

Overview on BESIII Experiment

房双世

高能物理研究所

超级陶粲装置研讨会 2025年7月2日-6日,湖南科技大学

• BEPCII/BESIII

• Physics accomplishments

• Future prospects

• BEPC \rightarrow BEPCII

• Luminosity: $1.0 \times 10^{31} \rightarrow 1.0 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

BESIII: a new spectrometer

Upgrade in 1996-1998 (BES→BESII)

Upgrade in 2004-2008 (BESII→BESIII)

- Very good energy resolution for photon
- Excellent momentum resolution for charged particles
- Good hadron identification capabilities

World largest data sample directly collected in

the τ -charm region

BESIII: ~50 fb⁻¹ from 1.84 – 4.95 GeV

Publications (till May 2025)

Physics accomplishments

- τ mass measurement
- R value measurement
- Light exotics
- Charmonium-like states
- Charm physics
- New physics searches

τ mass measurement

τ mass measurement

Lepton Universality relation

$$\frac{g_{\tau}^2}{g_{\mu}^2} = \frac{m_{\mu}^5}{m_{\tau}^5} \frac{B(\tau \to e\bar{\nu_e}\nu_{\tau})}{B(\mu \to e\bar{\nu_e}\nu_{\mu})} \frac{\tau_{\mu}}{\tau_{\tau}}$$

• PDG1992:

$$\frac{g_{\tau}}{g_{\mu}} = 0.941 \pm 0.025$$

- More likely τ mass come down in case of lepton universality ?
- Measure the τ pair production threshold by energy scan
- J/ψ and $\psi(2S)$ allow to calibrate and monitor detector performance

First τ events

τ mass: BES

PRL69,3021(1992)

τ mass: BESIII

Lepton universality !

R value measurement

R value measurement at BESII

$$R(s) = \frac{\sigma_{tot}(e^+e^- \rightarrow hadrons)}{\sigma_{tot}(e^+e^- \rightarrow \mu^+\mu^-)} = 3 \sum_q Q_q^2$$

- R provides strong evidence for the quark model and 3 colors
- Mass of Higgs particle ?

1995 before BES R data

$$\alpha (M_Z^2)^{-1} = 128.890 \pm 0.090$$

 $m_H = 62^{+53}_{-30} GeV, m_H < 170 GeV$

2001 with BES R data

 $\alpha (M_Z^2)^{-1} = 128.936 \pm 0.046$ $m_H = 98^{+58}_{-38} GeV, m_H < 212 GeV$

R value measurement at BESIII

➢ R values :2.23-3.67 GeV
➢ Precision is better than 3%
➢ Constraints on (g-2)µ

• Full energy region in progress

R scan above open-charm threshold 3.85-4.59 GeV 104 pts ~0.8 fb^{-1}

- Exclusive hadron cross section
- Form factors of baryons and light mesons

Electromagnetic form factors of baryons

- In the time-like region, the electromagnetic form factors of baryons characterize the internal structure of baryons
- Periodic behavior of |G_p| was first observed at BaBar and was later confirmed at BESIII
- Oscillation of |G_n| is observed at BESIII for the first time

 $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ with data@2.396 GeV PRL123(2019)122003

 $\Delta \Phi = 37^{\circ} \pm 12^{\circ} (\text{stat.}) \pm 6^{\circ} (\text{sys.})$

Confirm the complex form of electromagnetic form factors

New resonant structures at **BESIII**

Observation of X(18??) at BESII-BESIII

Are they the same state? Nature is still mysterious. It is crucial to understand their connections

Observation of the anomalous structure around 1.84 GeV

Resonance	M(MeV/c²)	Γ (MeV/c²)
X(1880)	1882.1±1.7±0.7	30.7±5.5±2.4
X(1830)	1832.5±3.1±2.5	80.7±5.2±7.7

Featured in Physics: "Evidence of a new subatomic particle"

Narrow state around NN-bar threshold!

Pseudoscalars above 2 GeV: X(2370)

new glueball candidates ?

6	Glu	eballs	and light hybrid mesons	91
	6.1	Glueb	$alls \ldots $	92
		6.1.1	Lattice QCD and QCD sum rule calculations	93
		6.1.2	Scalar glueballs and the $f_0(1500)/f_0(1710)$	95
		6.1.3	Tensor glueballs and the $f_2(2340)$	100
<		6.1.4	Pseudoscalar glueballs and the $X(2370)$	101

Rept.Prog.Phys. 86 (2023) 2, 026201

BESIII实验发现胶球存在的迹象 Physics \ General Physics Editors' notes Physics \ Quantum Physics Editors' notes Possible evidence of glueballs found during Beijing Spectrometer III experiments Editors' notes

by Bob Yirka , Phys.org

Observation of η_1 (1855) in $J/\psi \rightarrow \gamma \eta \eta'$

V/c² Critical to establish the 1⁻⁺ hybrid nonet !

