

University of Chinese Academy of Sciences

2025.07.05, 湘潭

LHCb overview

李佩莲

中国科学院大学

2025年超级陶粲装置研讨会

Disclaimer: this talk cannot cover all the recent results; you can refer to <u>the publication page</u> for a full list of LHCb publications

P. Li · STCF workshop · 2025-07-05

Publication luminosity plot (public)

LHCb detector

General purpose detector specialised in beauty and charm hadrons

P. Li · STCF workshop · 2025-07-05

LHCb performance: JINST 14 (2019) P04013

 $2 < \eta < 5$

LHCb detector

General purpose detector specialised in beauty and charm hadrons

• Daughters of b & c hadron decays: $p_T \sim O(1 \text{ GeV}/c)$, flight distance $L \sim 1 \text{ mm}$

 $2 < \eta < 5$

LHCb detector

Luminosity

- Run 1: 2011+2012, 7, 8 TeV
- Run 2: 2015-2018, 13 TeV
- Run 3: 2022-2026, 13.6 TeV

- Runs 1+2 : 9 fb⁻¹
- Run 3 : 23 fb^{-1} (expected)
- Large number of beauty and charm hadrons: $\sigma(bb)(13 \text{ TeV}) = (144 \pm 1 \pm 21) \ \mu b \text{ in } 2 < y < 4.5$ $\sigma(pp \rightarrow c\bar{c}X)(13 \text{ TeV}) = (2369 \pm 192) \ \mu b \text{ in } 1 < p_T < 8 \text{ GeV/c } \& 2 < y < 4.5$

ntegrated Recorded Luminosity (fb⁻¹)

22

20

18

16

14

12

10

8

6

2009

P. Li · STCF workshop · 2025-07-05

[PRL118(2017)052002]

LHCb physics

- Precise measurements of flavour observables of CKM matrix
- Probe new physics through rare decays, FCNC, CP violation etc
- Hadron physics to understand the QCD
- Heavy ions & EW physics

P. Li · STCF workshop · 2025-07-05

les of CKM matrix CNC, CP violation etc

exotic states

CKM matrix

$V_{\rm CKM} \equiv V_L^u V_L^{d\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \qquad \begin{bmatrix} \mathsf{CKM} \\ \mathsf{d} & \mathsf{s} & \mathsf{b} \\ \mathsf{u} & \mathsf{s} & \mathsf{b} \\ \mathsf{c} & \mathsf{s} & \mathsf{c} \\ \mathsf{t} & \mathsf{t} & \mathsf{t} & \mathsf{t} \end{bmatrix}$

CKM matrix

$$V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix} + \mathcal{O}(\lambda^5) \sim \begin{pmatrix} 1 & 0.2 & 0.004 \\ 0.2 & 1 & 0.04 \\ 0.008 & 0.04 & 1 \end{pmatrix}$$
Key test of the SM: Verify unitarity of CKM matrix
• Magnitudes: branching fractions or mixing frequencies
• Phases: CP violation measurement
Sensitive probe for new physics

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$\alpha = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right), \beta = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right), \gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

$$\begin{aligned} & \left(\begin{vmatrix} V_{ud} \\ -|V_{cd} \\ |V_{td}|e^{-i\beta} \\ -|V_{ts}|e^{i\beta_{s}} \\ |V_{tb}| \end{vmatrix} + \mathcal{O}(\lambda^{5}) \sim \begin{pmatrix} 1 & 0.2 & 0.004 \\ 0.2 & 1 & 0.04 \\ 0.008 & 0.04 & 1 \end{pmatrix} \end{aligned} \right) \\ \text{st of the SM: Verify unitarity of CKM matrix tudes: branching fractions or mixing frequencies s: CP violation measurement ve probe for new physics \\ V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0 \\ & \int_{15}^{15} \frac{1}{10} \int_{10}^{10} \frac{1}{10} \int_{10}^{10}$$

Measurement of CKM matrix

Complementarity between beauty and charm factories

CKM angle γ

• Weak phase in interference between $b \to c\bar{u}s$ and $b \to u\bar{c}s$, theoretically clean observable $(\delta\gamma/\gamma \sim 10^{-7}) - D^0 h - i\delta_D$

 $r_B e^{i(\delta_B - \gamma)}$

P. Li · STCF workshop · 2025-07-05

charm

mixing

CKM angle γ

• Weak phase in interference between $b \to c\bar{u}s$ and $b \to u\bar{c}s$, theoretically clean observable $(\delta\gamma/\gamma \sim 10^{-7}) \sim D^0 h \sim r_D e^{-i\delta_D}$

charm mixing

CKM angle γ

• Weak phase in interference between $b \to c\bar{u}s$ and $b \to u\bar{c}s$, theoretically clean observable $(\delta\gamma/\gamma \sim 10^{-7})$

 $r_B e^{i(\delta_B - \gamma)}$

D*+ → Ų0 π+

charm mixing

charm mixing

CF

mix

 $\Gamma(B^{\pm} \to Dh^{\pm}) \propto |r_D e^{-i\delta_D} + r_B e^{i(\delta_B \pm \gamma)}|^2 \Rightarrow r_D^2 + r_B^2 + 2\kappa_D \kappa_B r_D r_B cos(\delta_B + \delta_D \pm \gamma)$

Partial reco. $B^{\pm} \rightarrow D^{*0}h^{\pm}$ with $D^{*0} \rightarrow D(\rightarrow K_{\rm S}^0 hh)\gamma/\pi^0$

