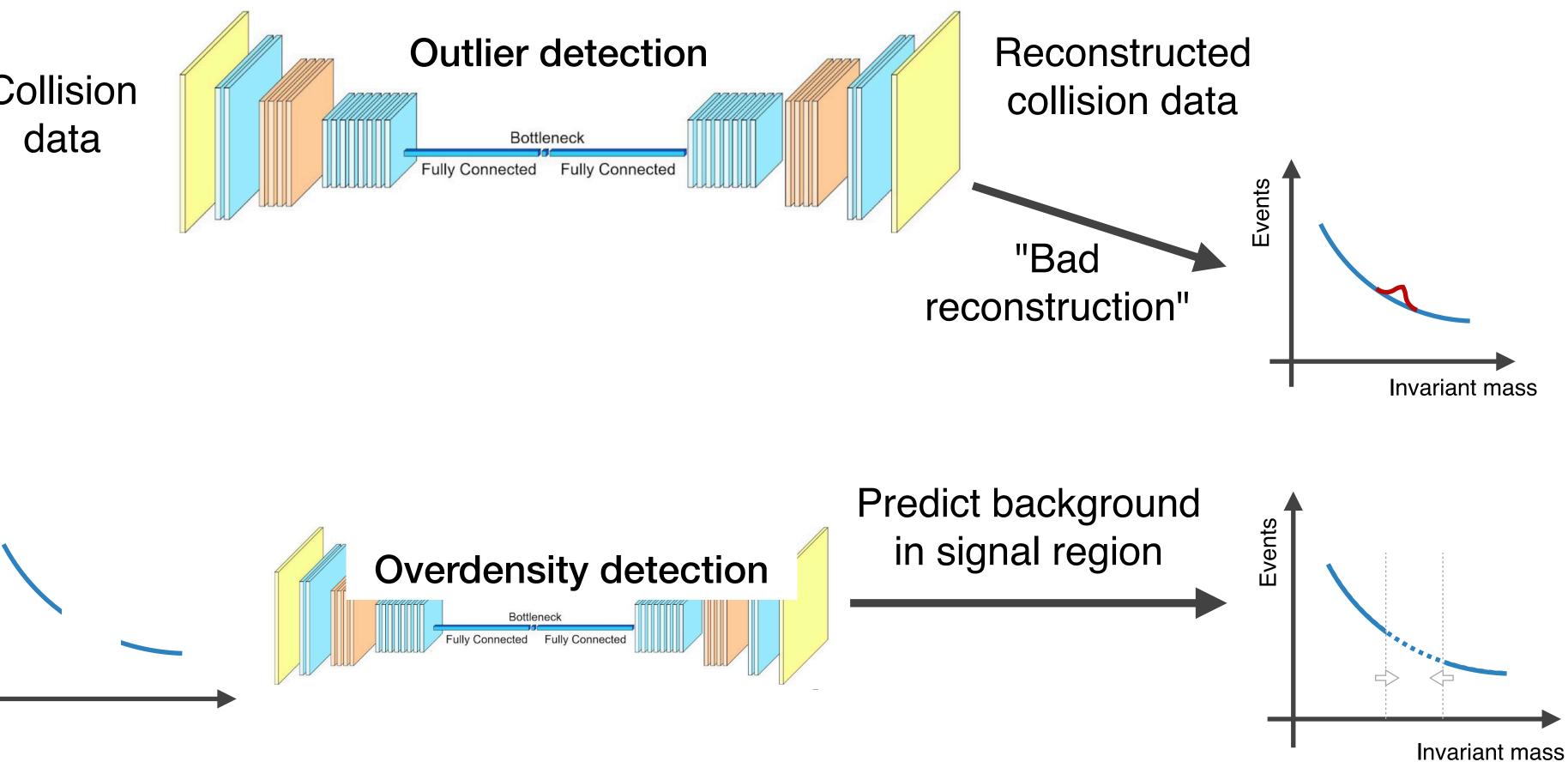
	Inner Detector	Calorimeters			Muo Spectro	
Electrons Photons	Geant4	FastCaloGAN V2 <i>E_{kin}</i> < 8 GeV && η < 2.4, Except [0.9< η <1.1, 1.35< η <1.5]		FastCaloSim V2 <i>E_{kin}</i> > 16 GeV && η < 2.4, All <i>E_{kin}</i> && [0.9< η <1.1, 1.35< η <1.5, η >2.4]		
Charged Pions Kaons		Geant4 Pions:	FastCaloS E _{kin} < 4 GeV && E _{kin} < 1 GeV &&	η < 1.4,	FastCaloGAN V2 E _{kin} > 8 GeV && η < 1.4, E _{kin} > 2 GeV && 1.4 < η < 3.15, All E _{kin} && η > 3.15	Muc
Baryons		<i>E_{kin}</i> < 200 MeV Other hadrons: <i>E_{kin}</i> < 400 MeV	F	FastCaloGAN V2		Punchth + Gea
Muons					Geant4	

