

Overview of the Belle II experiment

2025年超级陶粲装置研讨会 2025年7月2-6日 湖南 湘潭

SuperKEKB and Belle II

Nano-beam design: Beam squeezing: ×20 smaller; Beam current: ×2 larger Target peak luminosity: KEKB×30

Belle and Belle II Datasets

- Belle (1999 2012)
- Belle II RUN-I (2019 2023)
- Belle II RUN-II (2014 2025)

Integrated luminosity of B factories

17.5

Most data at or near the $\Upsilon(4S)$ resonance, and 19.6 fb⁻¹ near $\Upsilon(10753)$.

WORLD RECORD: 5. 1×10^{34} cm⁻²s⁻¹

Exp: 7-35 - All runs

In December 2024

Belle II Online luminosity

Belle II physics

Belle II physics

The Belle II Physics Book: [PTEP 2019 (2019) 12, 123C01]

rare B decays

$B \to K \nu \overline{\nu}$

Belle II is measuring the rare decay of a B meson, created by SuperKEKB, into a K meson and two neutrinos.

The high-precision calculability of the probability of this decay makes it easy to validate the Standard Model.

- The process is known with high accuracy in the SM: $\mathcal{B}(B \rightarrow K \nu \overline{\nu}) = (5.6 \pm 0.4) \times 10^{-6}$ [PRD 107, 014511 (2023)]
- Extensions beyond SM may lead to significant rate increase.
- Very challenging experimentally, not yet observed

Two ways of tagging

 <u>New technique</u> from Belle II with inclusive ROE (Rest of Event) tagging (× 10-20 efficiency, but large backgrounds)

• Add some ML/AI (boosted decision trees or BDTs) to help suppress the large backgrounds. 8

First evidence for $B \to K \nu \bar{\nu}$

- Extract signal from maximum likelihood fit
 - Inclusive tag: in bins of q_{rec}^2 and $\eta(BDT_2)$
 - Hadronic tag: in bins of $\eta(BDT_h)$

 $\mathcal{B}(B \rightarrow K \nu \overline{\nu}) = (2.7 \pm 0.5(stat) \pm 0.5(syst)) \times 10^{-5}$ (inclusive

[PRD 109, 112006 (2024)]

Combination and comparisons with other measurements:

$$\begin{split} \mathcal{B}(B \to K \nu \bar{\nu}) &= (2.3 \pm 0.7) \times 10^{-5} \\ \text{Significance: } 3.5 \sigma \end{split}$$

SM expectation.

Search for $B^0 o K_s^0 au^{\pm} \ell^{\mp}$

Flavor changing neutral current processes are forbidden in SM at tree level.

- NP models that accommodate the b → cτℓ anomalies predict an enhancement of several orders of magnitude with τ.
- Never searched for before
- High K⁰_s purity (>98%)
- Search in 1-prong τ decays: $\tau^+ \to \ell^+ v \overline{v}$, $\pi^+ v$, $\rho^+ v$
- Fit recoil τ mass (M $_{\tau}$) for signal extraction

$$\begin{aligned} \mathscr{B}(B^{0} \to K_{S}^{0}\tau^{+}\mu^{-}) < 1.1 \times 10^{-5} \\ \mathscr{B}(B^{0} \to K_{S}^{0}\tau^{-}\mu^{+}) < 3.6 \times 10^{-5} \\ \mathscr{B}(B^{0} \to K_{S}^{0}\tau^{+}e^{-}) < 1.5 \times 10^{-5} \\ \mathscr{B}(B^{0} \to K_{S}^{0}\tau^{-}e^{+}) < 0.8 \times 10^{-5} \end{aligned}$$

at 90% CL

First search for $B^0 \to K_s^0 \tau^{\pm} \ell^{\mp}$ decays

[arXiv: 2412.16470]

Search for $B^0 \to K^{*0} \tau^{\pm} \ell^{\mp}$

- World best limit in by LHCb [JHEP 06 (2023) 143]: $\mathcal{B}^{\text{UL}}(B^0 \to K^{*0}\tau^+\mu^-) < 1.0 \times 10^{-5}$ $\mathcal{B}^{\text{UL}}(B^0 \to K^{*0}\tau^-\mu^+) < 0.8 \times 10^{-5}$
- No search for $B^0 o K^{*0} au^\pm e^\mp$ yet.
- Require one track t_{τ} from τ decay for background rejection
- Suppress background with classifier using m($K^*\ell$), m($K^{*0}t_{\tau}$), residual tracks and clusters properties, K^{*0} vertex fit, event topology, etc.