11

Latest γ combination

B decay	D decay	Ref.	Dataset	Status since	D decay		Observable(s)		Ref.	Dataset	St
v	U			Ref. [14]							Re
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^{\pm} h^{\prime \mp}$	[35]	$R_{11n} 1 k^2$	As hefore	$D^0 ightarrow h^+ h^-$		ΔA_{CP}		[44-46]	Run 1&2	As
$D \to Dh^{\pm}$	$D \rightarrow h^+ h^- \pi^+ \pi^-$	[00] [10]	1000000000000000000000000000000000000	Now	$D^0 \rightarrow K^+ K^-$		$A_{CP}(K^+K^-)$		[46-48]	Run 2	As
$D^- \rightarrow D n^-$ $D^+ \rightarrow D l^+$	$D \to n^+ n^- \pi^+ \pi^-$	[19]	Run 1&2	INEW	$D^0 ightarrow h^+ h^-$		$y_{CP}-y_{CP}^{\kappa}$		[49, 50]	Run 1&2	As
$B^{\perp} \rightarrow Dh^{\perp}$	$D \rightarrow K^{\perp} \pi^{+} \pi^{-} \pi^{-}$	[36]	Run 1&2	As before	$D^0 ightarrow h^+ h^-$		ΔY		[51-54]	Run 1&2	As
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^{\pm} h^{\prime \mp} \pi^0$	[37]	$\operatorname{Run} 1\&2$	$As \ before$	$D^0 \rightarrow K^+ \pi^-$	(double tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$. (1)	[55]	Run 1	As
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[38]	$\operatorname{Run} 1\&2$	$As \ before$	$D^0 \rightarrow K^+ \pi^-$	(single tag)	$R_{K\pi}, A_{K\pi}, c_{K\pi}^{(\prime)}$, $\Delta c_{K\pi}^{(\prime)}$	[27, 56]	Run 1&2	$\mathbf{U}_{]}$
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{ m S} K^{\pm} \pi^{\mp}$	[39]	$\operatorname{Run} 1\&2$	As before	$D^0 \rightarrow K^{\pm} \pi^+ \pi$	$\pi^+\pi^-$	$(x^2 + y^2)/4$		[57]	Run 1	As
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^{\pm} h^{\mp}$ (PR)	[35]	Run $1\&2$	As before	$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi$	_	x, y		[58]	Run 1	As
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow K^0 h^+ h^- (PR)$	[2 0]	$\frac{1}{2}$	New	$D^0 \rightarrow K^0_S \pi^+ \pi$	—	$x_{CP}, y_{CP}, \Delta x, \Delta$	Δy	[59]	Run 1	As
$D \rightarrow D n$ $D^{\pm} \rightarrow D^{*} h^{\pm}$	$D \rightarrow K_{\rm S}^{0}h^{+}h^{-}$ (FD)	[20] [91]	$\frac{1000}{1000} \frac{1000}{1000}$		$D^0 \rightarrow K^0_S \pi^+ \pi$	_	$x_{CP}, y_{CP}, \Delta x, \Delta x$	Δy	[60, 61]	Run 2	As
$D^- \rightarrow D^+ n^-$ $D^+ = D^+ K^{*+}$	$D \rightarrow K_{\rm S} n^+ n^- (F {\rm K})$	[21]	Run 1&2		$D^{\circ} \rightarrow \pi^{+}\pi^{-}\pi^{\circ}$		ΔY^{en}		[26]	Run 2	
$B^{\perp} \rightarrow DK^{*\perp}$	$D ightarrow h^{\perp} h^{\prime +}$	[22]	Run 1&2	Updated	Decer	Damamaatama		Courses		Def	
$B^{\pm} \to DK^{*\pm}$	$D ightarrow h^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$[22]^{\dagger}$	$\operatorname{Run} 1\&2$	${f Updated}$	Decay	Parameters		Source		Rei.	с Б
$B^{\pm} \to DK^{*\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	$[22]^{\dagger}$	$\operatorname{Run} 1\&2$	\mathbf{New}	$B^{\pm} \rightarrow DK^{*\pm}$	$\kappa_{D^{\pm}}^{DK^{\pm}}$		LHCb		[62]	
$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D ightarrow h^{\pm} h'^{\mp}$	[40]	Run 1	As before	$B^0 \rightarrow DK^{*0}$	$\kappa^{DK^{st 0}}_{B^0}$		LHCb		[63]	A
$B^0 \rightarrow DK^{*0}$	$D ightarrow h^{\pm} h'^{\mp}$	[23]	Run 1&2	Updated	$B^0 ightarrow D^{\mp} \pi^{\pm}$	β		HFLAV		[13]	τ
$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[<u>-</u> 2]	$\frac{1}{2}$	Undated	$B^0_s ightarrow D^{\mp}_s K^{\pm}(\pi\pi)$	ϕ_s		LHCb		[64]	τ
$D \rightarrow DK$ $D^0 \rightarrow D K^{*0}$	$D \rightarrow \mathcal{H} \mathcal{H}^{0} h + h -$	[20]	1 min 1 leg	Updated	$D \to K^+ \pi^-$	$\cos \delta_D^{K\pi}, \sin \delta_D^{K\pi},$	$(r_D^{K\pi})^2,x^2,y$	CLEO-c		[65]	A
$B^{\circ} \rightarrow DK^{+\circ}$	$D \rightarrow \kappa_{\check{\mathrm{S}}} n \cdot n$	[24]	Run 1&2	Updated	$D \rightarrow K^+ \pi^-$	$A_{K\pi}, A_{K\pi}^{\pi\pi\pi^0}, r_D^{K au}$	$\delta_D^{K\pi}, r_D^{K\pi} \sin \delta_D^{K\pi}$	BESIII		[66]	A
$B^0 \to D^+ \pi^{\pm}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	[41]	Run 1	As before	$D ightarrow h^+ h^- \pi^0$	$F^+_{\pi\pi\pi^0}, F^+_{KK\pi^0}$		CLEO-c	DDGIII	[67]	A.
$B^0_s ightarrow D^{\mp}_s K^{\pm}$	$D^+_s ightarrow h^+ h^- \pi^+$	$[25,42]^\dagger$	$\operatorname{Run} 1\&2$	${f Updated}$	$D \to \pi^+\pi^-\pi^+\pi^-$ $D \to K^+K^-\pi^+\pi^-$	$F_{4\pi}^+$		CLEO-c+	BESIII	[67,68]	A. N
$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ ightarrow h^+ h^- \pi^+$	[43]	Run 1&2	As before	$D \to K^+ \pi^- \pi^0$ $D \to K^+ \pi^- \pi^0$	$\Gamma_{KK\pi\pi}$ $r_{K\pi\pi^{0}} \delta^{K\pi\pi^{0}} \kappa^{L}$	$\leq \pi \pi^0$	CLEO-c+	LHCb+BES	[09] [II [70–72]	۲ . /
					$D \rightarrow K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$r_D^{K3\pi}, \delta_D^{K3\pi}, \kappa_D^{K3\pi}$) τ	CLEO-c+	LHCb+BES	$\begin{array}{c} \text{III} & [10, 12] \\ \text{III} & [57, 70-7] \end{array}$	2] <i>A</i>
					$D ightarrow K_{ m S}^0 K^{\pm} \pi^{\mp}$	$r_D^{K_{ m S}^0K\pi}, \delta_D^{K_{ m S}^0K\pi}, \kappa$	$K_{ m S}^0 K \pi$	CLEO-c		[73]	A
					$D ightarrow K_{ m S}^{ m o} K^{\pm} \pi^{\mp}$	$r_D^{K_{ m S}^0K\pi}$	~	LHCb		[74]	A