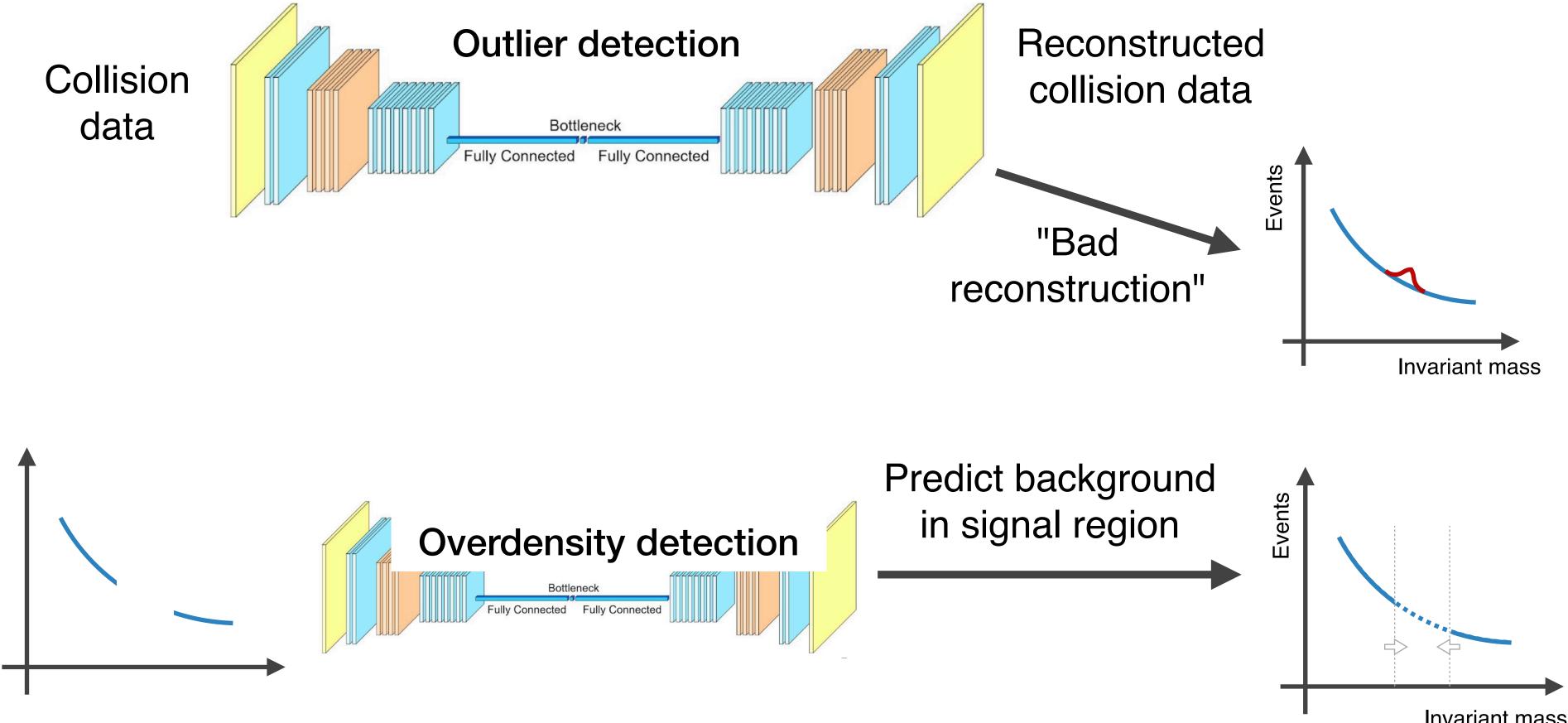
Eur. Phys. J. C 85 (2025) 234





Anomaly detection for model-agnostic new physics searches



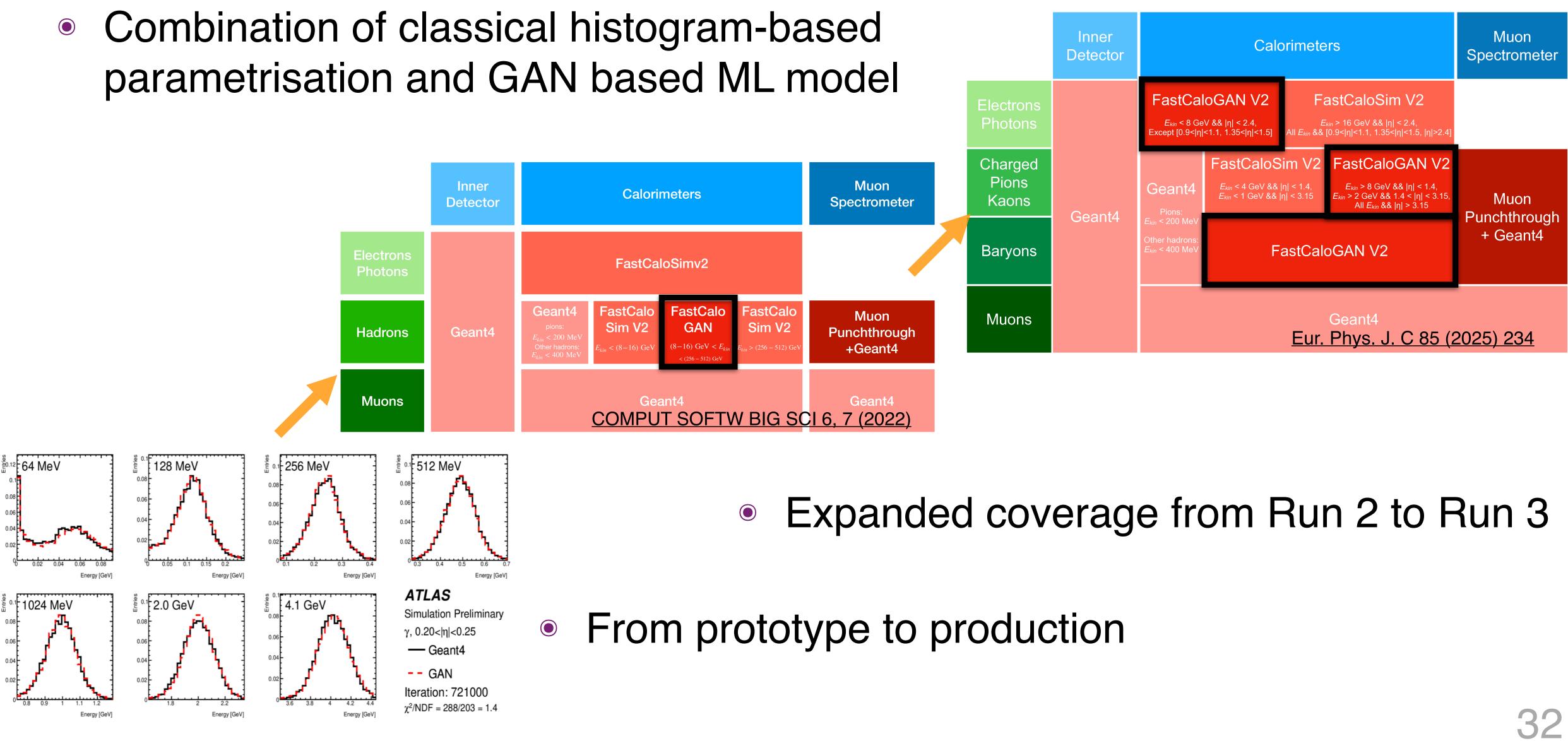


Un-supervised learning