$$\begin{aligned} \mathscr{B}(B^{0} \to K^{*0}\tau^{+}\mu^{-}) < 3.9 \times 10^{-5} \\ \mathscr{B}(B^{0} \to K^{*0}\tau^{-}\mu^{+}) < 5.1 \times 10^{-5} \\ \mathscr{B}(B^{0} \to K^{*0}\tau^{+}e^{-}) < 2.7 \times 10^{-5} \\ \mathscr{B}(B^{0} \to K^{*0}\tau^{-}e^{+}) < 5.6 \times 10^{-5} \\ \mathfrak{B}(B^{0} \to K^{*0}\tau^{-}e^{+}) < 5.6 \times 10^{-5} \\ at 90\% \text{ CL} \end{aligned}$$

[arXiv: 2505.08418]

Simultaneous fit recoil τ mass (M_{τ}) in Belle and Belle II data sets:

Search for $B^0 o K^{*0} au^+ au^-$

- Non-SM particles, explaining recent anomalies, would enhance BF up to $\mathcal{O}(10^3)$ due to presence of two τ s
- Main challenge: no signal peaking kinematic observable • due to multiple undetected neutrinos
- Relies on missing energy information and residual calorimeter energy; Belle II is ideally suited

[arXiv: 2504.10042]

Data

 $B^0 \rightarrow K^{*0} \tau^+ \tau^-$

Incertainty

Signal $B = 10^{-10}$

12

BDT is trained using missing energy, extra cluster energy in EM calorimeter, $M(K^{*0}t_{\tau}), q^2$, etc

250

Belle II preliminary

 $\mathcal{L} dt = 365 \text{ fb}^{-1}$

 $\pi\ell$ category

Belle II preliminary

 $\mathcal{L} dt = 365 fb^{-1}$

ℓℓ category

175

150

75

uiq /

Data

 $B^0 \rightarrow K^{*0} \tau^+ \tau^-$

/// Uncertainty

Signal $\mathcal{B} = 10^{\circ}$

Charm

Charm production at Belle II

- At Belle II, e^+e^- mainly collide at 10.58 GeV to make $\Upsilon(4S)$ resonance mainly decaying into $B\overline{B}$.
- Meanwhile, continuum processes $e^+e^- \rightarrow q\overline{q}$ (q = u, d, s, c) have large cross sections.
- Two ways to produce charm samples: 1) $e^+e^- \rightarrow c\bar{c}$, and 2) B \rightarrow charm decays.

$$A_{\text{CP}} \text{ in } D^{0,+} \rightarrow \pi^{0,+}\pi^0$$

• The following sum-rule for CPV in $D \rightarrow \pi\pi$ decays; it helps to determine the source of CPV:

$$R = \frac{A_{CP}^{\rm dir}(D^0 \to \pi^+ \pi^-)}{1 + \frac{\tau_{D^0}}{\mathcal{B}_{+-}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^0}} - \frac{2}{3}\frac{\mathcal{B}_{+0}}{\tau_{D^+}}\right)} + \frac{A_{CP}^{\rm dir}(D^0 \to \pi^0 \pi^0)}{1 + \frac{\tau_{D^0}}{\mathcal{B}_{00}} \left(\frac{\mathcal{B}_{+-}}{\tau_{D^0}} - \frac{2}{3}\frac{\mathcal{B}_{+0}}{\tau_{D^+}}\right)} + \frac{A_{CP}^{\rm dir}(D^+ \to \pi^+ \pi^0)}{1 - \frac{3}{2}\frac{\tau_{D^+}}{\mathcal{B}_{+0}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^0}} + \frac{\mathcal{B}_{+-}}{\tau_{D^0}}\right)}$$

- if $R \neq 0$, CPV from $\Delta I = 1/2$ amplitude; if R = 0 and at least one $A_{CP}^{dir} \neq 0$, CPV from a beyond-SM $\Delta I = 3/2$ amplitude.
- The \mathcal{B} 's and τ have been well-measured (by BESIII/Belle II/etc.)
- $A_{CP}^{dir}(D^0 \rightarrow \pi^+\pi^-)$: precise; first evidence of direct CPV in a specific D decay (by LHCb)
- Raw asymmetry of $D^0 \rightarrow \pi^0 \pi^0$ from the $D^{*+} \rightarrow D^0 \pi_s^+$ sample:

$$A_{\text{raw}}(D^0 \to \pi^0 \pi^0) = A_{CP}(D^0 \to \pi^0 \pi^0) + A_{\text{prod}}^{D^{*+}} + A_{\varepsilon}^{\pi_s}$$