P. Li · STCF workshop · 2025-07-05

LHCb-CONF-2024-004

Latest γ combination

- \odot 19 LHCb B decay measurements + 11 D decay measurements + 27 external inputs
- 29 physics parameters of interest + additional nuisance parameters

 $\gamma = (64.6 \pm 2.8)^{\circ}$

P. Li · STCF workshop · 2025-07-05

Surpass LHCb design: 4°

• Consistent with SM predictions $(65.5^{+0.09}_{-2.65})^{\circ}$

13

CP violation

Direct CPV in $B^+ \rightarrow J/\psi \pi^+$

• O(1%) direct CP violation expected in $B^+ \rightarrow J/\psi \pi^+$ [PRD 49 (1994) 5904, PRD 52 (1995) 242] \circ Important control channel to understand penguin effects in sin 2β measurement

P. Li · STCF workshop · 2025-07-05

<u>arXiv: 2411.12178</u>

[PRD 79 (2009) 014030, JHEP 03 (2015) 145]

First evidence for direct CP violation in beauty decays to charmonium final states (3.2 σ)

Charmless three-body *b* decays

- \odot Complex CP violation pattern in multi-body B decays, as large as 80%
- Interesting to search for CP violation in Λ_h^0 decays

PRL124 (2020) 031801 PRD101 (2020) 012006

CP Violation in baryonic decays

Baryons crucial for asymmetries in Universe, no CP violation in baryons observed yet
CPV: *b* baryons O(1 - 10%), *c* baryons O(0.1%), hyperon O(0.001 - 0.01%)

P. Li · STCF workshop · 2025-07-05

• Puzzling situation: similar Λ_b^0 production as B^+ , huge significance of CPV in B^+ , none in Λ_b^0 ?

arXiv:2411.18323

17

A long list of searches in *b* baryons at LHCb

Decay	Methods	Data	Reference
$\Lambda_b^0 \to p K_s^0 \pi^-$	A_{CP}	$1 {\rm fb}^{-1}$	<u>JHEP 04 (2014) 087</u>
$\Lambda_b^0 \to \Lambda h h'$	A_{CP}	$3 {\rm fb}^{-1}$	<u>JHEP 05 (2016) 081</u>
$\Lambda^0 \rightarrow n\pi^-\pi^+\pi^-$	TDA operations	3 fb^{-1}	Nature Physics 13 (2017) 391
$n_b \rightarrow p n n n$	ITA, energy test	$6.6 {\rm fb}^{-1}$	<u>PRD 102 (2020) 051101</u>
$\Lambda_b^0 \to p K^- \mu^+ \mu^-$	A _{CP}	$3 {\rm fb}^{-1}$	<u>JHEP 06 (2017) 108</u>
$\Lambda_c^+ \to p h^- h^+$	A_{CP}	$3 {\rm fb}^{-1}$	<u>JHEP 03 (2018) 182</u>
$\Lambda_b^0 \to p K^- / p \pi^-$	A _{CP}	$3 {\rm fb}^{-1}$	<u>PLB 787 (2018) 124</u>
$\Lambda_b^0 \to p h^- h^+ h^-$	TPA	$3 {\rm fb}^{-1}$	<u>JHEP 08 (2018) 039</u>
$\Lambda_b^0 \to p h^- h^+ h^-$	A_{CP}	$3 {\rm fb}^{-1}$	<u>EPJC 79 (2019) 745</u>
$\Xi_b^- \to p K^- K^-$	Amplitude	$5 {\rm fb}^{-1}$	<u>PRD 104 (2020) 052010</u>
$\Xi_c^+ \to p K^- \pi^+$	kNN	$3 {\rm fb}^{-1}$	<u>EPJC 80 (2020) 986</u>
$\Lambda^0_b \to p D^0 K^-$	Miranda S ⁱ _{CP}	9 fb $^{-1}$	<u>PRD104 (2021) 112008</u>
$\Lambda_b^0 \to \Lambda \gamma$	photon polarization	$3 {\rm fb}^{-1}$	PRD105 (2022) L051104
$\Lambda_b^0 \to ph^-$	A _{CP}	9 fb ⁻¹	arXiv:2412.13958, submitted to PRD
$\Lambda_b^0 \to \Lambda_c^+ h^-$	Decay parameter	$9 {\rm fb}^{-1}$	PRL 133 (2024) 261804
$\Lambda_b^0 \to \Lambda h h'$	A _{CP}	$9 {\rm fb}^{-1}$	PRL 134 (205) 101802
$\Lambda_b^0 \to p K^- \pi^+ \pi^-$	A _{CP}	$9 {\rm fb}^{-1}$	arXiv:2503.16954, submitted to Nature