Contents

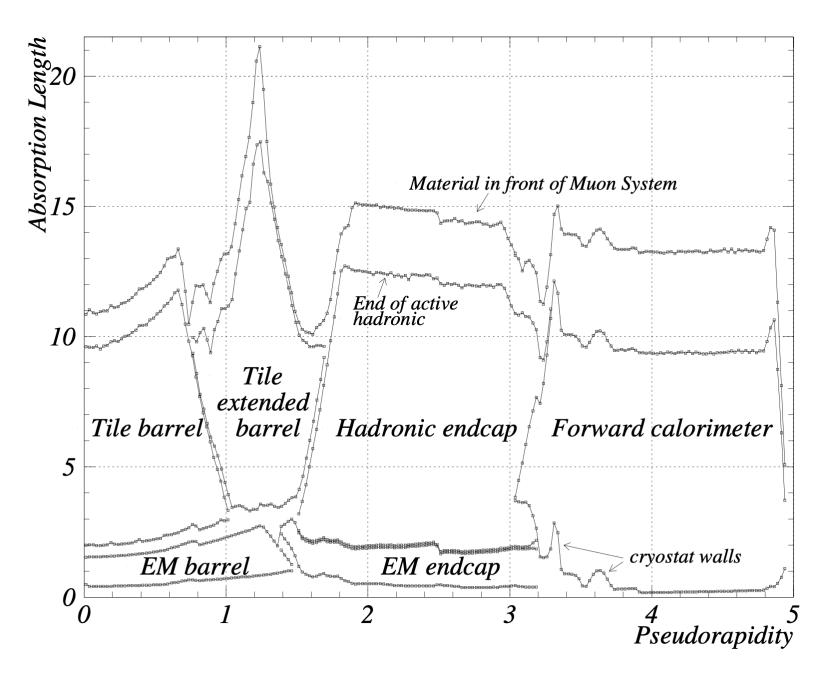
- Motivation to use machine learning (ML) • How to map a HEP problem to a ML problem
- Examples of recent ML applications
- Summary