- A^{D*+}_{prod} (the forward-backward asymmetric production of D*+ mesons in e⁺e⁻ → cc̄ events): being an odd function of cosθ*, i.e. the cosine of the charmed-meson polar angle in e⁺e⁻ c.m.s
- $A_{\epsilon}^{\pi_s}$ (charge asymmetries in the detection efficiency of positive and negative soft pions): using tagged and untagged $D^0 \rightarrow K^-\pi^+$ samples.
- Time-integrated CP asymmetry:

$$A_{CP}(D^0 \to \pi^0 \pi^0) = A_{\text{avg}}^{\pi^0 \pi^0} - A_{\text{avg}}^{K\pi} + A_{\text{avg}}^{K\pi,\text{untag}}$$

• Here,
$$A_{avg}^{f} = (A^{f}(\cos\theta^{*} < 0) + A^{f}(\cos\theta^{*} > 0))/2$$
, where $f = \pi^{0}\pi^{0}$, $K\pi$, untag

$A_{CP} \text{ in } D^+ \to \pi^0 \pi^0$

- Utilizing data split in the forward and backward bins:
 N^{sig} = 14100±130 and 11550±110.
- Result at Belle II (428 $\rm fb^{-1})$ $A_{CP}(D^0 \to \pi^0 \pi^0) = (+0.30 \pm 0.72 \pm 0.20)\%$

Consistent with CP symmetry; vs. Belle (980 fb⁻¹): (-0.03±0.64±0.10)% [PRL 112, 211601 (2014)]

15% less precision than Belle; improved precision per luminosity.

• Using our result, $A_{CP}^{\pi^+\pi^-}$ and ΔY from LHCb, W.A. $A_{CP}^{\pi^+\pi^0}$ and \mathcal{B} 's, and $\tau(D^{0,+})$, we have **R** = (1.5±2.5)× 10⁻³.

precision of the sum rule: improved by ~ 20% w.r.t current HFLAV result [PRD 107, 052008 (2023)].

[arXiv: 2506.07879]

$A_{CP} \text{ in } D^+ \to \pi^+ \pi^0$

- Utilizing a sample of e⁺e⁻ → cc̄ data collected by Belle II (with high momentum requirement)
- Using $D^+ \to K_s^0 \pi^+$ to eliminate common asymmetry sources: A_{prod}^D and $A_{\varepsilon}^{\pi^+}$, thus CP asymmetry of interest:

$$A_{CP}^{\pi^+\pi^0} = A_{raw}^{\pi^+\pi^0} - A_{raw}^{K_{S}^0\pi^+} + A^{\overline{K}^0}$$

- Combined A_{CP}^{tag} and A_{CP}^{null} at Belle II (428 fb⁻¹): $A_{CP}(D^+ \rightarrow \pi^+ \pi^0) = (-1.8 \pm 0.9 \pm 0.1)\%$ (most precise)
- Precision 30% improved w.r.t Belle (921 fb⁻¹): (+2.31±1.24±0.23)% [PRD 97, 011101 (2018)]
- Better purity achieved through an improved event selection

$$\begin{aligned} N_{\text{sig}}^{\text{tag}} &= 5\,130\pm110 & N_{\text{sig}}^{\text{null}} &= 18\,510\pm240 \\ A_{CP}^{\text{tag}} &= (-3.9\pm1.8\pm0.2)\% & A_{CP}^{\text{null}} &= (-1.1\pm1.0\pm0.1)\% \end{aligned}$$

 A_{CP} in $D^0 \rightarrow K^0_s K^0_s$

Charm-flavor-tag (CFT) D⁰**:** exploits the correlation between the flavor of a D⁰ meson and the electric charges of particles reconstructed in the rest of the $e^+e^- \rightarrow c\bar{c}$ event [PRD 107, 112010 (2023)].