P. Li · STCF workshop · 2025-07-05

credit: Yanxi Zhang

Evidence of CP violation in baryonic decays

P. Li · STCF workshop · 2025-07-05

<u>arXiv: 2411.15441</u>

First observation of CP violation in baryon

 $\mathcal{A}_{CP} \equiv \frac{\Gamma(\Lambda_b^0 \to pK^-\pi^+\pi^-) - \Gamma(\Lambda_b^0 \to \overline{p}K^+\pi^-\pi^+)}{\Gamma(\Lambda_b^0 \to pK^-\pi^+\pi^-) + \Gamma(\overline{\Lambda}_b^0 \to \overline{p}K^+\pi^-\pi^+)} = (2.45 \pm 0.46 \pm 0.10)\%$

P. Li · STCF workshop · 2025-07-05

arXiv:2503.14954 Accepted by Nature

First observation of CP violation in baryon

arXiv:2503.14954 Accepted by Nature

- CP violation unexpectedly small for baryons
- Is it SM or new physics? Likely SM, but

CP violation in charm sector

- GIM mechanism very effective for charm decays, SM loops highly suppressed
- Tiny weak phases in first two generations of CKM matrix ($<\lambda_b \sim 0.1\%$)
- Oscillation and CPV ($\leq 10^{-3}$)
- Long distance contribution comparable/larger than short distance

CP violation in charm sector

- GIM mechanism very effective for charm decays, SM loops highly suppressed • Tiny weak phases in first two generations of CKM matrix ($<\lambda_b \sim 0.1\%$)
- Oscillation and CPV ($\leq 10^{-3}$)
- Long distance contribution comparable/larger than short distance

Breakthroughs by LHCb thanks to huge statistics: First observation of CPV in $D^0 \rightarrow h^+h^-$ decays Evidence of CPV in $D^0 \rightarrow \pi^+\pi^-$ decay $A_{CP}(\pi^+\pi^-) = (23.2 \pm 6.1) \times 10^{-4} (3.8\sigma)$

- $\Delta A_{CP} = A_{CP}(K^+K^-) A_{CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4} \text{ [PRL(2019)211803]}$
 - [PRL(2023)211803]

Direct CP violation in $D^+ \to K^+ K^- \pi^+$

- Search for localised CP violation in the phase space of $D^+ \to K^+ K^- \pi^+$ (S) decay
- Control channel $D_s^+ \to K^+ K^- \pi^+$ (*C*) to subtract nuisance asymmetries

$$\Delta A_{CP}^{i} = A_{\rm raw}^{i,S} -$$

 (K^+) [GeV

× 2.5

• Extract a p-value for the hypothesis of no localised CP violation

$$\chi^2(\mathcal{S}_{\Delta_{CP}}) = \sum_{i}^{N_{\text{bins}}} (\mathcal{S}_{\Delta_{CP}}^i)^2, \qquad \mathcal{S}_{\Delta_{CP}}^i = \frac{\Delta A_{CP}^i}{\sigma_{\Delta A_{CP}^i}}$$

P. Li · STCF workshop · 2025-07-05

PRL134(2025)081901

 $-A_{\rm raw}^{i,C} - \Delta A_{\rm raw}^{\rm global}$

Direct CP violation in $D^+ \to K^+ K^- \pi^+$

•
$$\Delta A_{CP}^{i}$$
 precision up to 10^{-3}

$$A_{CP|S}^{\phi\pi^+} = (0.95 \pm 0.43 \pm 0.26) \times 10^{-3}$$
$$A_{CP|S}^{\overline{K}^{*0}K^+} = (-0.26 \pm 0.56 \pm 0.18) \times 10^{-3}$$

P. Li · STCF workshop · 2025-07-05

PRL134(2025)081901

• p-values (2.3-14.1%) compatible with absence of localised CP violation in Dalitz plot

Dalitz plot bin

Time-dependent CP violation in $D^0 \rightarrow \pi^+ \pi^- \pi^0$

First measurement of time-dependent CP violation in SCS mode

Phys. Rev. Lett. 133 (2024) 101803

$$\Delta Y_{f_{CP}} \approx \frac{\eta_{f_{CP}}}{2} \left[\left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \right] \right]$$

Rare decays

- Sensitive to tiny contributions of heavy BSM (>multi TeV) particles
- Testing different couplings than b and s quark systems