Fast calo shower simulation using GAN

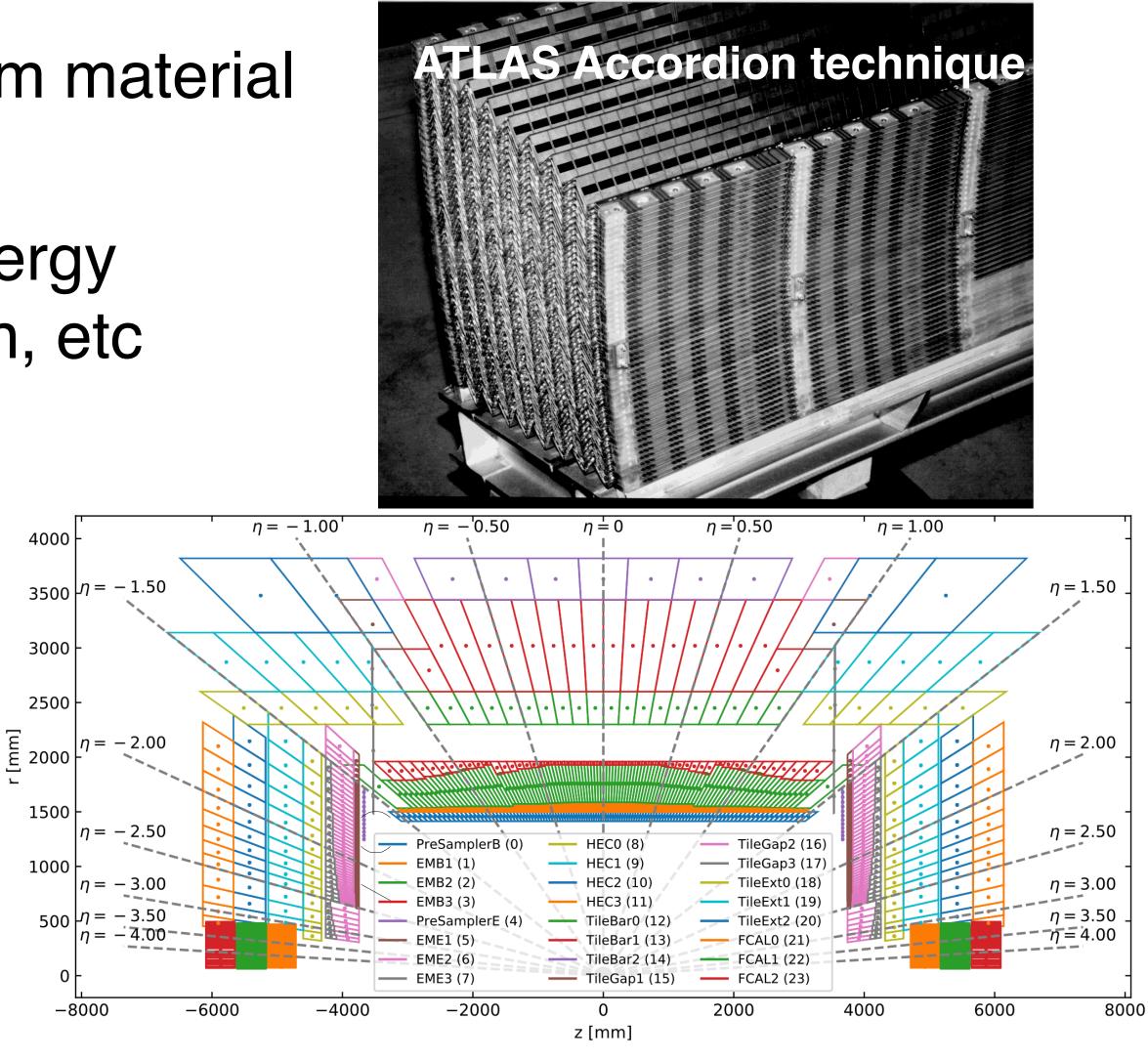


Challenges in fast simulation

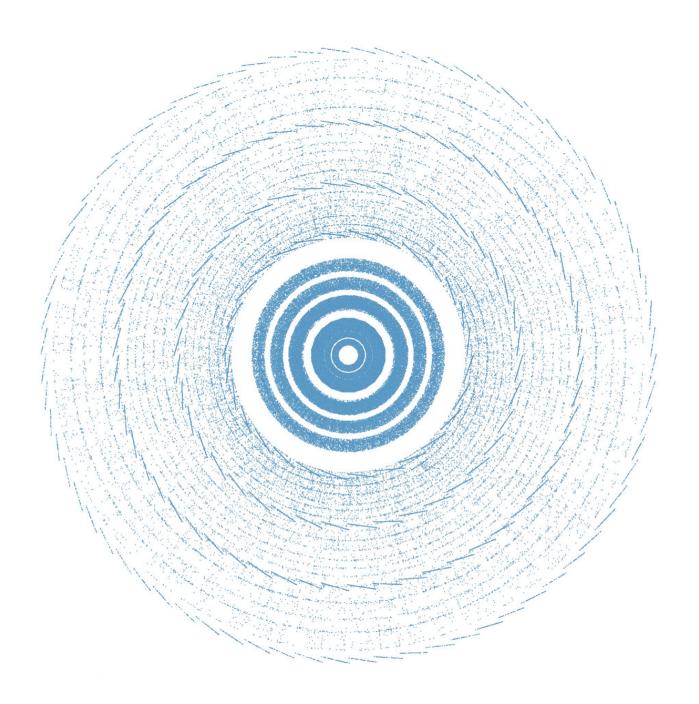
- Complex geometry and non-uniform material distribution
- Many small effects to consider: energy correction, ϕ modulation correction, etc