Fit $m(K_s^0K_s^0)$ and product of tagged flavor q and tag quality r:

CFT-tag

Double the size of sample compered to D*-tag

[PRD 111, 012015 (2025)]

- An independent sample from Belle and Belle II: $A^{B_1}_{CP}(D^0 \to K^0_S K^0_S) = (+2.5 \pm 2.7 \pm 0.4)\%$ $A^{B_2}_{CP}(D^0 \to K^0_S K^0_S) = (-0.1 \pm 3.0 \pm 0.3)\%$
- Combined $A_{CP} = (+1.3 \pm 2.0 \pm 0.2)\%$

Method	Аср [%]
<i>D</i> *-tag [<u>PRD 111, 012015</u>]	$-1.4 \pm 1.3 \pm 0.1$
CFT-tag	$1.3\pm2.0\pm0.3$
Combination	$-0.6 \pm 1.1 \pm 0.1$

Most precise!

0.5

0.5

Charm Meson and Charmed Baryon Lifetimes

[PRL 131, 171803 (2023)]

2

Belle II L dt = 207 fb⁻¹

 0_s^+

 $\rightarrow \phi \pi^+$

810

Candidates

Jata

- Total fit

3

Background

• PDF Model:

$$PDF(t,\sigma_t) = (1 - f_b) \int_0^\infty e^{-t_{true}/\tau} R(t - t_{true} | b, s\sigma_t) dt_{true} PDF_{sig}(\sigma_t) + f_b PDF_{bkg}(t,\sigma_t)$$

t: decay-time; σ_t : decay-time uncertainty

Charm Meson and Charmed Baryon Lifetimes

- Most precise measurements of D^0 , D^+ , Λ_c^+ , and D_s^+ lifetimes to date.
- The lifetime of Ω_c^0 consistent the measurement from LHCb.

 Ξ_{c}^{+} branching fractions

Reconstruct:

- $\Xi_{c}^{+} \rightarrow \Sigma^{+} K_{s}^{0}, \Xi_{c}^{+} \rightarrow \Xi^{0} \pi^{+}$ (CF)
- $\Xi_{c}^{+} \rightarrow \Xi^{0}K^{+}, \Xi_{c}^{+} \rightarrow pK_{s}^{0}, \Xi_{c}^{+} \rightarrow \Lambda\pi^{+}, \Xi_{c}^{+} \rightarrow \Sigma^{0}\pi^{+}$ (SCS)

 $e^+e^- \rightarrow \Xi_c^+ + anything$

-- Data - Total Fit ····· Combinatorial Background $\Lambda_{c}^{*}(\rightarrow \Lambda \pi^{*})\gamma$ 21

2 55

Ξ_{c}^{+} branching fractions

First or most precise measurements! [arVix: 2503.17643]

- In hadronic weak decays of charmed baryons, nonfactorizable contributions play an essential role and cannot be neglected.
- Various approaches describe the nonfactorizable effects: the covariant confined quark model, the pole model (Pole), current algebra (CA), and, $SU(3)_{F}$ flavor symmetry.

22

quarkoium

Bottomonium

Conventional bottomonium (pure $b\overline{b}$ states) Bottomonium-like states (mix of $b\overline{b}$ and $B\overline{B}$) Exotic charged states (Z_b^+)

The $\Upsilon(10753)$ was first discovered in $\pi^+\pi^-\Upsilon(nS)$ final states using scan data by Belle [JHEP 10, 220 (2019)].

Recently, Belle II collected **19** fb⁻¹ of unique data around $\sqrt{s} \sim 10.75$ GeV to study the nature of the Y(10753). 24

 $e^+e^- \rightarrow \omega \chi_{bJ}$ and $e^+e^- \rightarrow (\pi^+\pi^-\pi^0)_{non-\omega} \chi_{bJ}$ at Belle and Belle II

[Preliminary results]

Ύ(10753) mass	(10756.1±4.3) MeV/c ²
Ƴ(10753) width	(32.2 <u>±</u> 18.7) MeV

The mass and width are consistent with those from $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$ measuremnt [JHEP 07, 116 (2024)].

$$\frac{\sigma(e^+e^- \rightarrow \chi_{bJ}(1P)\omega)}{\sigma(e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-)}$$

1.5 at \sqrt{s} ~ 10.75 GeV 0.15 at \sqrt{s} ~ 10.867 GeV

This may indicate the difference in the internal structures of $\Upsilon(10753)$ and $\Upsilon(10860)$.