Test of lepton flavour universality

 $B^0_{\rm s} \to \phi \ell^+ \ell^-$

Agree with the Standard Model expectation of lepton flavour universality

Search for $B^0 \to K^{*0} \tau e$

P. Li · STCF workshop · 2025-07-05

arXiv:2506.15347

Search for $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$

T. LI . JICL MORPHON - 2023-01-03

PRD110(2024)052007

29

Angular and CP asymmetries of $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$

$$\frac{\mathrm{d}^2 \Gamma}{\mathrm{d}q^2 \mathrm{d}\cos\theta_{\ell}} = \frac{3}{2} \left(K_{1ss} \sin^2\theta_{\ell} + K_{1cc} \cos^2\theta_{\ell} + K_{1c} \cos\theta_{\ell} \right) - \mathrm{K}_{1c} - \mathrm{K}_{1c} \mathrm{C}_{10} \text{ (Null test!)}$$

$$A_{FB}(\propto K_{1c}) = \frac{1}{\Gamma} \left[\int_0^1 d\cos\theta_\mu - \int_{-1}^0 d\cos\theta_\mu \right] \frac{d\Gamma}{d\cos\theta_\mu}$$

 First study of angular & CP asymmetry in rare baryonic charm decay

Search for resonance-enhanced effects

$$\begin{split} A_{FB} &= \frac{\Gamma(\cos\theta_{\mu} > 0) - \Gamma(\cos\theta_{\mu} < 0)}{\Gamma(\cos\theta_{\mu} > 0) + \Gamma(\cos|\theta_{\mu} < 0)} \\ A_{CP} &= \frac{\Gamma(\Lambda_{c}^{+} \to p\mu^{+}\mu^{-}) - \Gamma(\Lambda_{c}^{-} \to \bar{p}\mu^{+}\mu^{-})}{\Gamma(\Lambda_{c}^{+} \to p\mu^{+}\mu^{-}) + \Gamma(\Lambda_{c}^{-} \to \bar{p}\mu^{+}\mu^{-})} \end{split}$$

Angular and CP asymmetries of $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$

$$\frac{\mathrm{d}^2 \Gamma}{\mathrm{d}q^2 \mathrm{d}\cos\theta_{\ell}} = \frac{3}{2} \left(K_{1ss} \sin^2\theta_{\ell} + K_{1cc} \cos^2\theta_{\ell} + K_{1c} \cos\theta_{\ell} \right) - \mathrm{K}_{1c} - \mathrm{K}_{1c} \mathrm{C}_{10} \text{ (Null test!)}$$

$$A_{FB}(\propto K_{1c}) = \frac{1}{\Gamma} \left[\int_0^1 d\cos\theta_\mu - \int_{-1}^0 d\cos\theta_\mu \right] \frac{d\Gamma}{d\cos\theta_\mu}$$

 First study of angular & CP asymmetry in rare baryonic charm decay

Search for resonance-enhanced effects

$$\begin{split} A_{FB} &= \frac{\Gamma(\cos\theta_{\mu} > 0) - \Gamma(\cos\theta_{\mu} < 0)}{\Gamma(\cos\theta_{\mu} > 0) + \Gamma(\cos|\theta_{\mu} < 0)} \\ A_{CP} &= \frac{\Gamma(\Lambda_{c}^{+} \to p\mu^{+}\mu^{-}) - \Gamma(\Lambda_{c}^{-} \to \bar{p}\mu^{+}\mu^{-})}{\Gamma(\Lambda_{c}^{+} \to p\mu^{+}\mu^{-}) + \Gamma(\Lambda_{c}^{-} \to \bar{p}\mu^{+}\mu^{-})} \end{split}$$

Observation of $\Sigma^+ \rightarrow p \mu^+ \mu^-$

$$\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (1.09 \pm 0.17) \times 10$$

- distribution

P. Li · STCF workshop · 2025-07-05

arXiv:2504.06096

QCD: Hadron spectroscopy

<u>arXiv:2502.18987</u>

$$Q = m_{\Xi_b \pi \pi} - m_{\Xi_b} - 2m_\pi$$

arXiv:2502.18987

$$Q = m_{\Xi_b \pi \pi} - m_{\Xi_b} - 2m_\pi$$

arXiv:2502.18987

Spin parity of $\Xi_{c}(3055)^{+(0)}$

• $J^{P}(\Xi_{b}(3055))$ determined to be $3/2^{+}$ (6.5 σ), $\Xi_{c}(3080)$ favoured as $5/2^{+}$ but not significant • Favors $\Xi_{c}(3055)^{+(0)}$ as a 1D λ -mode excitation of flavor antitriplet

P. Li

Exotic hadrons

Exotic hadrons

P. Li · STCF workshop · 2025-07-05

 $B^+ \rightarrow D^{*\pm} D^{\mp} K^+$

Exotic hadrons

 $B^+ \rightarrow D^{*\pm} D^{\mp} K^+$

Study of $B \rightarrow D^{(*)} \overline{D}h(h)$

P. Li · STCF workshop · 2025-07-05

36

Study of $D_{c1}(2460)^+ \rightarrow D_c^+ \pi^+ \pi^-$

- - Masses ~100 MeV below predictions
 - Isospin-violating decay $D_s^{(*)+}\pi^0$
- molecule

<u>Sci.Bull. 70(2025)1432–1444</u>

Study of $D_{s1}(2460)^+ \rightarrow D_s^+ \pi^+ \pi^-$

Two model describe data equally well!