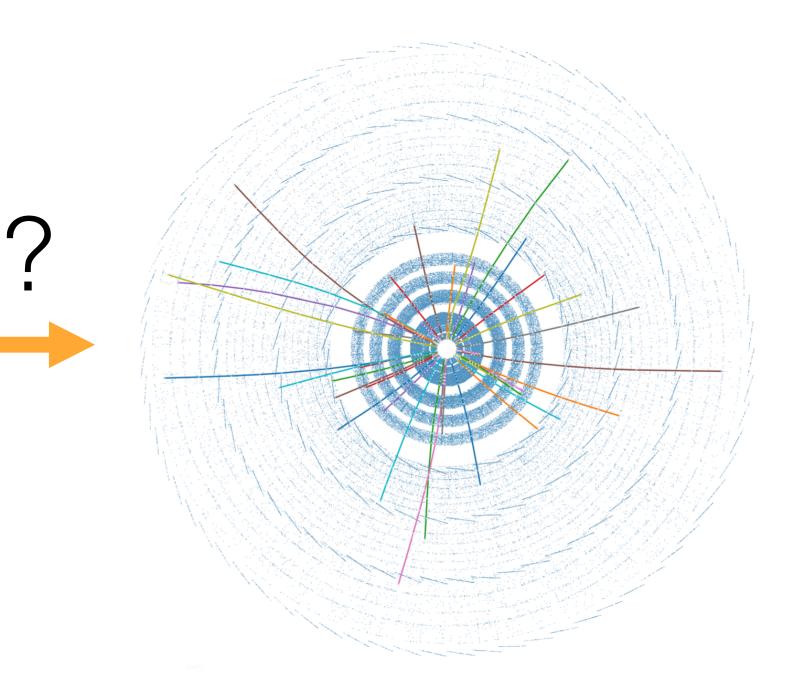


Also exploring other types of model besides GAN

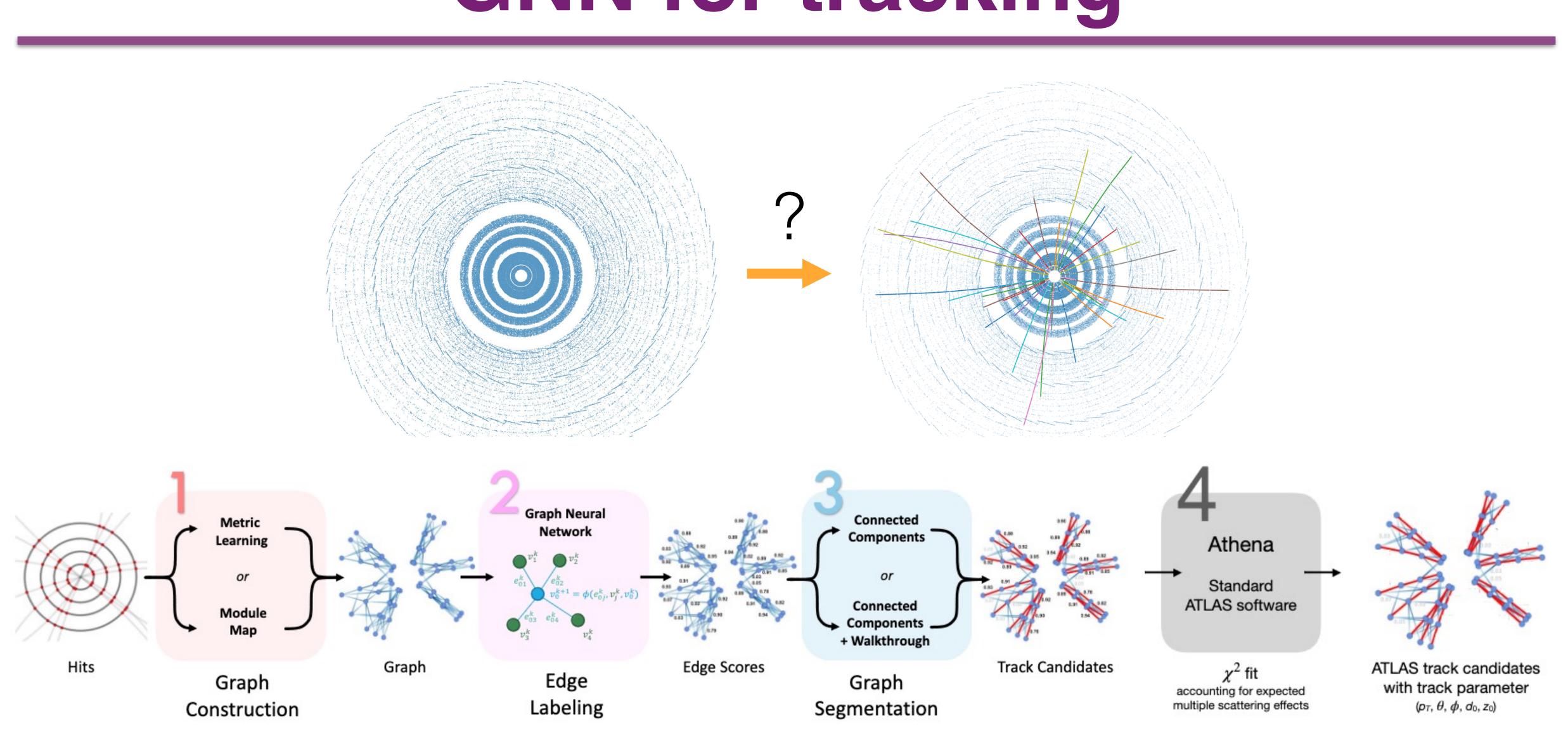


GNN for tracking





GNN for tracking



More details can be found at <u>source</u>

Contents

- Motivation to use machine learning (ML) • How to map a HEP problem to a ML problem
- Examples of recent ML applications
- Summary