• The $(\pi^+\pi^-\pi^0)_{non-\omega}\chi_{bJ}$ excess maybe due the cascade decay of $\Upsilon(10860,11020) \rightarrow Z_b\pi \rightarrow \chi_{bJ}\rho\pi$ [PRD 90, 014036 (2014)]. 25

$$e^+e^- \rightarrow \eta \Upsilon(2S) \text{ at } \sqrt{s} \sim 10.75 \text{ GeV} \qquad \begin{array}{l} \eta \rightarrow \gamma \gamma, \Upsilon(2S) \rightarrow \pi^+\pi^-\Upsilon(1S), \Upsilon(1S) \rightarrow \ell^+\ell^- \\ \eta \rightarrow \pi^+\pi^-\pi^0, \Upsilon(2S) \rightarrow \ell^+\ell^- \end{array}$$

[Preliminary results]

After requiring $\Upsilon(2S)$ signal region, simultaneous fit to $M(\gamma\gamma)$ and $M(\pi^+\pi^-\pi^0)$ for each energy point.

- Combining all of the energy points, the signal yields for $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^+ \pi^- \pi^0$ are $6.0^{+1.7}_{-1.5}$ and $11.5^{+3.3}_{-2.8}$.
- The statistical significance is 6.4 σ for $e^+e^- \rightarrow \eta \Upsilon(2S)$ at $\sqrt{s} \sim 10.75$ GeV.

$e^+e^- \rightarrow \eta \Upsilon(2S)$ at $\sqrt{s} \sim$ 10.75 GeV

[Preliminary results]

The Born cross section of $e^+e^- \to \eta \Upsilon(2S)$ around $B^*\overline{B}{}^*$ mass is relatively large.

Fit the with 3 different hypotheses: H₁: only $\Upsilon(5S)$ [blue curve] H₂: $\Upsilon(10753) + \Upsilon(5S)$ [Green curve] H₃: B^{*}B^{*} bound state + $\Upsilon(10753) + \Upsilon(5S)$ [Black curve], the default fit.

The masses and widths of $B^*\overline{B}^*$ bound state, $\Upsilon(10753)$, and $\Upsilon(5S)$ are fixed [JHEP 10 (2024) 114].

The statistical significance of $B^*\overline{B}^*$ bound state is larger than 3.2 σ [H₃ comapred to H₁ or H₃ comapred to H₂].

 $e^+e^- \rightarrow \gamma \chi_{bI} (J = 0, 1, 2)$

[Preliminary results]

The simultaneous fitted results to M($\gamma \Upsilon(1S)$) distributions from data samples in e⁺e⁻ and $\mu^+\mu^-$ modes.

- No clear signal of $e^+e^- \rightarrow \gamma \chi_{bJ}$ can be seen.
- $\sigma_{Born}^{UL}(e^+e^- \rightarrow \gamma \chi_{b1})$ at $\sqrt{s} = 10.746$ GeV is 0.25 pb $(\mathcal{B}_{Born}^{UL}(e^+e^- \rightarrow \gamma \chi_{b1}) \sim 10^{-4}).$
- If the Y(10753) consists of a significant D-wave component, the branching fraction for $\Upsilon(10753) \rightarrow \gamma \chi_{bJ}$ can reach 10^{-2} [PRD 92, 054034 (2015), EPJC 78, 915 (2018)].
- Our measurement indicates that the D-wave component in the Y(10753) cannot be large. 28

Evidence of $P_{c\bar{c}s}(4459)$ at Belle

[arXiv:2502.09951]

- OZI suppressed decays of $\Upsilon(1S)$ and $\Upsilon(2S)$ rich in gluons:
- enhanced baryon production
- Pentaquarks?
- Select inclusive $\Upsilon(1S, 2S) \rightarrow J/\psi\Lambda + X$ decays, then search for $P_{c\bar{c}s} \rightarrow J/\psi\Lambda$ in $M(J/\psi\Lambda)$
- 4.0 σ local significance with free mass and width
- 3.3σ significance with the Gaussian constraints from LHCb measurement [Sci. Bull. 66, 1278 (2021)]

$$-2\ln\mathcal{L} + \frac{(m-m_0)^2}{\sigma_{m_0}^2} + \frac{(\Gamma-\Gamma_0)^2}{\sigma_{\Gamma_0}^2}$$

Tau

au physics

$\gg \tau$ mass and lifetime, lepton flavor/number violation, CKM unitarity, CP violation, ...