$f_0(500) + f_0(980) + f_2(1270)$

Large contribution from $f_0(980)$ and $f_2(1270)$ despite beyond phase space limit

Can't be rejected, but implausible

• $f_0(500) + T_{c\bar{s}}^{++} + T_{c\bar{s}}^0$ (new exotics)									
	$D_s^+\pi^+$ $D_s^+\pi^-$								
Cons	Consistent with isospin symmetry								
$T_{c\bar{s}}$ masses ~ D_{s0}^* (2317) ⁺ , but different widths									
Resonance	Mass (MeV)	Width (MeV)	FF (%)						
$f_0(500)$	$472 \pm 32 \pm 19$	$226 \pm 24 \pm 18$	$237^{+51}_{-43} \pm 42$						
$T_{c\bar{s}}$	$2328 \pm 12 \pm 12$	$96 \pm 16^{+170}_{-23}$	151 ⁺³¹ ₋₃₃ ± 25						

Run 3 in data taking

Production asymmetry of charm hadrons in Run 3

- disrupted in the hadronisation.
- string model, cluster hadronisation model...)

arXiv:2505.14494

Looking at Run 3 and beyond

$\sim \mathscr{L}_{\text{max}} \sim 4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ ~1 visible interaction/bunch-crossing				$\sim \mathscr{L}_{max} \sim 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ ~5 visible interaction/Xing				$\sim \mathscr{L}_{\text{max}} \sim 1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ ~40 visible interaction/bunch-crossing		
0 fb-1				C	pal: 50 fb-1			- Coal:	200 fb	-1
	9 IU -	Th I	norade I		val. 50 10 -		Ungrada I	Goal:	500 10	
					onsolidation		<u>Opgrade i</u>	<u>L</u>		
Run 1 L	S1 Run	2 LS	S2 R	Run 3	LS3	Run 4	LS4	Run 5	LS5	Run 6
2011 2012 2013	2014 2015 2016 20	017 2018 2019 20	20 2021 2022 202	23 2024 2025 20	26 2027 2028 202	29 2030 2031 203	32 2033 2034	2035 2036 2037 203	39 2040	2041 2042
				l No	W					
Observable	Current LHC	b LHCb 2025	Belle II	Upgrade II	ATLAS & CMS	I HCb-Pl	JB-2018-0	09		
$\frac{\mathbf{EW Penguins}}{\mathbf{P}_{\mathbf{v}}(1-t^{-2}+t^{2})} \mathbf{C}_{\mathbf{v}} \mathbf{V}^{2} \mathbf{A}$	0.1.[074		0.000	0.007						
$R_K (1 < q^2 < 6 \text{ GeV}^2 c^4)$ $R_{K_K} (1 < q^2 < 6 \text{ GeV}^2 c^4)$	0.1 [274] 0.1 [275]	0.025	0.036	0.007	_					
R_{K^*} (1 < q < 0 GeV c) $R_{\phi}, R_{pK}, R_{\pi}$	0.1 [215	- 0.08, 0.06, 0.18		0.02, 0.02, 0.05	_	Great	opportu	inities for n	nany	new
\mathbf{CKM} tests		, ,		, ,		all and a second			, j	
γ , with $B^0_s \to D^+_s K^-$	$\binom{+17}{-22}^{\circ}$ [136	6] 4°	_	1°	_	discov	eries ar	nd INP sear	cnes	5
γ , all modes	$\binom{-22}{+5.0}{\circ}$ [167	/] 1.5°	1.5°	0.35°	_					
$\sin 2\beta$, with $B^0 \to J/\psi K_{ m s}^0$	0.04 [609	0.011	0.005	0.003	_					
$\phi_s, ext{ with } B^0_s o J/\psi \phi$	49 mrad [44]	l] 14 mrad	-	$4 \mathrm{mrad}$	22 mrad [610]	IIncert	ainty re	duced by f	actor	$r \sim 10$
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	35 mrad	_	9 mrad	_	Uncert		Luuccu Uy I		
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	a] 39 mrad	_	11 mrad	Under study [611]					
$a_{ m sl}^s$	33×10^{-4} [211	10×10^{-4}	-	3×10^{-4}	_	10/1	1			1
$\left V_{ub} ight /\left V_{cb} ight $	6% [201	.] 3%	1%	1%	_	l 1% lev	el preci	sion for Cl	SΜ θ	elements
$\underline{B^0_s,B^0{ ightarrow}\mu^+\mu^-}$										
$\overline{\mathcal{B}(B^0 o \mu^+ \mu^-)} / \mathcal{B}(B^0_s o \mu^+ \mu^-)$	$\mu^+\mu^-$) 90% [264	l] 34%	-	10%	21% [612]					
$ au_{B^0_s ightarrow\mu^+\mu^-}$	22% [264	k] 8%	_	2%	_					
$S_{\mu\mu}$			-	0.2	-					
$b ightarrow c \ell^- ar{ u_l} { m LUV} { m studies}$	5									
$\overline{R(D^*)}$	$0.026\ [215, 217$	·] 0.0072	0.005	0.002	_					
$R(J/\psi)$	0.24 [220	0.071	_	0.02	_					
<u>Charm</u>						TT 1	• •	• 1	1	•
$\Delta A_{CP}(KK-\pi\pi)$	$8.5 imes 10^{-4}$ [613	$[3] 1.7 Imes 10^{-4}$	$5.4 imes 10^{-4}$	$3.0 imes10^{-5}$	_	H1gh	precisio	on in charm) nhv	SICS.
$A_{\Gamma} (\approx x \sin \phi)$	$2.8 imes 10^{-4}$ [240	4.3×10^{-5}	$3.5 imes 10^{-4}$	1.0×10^{-5}	_		Γ		- rJ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [228	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}	_	un to	10-5			
$x\sin\phi$ from multibody de	cays	$-$ (K3 π) 4.0 × 10 ⁻⁵	$(K_{\rm S}^0\pi\pi) \ 1.2 \times 10^{-4}$	$(K3\pi) 8.0 \times 10^{-6}$		upio	10 -			

P. Li · STCF workshop · 2025-07-05

41

Summary

LHCb pushes flavour physics to new frontier

- ✓ World-leading precision measurements of CKM matrix: $\beta_{(s)}$, γ , $|V_{ab}|$
- Rich hadron spectroscopies to understand QCD
- New physics searches in rare decays

Run 3 is running, a lot of new results to coming!