• HEP is a data science

- Large data volume, high dimensions
- ML has been a longstanding companion in HEP in various stages of the data analysis pipeline ML technique advanced in recent years

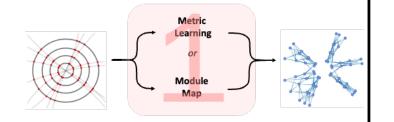
- Architectures become complex and mature, thanks to large training data and powerful computing ability
- More new architectures on the way

Challenges and opportunities

- Data representation and architecture design should take into account underlying physics Find ways to increase the size of training sample
- Using low level features becomes crucial advantage in precision electron-positron colliders



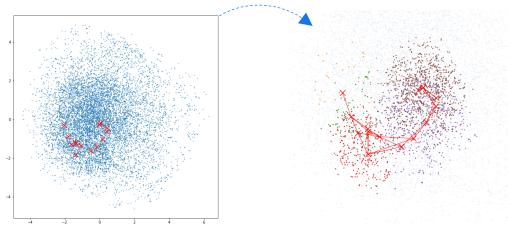
Backup



Graph construction

Machine learning approach: Metric Learning

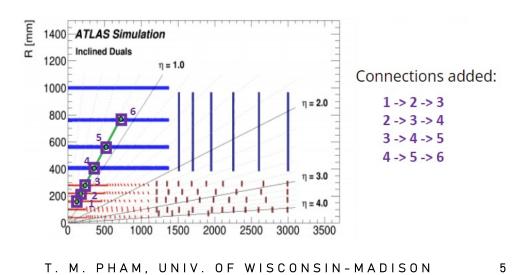
- Train a DNN to project hits to an embedding space, such that Hits from the same particles are near each other by L_2 -distance. Constructs graphs using kNN.
- Clean up easy fake edges by a DNN or a shallow GNN to reduce graph size and fit on GPU.

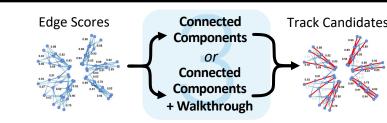


12.12.23

Data driven approach: Module Map

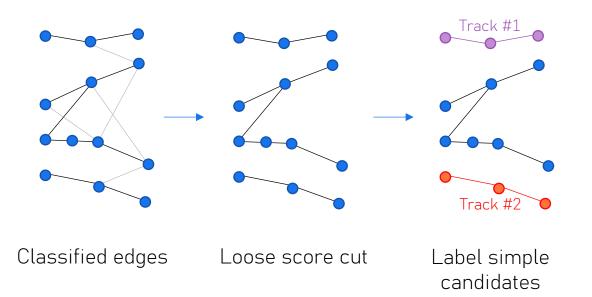
- Build a map of detector modules, where a triplet of hits ABC means at least 1 true track has passed sequentially through A, B, and C.
- Register a triplet ABC if all 3 modules get hit in the event.



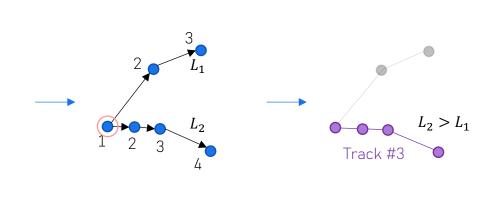


Track construction

1. Connected Components



2. Walkthrough, a.k.a "Wrangler"



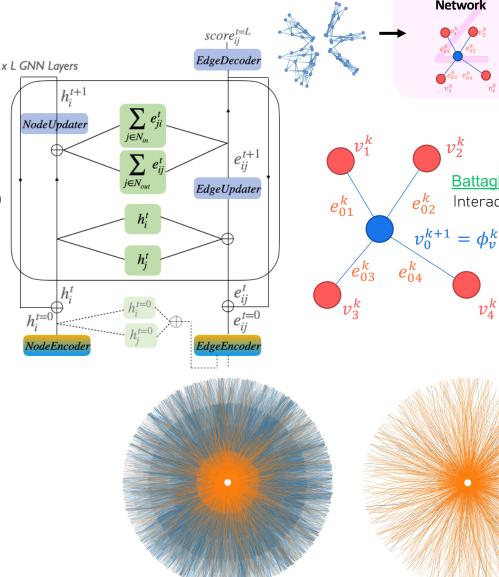
Walk through paths from starting node, count length L