3x1-prong

topology

SuperKEKB as a **t factory**

• e^+e^- collider produce τ lepton pairs at high rate

Taupair events are produced back-to-back and each tau is reconstructed via 1 or 3 charged tracks.

au mass

M(τ) = (1777.09 \pm 0.08 \pm 0.11) MeV/c² Most precise to date.

Systematic uncertainty (0.11), dominant by beam-
energy correction and charged-particle momentum
correction.[PRD 108, 032006 (2023)]

Lepton-flavor universality in τ physics

[JHEP 08 (2024) 205]

 R_{μ}

33

 $|g_{\mu}/g_{e}|_{\tau}$

Lepton-flavor/number violation in au physics

Lepton flavour violation is only allowed by: • Neutrino oscillations $\mathcal{O}(10^{-55})$ far beyond current experimental sensitivities • New Physics models $\mathcal{O}(10^{-8})$ *e.g.* Leptoquarks for $\tau^- \to \ell^- V^0$ deals with $R(K^{*0})$ anomalies

[JHEP 09 (2024) 062]

Summary

- Belle II and Belle hold a unique data sample. A number of interesting measurement has been already performed in different fields, such as
 - Provide a unique environment to study modes with missing energy: $B \to K \nu \overline{\nu}, B^0 \to K^0 \tau^{\pm} \ell^{\mp}, B^0 \to K^{*0} \tau^{\pm} \ell^{\mp}, B^0 \to K^{*0} \tau^{\pm} \tau^{-}$
 - World's best determinations for A_{CP} in $D^{0,+} \rightarrow \pi^{0,+}\pi^0$ and $D^0 \rightarrow K_s^0 K_s^0$, most precise measurements of D^0 , D^+ , Λ_c^+ , and D_s^+ lifetimes to date, and first or most precise measurements for some charmed baryon decays
 - Properties study of $\Upsilon(10753)$, unique in Belle II
 - τ factory! Precise property measurements and search for NP
- Only 1% of target luminosity collected so far. Stay tuned for more exciting results from Belle II.

Thanks for your attention!

Backup slides

Data-taking plan at Belle II

- Until 2026, about 1 ab⁻¹ data, comparable to Belle
- Until 2029, about 4 ab⁻¹ data.

Hadronic, leptonic, and semi-leptonic B decays

Strategy for CP measurements

 $B\overline{B}$ -pair entanglement \rightarrow B-meson flavour is opposite to its pair at time of decay, then oscillates in time.

All results today involve hadronic tagging, except for $R(D^{(*+)})$ and $B \to K \nu \overline{\nu}$.

$B^{0} \rightarrow \rho^{+}\rho^{-}$

[arXiv: 2412.19624]

41

Goal: Branching fraction (\mathcal{B}), polarisation (f_L), CP asymmetry (S and C), ϕ_2 measurement

This decay gives stringent constraints of ϕ_2 due to small contribution from loop amplitude (b \rightarrow d).

[arXiv: 2412.19624]

 $\frac{1}{\sqrt{2}}A_{+-} + A_{00} = A_{+0}$

 $\frac{1}{\sqrt{2}}\bar{A}_{+-} + \bar{A}_{00} = \bar{A}_{-0}$

$B^0 o ho^+ ho^-$

Extend ML fit to Δt to extract S and C:

Constraining ϕ_2

- Perform isospin analysis based on the amplitude of longitudinally polarized $B \rightarrow \rho^i \rho^j$, Aij
- Constrain using this measurement + World Averages (BaBar, Belle, and LHCb)

Good agreement with previous <u>BaBar (2007)</u> and <u>Belle (2016)</u> with equivalent BaBar and \sim 50% of Belle equivalent luminosity !

Search for $B^+ o au^+ u_ au$

- [arXiv: 2502.04885]
- Precise BF value is important to check consistency with SM predictions / constrain new physics

$$\mathscr{B}(B \to \tau \nu) > \mathscr{B}(B \to \mu \nu) > \mathscr{B}(B \to e\nu)$$

- Potential modes to precisely measure |V_{ub}|
- Challenging (particularly, τ mode) due to undetected neutrinos in the final state

Validate simulations/efficiency/modelling using control channels $B\to X\ell\nu,B\to D^{(*)}\pi$, and $B\to D^{*0}\ell\nu_\ell$, then

$\mathcal{R}(D)$ and $\mathcal{R}(D^*)$

$$\mathcal{R}(D^{(*)+}) = \frac{\mathcal{B}(\overline{B}^0 \to D^{(*)+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\overline{B}^0 \to D^{(*)+} \ell^- \bar{\nu}_{\ell})}$$