LHCb Experiment at CERN

Run / Event: 255623 / 300064

LHCb ГНСр

Data recorded: 2022-11-25 09:40:16 GMT

Back up slides

$\mathscr{L}\!\!\!\!$, $\sigma_{c\bar{c}}\!\!\!$, acceptance, trigger efficiencies

				√s	Yield D⁰ → KK	Coverage	Flight distance	σt		
	Charm factory (e⁺e⁻)	ctory (e⁺e⁻) BESIII		- 4.6 GeV	3fb ⁻¹ : 0.06M @20 fb ⁻¹ : 0.5M*		/	/		
	B factory (e⁺e⁻)	Belle	10.6 GeV		0.25 M	Almost full	~200 µm	~200 fs		
		Belle II	1(0.6 GeV	@50 ab⁻¹: 25M*	Almost full	~200 µm	70-90 fs		
	Hadron (pp)	LHCb	Run Run Run	3: 13 TeV 2: 13 TeV 1: 7,8 TeV	@23 fb⁻¹: 500M* Run2: 60M Run1: 8M	4% of solid angle; catching ~40% of σ _Q ā	0.4 -1 cm	50 fs		
	Charm factory				B factory		ł	Hadron collide		
Backgrou	nd-free			 Low background 			 High b 	 High background 		
 Lowest statistics 				 Low statistics 			 High s 	 High statistics 		
• No boost				 Low boost 			 High b 	• High boost 🗡		
Quantum coherence				 Good for neutrals and neutrinos 			 Challe 	 Challenging for neutral 		
 Inclusive d 	charm, neutrals and ne	eutrinos		 (Some) absolute branching 			neutrir	neutrinos		
 Absolute 	branching fractions			fractions			 Comp 	 Complex and biasing tr 		

P. Li · STCF workshop · 2025-07-05

- s and
- iggers

credit: Tara Nanut

Observation of $\chi_{c1}(3872) \rightarrow \gamma \psi(2S)$

- • $\chi_{c1}(3872) \rightarrow \gamma \psi(2S)$ observed in $B^+ \rightarrow \chi_{c1}(3872)K^+$ with 9 fb⁻¹ pp collision data
- In tension with the upper limit set by BESIII

P. Li · STCF workshop · 2025-07-05

arXiv:2406.17006

• Inconsistent with pure $D\bar{D}^*$ molecular hypothesis for $\chi_{c1}(3872)$ but agree with many others

Amplitude analysis of $B^+ \rightarrow \psi(2S)K^+\pi^+\pi^-$

- First full 7D amplitude analysis of $B^+ \to \psi(2S)K^+\pi^+\pi^-$ with 9 fb⁻¹ pp collision data
- $T_{c\bar{c}1}(4430)^{\pm}$ resonance confirmed, $J^{P}(T_{c\bar{c}1}(4200)^{\pm}) = 1^{+}$ with a significance > 5 σ
- Hidden-charm exotic states to $\psi(2S)K^+\pi^-$ final sates observed for the first time
- Four $X^0 \to \psi(2S)\pi^+\pi^-$ states identified and shows similarities to $X(J/\psi\phi)$

$\chi_{c0}(4475) \to \rho(770)^0 \psi(2S)$	$99.04 \pm 0.49 \pm 1.66$
$\chi_{c0}(4475) \to T_{c\bar{c}1}(4200)^- \pi^+$	$0.50{\pm}~0.25{\pm}~0.39$
$\chi_{c0}(4475) \to T_{c\bar{c}1}(4200)^+ \pi^-$	$0.50 \pm \ 0.25 \pm \ 0.39$
Sum $\chi_{c0}(4475)$	$100.03 \pm 0.02 \pm 1.42$

$T_{c\bar{c}\bar{s}1}(4600)^0 \to \psi(2S) K^*(892)^0$	$50.87 \pm 7.79 \pm 11.55$
$T_{c\bar{c}\bar{s}1}(4600)^0 \to T_{c\bar{c}1}(4200)^- K^+$	$16.53 \pm \ 3.79 \pm 12.75$
$T_{c\bar{c}\bar{s}1}(4600)^0 \to T_{c\bar{c}\bar{s}1}(4000)^+\pi^-$	$9.84 \pm \ 3.28 \pm \ 5.34$
Sum $T_{c\bar{c}\bar{s}1}(4600)^0$	$77.23 \pm 5.22 \pm 17.80$
$T^*_{c\bar{c}\bar{s}1}(5200)^0 \to \psi(2S) \ [K^+\pi^-]_S$	$66.28 \pm 15.03 \pm 17.35$
$T^*_{c\bar{c}\bar{s}1}(5200)^0 \to T_{c\bar{c}\bar{s}1}(4000)^+\pi^-$	$9.37{\pm}14.12{\pm}13.23$
Sum $T^*_{c\bar{c}\bar{s}1}(5200)^0$	$75.65 \pm 9.18 \pm 13.39$
$T_{c\bar{c}\bar{s}1}(4900)^0 \to \psi(2S) K^*(892)^0$	100

arXiv:2407.12475

Amplitude analysis of $B^+ \rightarrow \psi(2S)K^+\pi^+\pi^-$

- First full 7D amplitude analysis of $B^+ \to \psi(2S)K^+\pi^+\pi^-$ with 9 fb⁻¹ pp collision data
- $T_{c\bar{c}1}(4430)^{\pm}$ resonance confirmed, $J^P(T_{c\bar{c}1}(4200)^{\pm}) = 1^+$ with a significance > 5 σ
- Hidden-charm exotic states to $\psi(2S)K^+\pi^-$ final sates observed for the first time
- Four $X^0 \to \psi(2S)\pi^+\pi^-$ states identified and shows similarities to $X(J/\psi\phi)$