Assign longest path as candidate

7

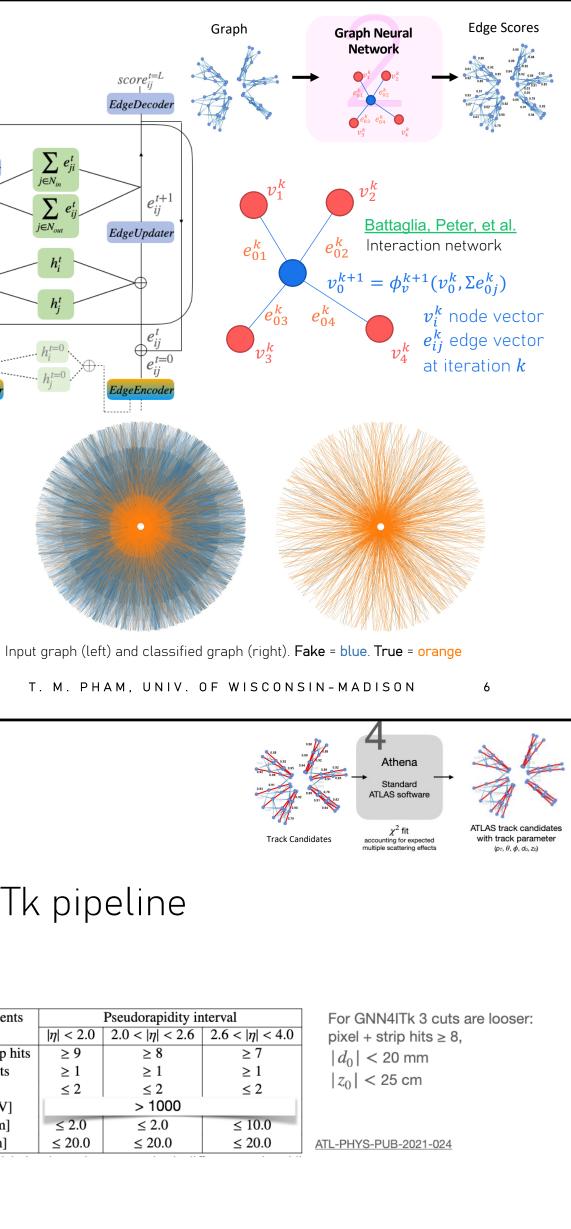
GNN edge classification

- Encode nodes features (position, charge count, local measurements, etc.) to a latent node vector $v_i^0 = \phi_v(x_i)$
- Concatenate node vectors of two hits connected by an 2. edge and encode to edge vector, $e_{ii}^0 = \phi_e(v_i^0, v_i^0)$
- Aggregate edge vectors, acting as messages between З. nodes, $m_i^0 = \sum_j e_{ij}^0$
- Update node features using aggregated message, $v_i^1 =$ 4. $\psi_{v}^{1}(v_{i}^{0}, m_{i}^{0})$. Update edge features using updated node features, $e_{ij}^1 = \psi_e^1(v_i^1, v_j^1, e_{ij}^0)$.
- Repeat steps 3 and 4 n = 8 times. 5.
- Compute an edge score representing the probability of 6. being a true edge, $s_{ij} = \psi_d(e_{ij}^n)$



12.12.23

T. M. PHAM, UNIV. OF WISCONSIN-MADISON



Physics performance of the GNN4ITk pipeline

- Perform a global χ^2 fit on GNN track candidates. Evaluate the performance and compare to that of tracks found by the CKF.
- GNN tracks are selected using ATLAS requirements, with some selection cuts loosen.

Requirements		For GNN		
	$ \eta < 2.0$	$2.0 < \eta < 2.6$	$2.6 < \eta < 4.0$	pixel + s
pixel + strip hits	≥ 9	≥ 8	≥ 7	$ d_0 < 1$
pixel hits	≥ 1	≥ 1	≥ 1	
holes	≤ 2	≤ 2	≤ 2	$ z_0 < 2$
$p_T [\text{MeV}]$		> 1000		
$ d_0 $ [mm]	≤ 2.0	≤ 2.0	≤ 10.0	
$ z_0 $ [cm]	≤ 20.0	≤ 20.0	≤ 20.0	ATL-PHYS-PU
				-