- In SM, the W boson couples equally to $\tau, \mu, e \Rightarrow$ Lepton-Flavor Universality (LFU)
- Ratio measuremnts provide strigent LFU tests: branching fractions, angular asymmetry, etc.
 - Normalization ($|V_{xb}|$) cancels
 - Part of theoretical, experimental uncertainties cancels

Goal: $\mathcal{R}(D^+)$ and $\mathcal{R}(D^{*+})$ measurement using semileptonic tagged approach (First results)

Reconstruction:

- Use semi-leptonic FEI to reconstruct the B_{tag}
- B_{sig} is reconstructed from $D^{(*)}$, leptons, and leptonic τ decays

Combined deviation from SM stands at 3.3σ

$\mathcal{R}(D)$ and $\mathcal{R}(D^*)$

Signal extraction

- 2D binned log-likelihood fit to z_{τ} and $z_{\text{diff}} = z_{\ell} z_{\text{bkg}}$
- The three classification scores are denoted as z_{τ} , z_{ℓ} , and z_{bkg} for semitauonic, semileptonic, and background events, respectively.
- Input BDT variables: angular, momenta of ℓ and $D^{(*)}$, and E_{ECL} extra.

[arXiv: 2504.11220]

Results (Preliminary)

$\mathcal{R}(D^+) = 0.418 \pm 0.074 \; (\mathrm{stat}) \pm 0.051$	(syst)
$\mathcal{R}(D^{*+}) = 0.306 \pm 0.034 \text{ (stat)} \pm 0.018$	(syst)

- Results are compatible with SM within 1.7σ

A dark Higgs boson in association with inelastic dark matter

Dark photon A', dark Higgs h', and two dark matter states χ_1 , χ_2

- cut-and-count strategy in M_{h'} (x⁺x⁻) distributions
- No signicant excess found
- 8 events observed consistent with expected background
- Convert UL at 90% C.L. of $\sigma(e^+e^- \rightarrow \chi_1\chi_2h') \times \mathcal{B}(\chi_2 \rightarrow \chi_1e^+e^-) \times \mathcal{B}(h' \rightarrow x^+x^-)$ to mixing angle θ

Looking for simultaneous production of A' and h'

[Preliminary results]

- 4 tracks in the final state
- 2 forming a pointing dispaced vertex
- mising energy

CKM matrix element

Belle II important task:

Constrain CKM unitarity triangle & test SM

Exclusive: $B \to \pi l \nu, B \to \rho l \nu, B \to D^{(*)} l \nu, etc$ $\frac{dB}{dq^2} \propto |V_{xb}|^2 \times |FF(q^2)|^2$ Form factor from LCSR, LQCD

Inclusive:

$$B \to X_{u} l \nu, B \to X_{c} l \nu$$

$$B \propto |V_{xb}|^{2} \times \left[\Gamma(b \to q l \bar{\nu}_{l}) + \frac{1}{m_{b}} + \alpha_{s} + \cdots \right] \text{ From OPE}$$

Several measurements carried out by Belle and Belle II:

 $|V_{cb}|$ - Angular coefficients of $B \rightarrow D^* l \nu$ Belle: PRL 133, 131801 (2024)

- $|V_{ub}|$ from $B \rightarrow (\pi, \rho) l\nu$ simultaneous analysis New from Belle II - Simultaneous inclusive and exclusive $|V_{ub}|$ Belle: PRL 131, 211801 (2023)

- Ratio of inclusive $b \rightarrow c$ and $b \rightarrow u$ decays Belle: arXiv: 2311.00458

A dark Higgs boson in association with inelastic dark matter

Dark photon A', dark Higgs h', and two dark matter states χ_1 , χ_2

- cut-and-count strategy in M_{h'} (x⁺x⁻) distributions
- No signicant excess found
- 8 events observed consistent with expected background
- Convert UL at 90% C.L. of $\sigma(e^+e^- \rightarrow \chi_1\chi_2h') \times \mathcal{B}(\chi_2 \rightarrow \chi_1e^+e^-) \times \mathcal{B}(h' \rightarrow x^+x^-)$ to mixing angle θ

Looking for simultaneous production of A' and h'

[Preliminary results]

- 4 tracks in the final state
- 2 forming a pointing dispaced vertex
- mising energy