Resonance	J^P	$m_0 \mathrm{[MeV]}$	$\Gamma_0 [{ m MeV}]$	Sign. $[\sigma]$	Res. PDG	$m_0 \mathrm{[MeV]}$	Γ_0 [Me]
$\chi_{c0}(4475)$	0^+	$4475\pm7\pm12$	$231{\pm}19{\pm}32$	> 20 (19)	$\chi_{c0}(4500)$	4474 ± 4	77^{+12}_{-10}
$\chi_{c1}(4650)$	1^+	$4653 {\pm} 14 {\pm} 27$	$227{\pm}26{\pm}22$	15~(13)	$\chi_{c1}(4685)$	4684^{+15}_{-17}	$126{\pm}40$
$\chi_{c0}(4710)$	0^+	$4710\pm4\pm5$	$64\pm9\pm10$	14 (10)	$\chi_{c0}(4700)$	4694^{+16}_{-5}	87^{+18}_{-10}
$\eta_{c1}(4800)$	1^{-}	$4785 {\pm} 37 {\pm} 119$	$457 {\pm} 93 {\pm} 157$	17(12)	X(4630)	4626^{+24}_{-110}	174^{+14}_{-80}
$T^*_{c\bar{c}1}(4055)^+$	1^{-}	$4054 \ (fixed)$	45 (fixed)	8 (7)	$T_{c\bar{c}}(4055)^+$	$4054 {\pm} 3.2$	$45{\pm}13$
$T_{c\bar{c}1}(4200)^+$	1^+	$4257 {\pm} 11 {\pm} 17$	$308{\pm}20{\pm}32$	> 20 (> 20	$T_{c\bar{c}1}(4200)^+$	4196^{+35}_{-32}	370^{+10}_{-15}
$T_{c\bar{c}1}(4430)^+$	1^+	$4468 {\pm} 21 {\pm} 80$	$251{\pm}42{\pm}82$	15(8)	$T_{c\bar{c}1}(4430)^+$	4478^{+15}_{-18}	181 ± 31
$T_{c \bar{c} \bar{s} 1} (4600)^0$	1^{+}	$4578 {\pm} 10 {\pm} 18$	$133 {\pm} 28 {\pm} 69$	15~(12)			
$T_{c\bar{c}\bar{s}1}(4900)^0$	1^+	$4925 {\pm} 22 {\pm} 47$	$255 {\pm} 55 {\pm} 127$	12 (8)			
$T^*_{c\bar{c}\bar{s}1}(5200)^0$	1^{-}	$5225 {\pm} 86 {\pm} 181$	$226 {\pm} 76 {\pm} 374$	10 (8)			
$T_{c\bar{c}\bar{s}1}(4000)^+$	1^{+}	4003 (fixed)	131 (fixed)	> 20 (14)	$T_{c\bar{c}\bar{s}1}(4000)^+$	4003^{+7}_{-15}	131 ± 30

Angular analysis in $B_s^0 \rightarrow \phi e^+ e^-$

P. Li · ST

<u>JHEP 03 (2025) 047</u>

• FCNC process involving $b \rightarrow s$ transition

$b \rightarrow s\ell^+\ell^- decays$

P. L.

Understanding non-local contributions

- A model combines the local and nonlocal amplitudes ($\omega, \rho, \phi, \psi, D\bar{D}, \tau\tau$) across whole q^2 spectrum (0.1-18.0 GeV²/c⁴) in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - Simultaneously determine the nonlocal contributions and Wilson coefficients

Interference with nonlocal contributions has a minor impact on the Wilson Coefficients

 \mathcal{C}_{10}

P. Li · STCF workshop · 2025-07-05

arXiv:2405.17347

local form factor constraint Ċ LHCb $8.4\,\mathrm{fb}^{-1}$ LHCb $8.4\,{
m fb}^{-1}$ Wilson Coefficient results \mathcal{C}_9 $3.56 \pm 0.28 \pm 0.18$ $-4.02 \pm 0.18 \pm 0.16$ \mathcal{C}_{10} 5 $0.28 \pm 0.41 \pm 0.12$ **L**g $-0.09 \pm 0.21 \pm 0.06$ c_{10} Ú LHCb $8.4\,{\rm fb}^{-1}$ LHCb $8.4\,\mathrm{fb}^{-1}$ $(-1.0 \pm 2.6 \pm 1.0) \times 10^2$

 $\mathcal{C'}_9$

Lepton flavour anomalies in charged current

• W^{\pm} couples equally to three generations of leptons, tested through R(H_c) measurements

$$R(H_c) = \frac{\mathcal{B}(H_b \to H_c \tau^+ \nu_{\tau})}{\mathcal{B}(H_b \to H_c \mu^+ \nu_{\mu})}$$

 $H_c = D^{(*)+}, D^0, D_s^+, \Lambda_c^+, J/\psi$...

P. Li · STCF workshop · 2025-07-05

28