Isoscalar state with $J^{PC}=1^{-+}$

 $\begin{array}{l} \mathsf{M} = \mathbf{1855} \pm \mathbf{9^{+6}_{-1}} \ \mathsf{MeV/c^2} \\ \Gamma = \mathbf{188} \pm \mathbf{18^{+3}_{-8}} \ \mathsf{MeV} \end{array} \end{array}$

 K_1^+

 π_1^+

 π_1^0

 η_1

 η_1

 K_1^0

Multi-quark states

Hints of a new heavy flavor spectrum

Candidates of hadronic molecules, hybrids, and multiquark states !

From C.Z. Yuan

Couple channel analysis of X(3872) line shape

Hanhart, Kalashnikova, Nefediev, PRD 81, 094028 (2010)

LHCb: 0.11±0.03

A. Esposito et al., Phys. Rev. D 105, L031503 (2022). Field renormalization constant : Z=1: pure elementary state; Z=0: pure bound (composite) state.

$$Z = 0.18$$
 LHCb: Z=0.15

Y(4260)⇒Y(4230)

Seen in more than 10 decay modes, including open charm final states

Y(4260)⇒Y(4230)

Seen in more than 10 decay modes, including open charm final states

Z_c states $e^+e^- \rightarrow \pi^+\pi^- + c\overline{c}$

 $e^+e^- \rightarrow \pi^- (D^*\overline{D}^*)^+$ $Z_{c}(4025)^{+}$ PRL112(2014)132001

 $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$

Z_c(3900)⁰

PRL115(2015)112003

 $M_{\pi^0 J/\psi}$ (GeV/c²)

) 4.230 GeV, 1091.7 pb¹

(b) 4.260 GeV, 825.7 pb¹

(c) 4.360 GeV, 539.8 pb¹

 $e^+e^- \rightarrow \pi^+\pi^-J/\psi$

3.85 3.90 3.95 4.00 4.05 4.10 4.15

 $M(D^0D^*)$ (GeV/c²)

10

4.08

25

Observation of Z_{cs} (3985): SU(3) partner of Z_c

 $e^+e^- \rightarrow K^0_s(D^+_sD^{*-}+D^{*+}_sD^-)$

 $e^+e^- \to K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

PRL126(2021)102001

 Z_{cs} in $e^+e^- \to K\overline{K} + c\overline{c}$

Charm physics

CKM Matrix

Solution CKM matrix elements are fundamental parameters of the Standard Model (SM):

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$
Charm decays + LQCD
Expected precision < 1% at BESIII

Any deviation of V_{CKM} from unitarity indicates new physics

→ Measurements of CKM matrix elements [from PDG2024] Precision: (0.6-1.8)%

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9984 \pm 0.0009 = 1(SM)$$

 $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1.001 \pm 0.007$ = 1(SM)
Precision: 0.7% $|V_{cd}| = 0.221 \pm 0.004$
 $|V_{cs}| = 0.975 \pm 0.006$
 $|V_{cb}| = 0.0410 \pm 0.0012$

$|V_{cd}|$ from $D^+ \to \mu^+ \nu_{\mu}$ and $D^+ \to \tau^+ \nu_{\tau} \text{via } \tau^+ \to \pi^+ \bar{\nu}_{\tau}$

 $\begin{aligned} \mathcal{B}_{D^+ \to \mu^+ \nu_{\mu}} &= (3.98 \pm 0.08_{\text{stat.}} \pm 0.04_{\text{syst.}}) \times 10^{-4} \\ f_{D^+} |V_{cd}| &= (47.53 \pm 0.48_{\text{stat}} \pm 0.24_{\text{syst}} \pm 0.12_{\text{input}}) \text{ MeV} \\ f_{D^+} &= (211.5 \pm 2.1_{\text{stat}} \pm 1.1_{\text{syst}} \pm 0.8_{\text{input}}) \text{ MeV} \\ |V_{cd}| &= 0.2242 \pm 0.0023_{\text{stat}} \pm 0.0011_{\text{syst}} \pm 0.0009_{\text{input}} \end{aligned}$

				- 1
	SM global fit	PDG	0.22486±0.00067	•
GeV	HFLAV21	PRD107,052008	0.2208±0.0040	•
089	BESIII 2.93 f	<mark>b⁻¹ PRD92(2015)072012,π⁻e⁺</mark> ν _e	0.2278±0.0034±0.0023	
	BESIII 2.93 f	b ⁻¹ PRD96(2017)012002,π ⁰ e ⁺ ν _e	0.2243±0.0058±0.0026	
	BESIII 2.93 f	b ⁻¹ PRD97(2018)092009,ηe⁺v _e	0.2264±0.0338±0.0318	
	BESIII 2.93 f	b⁻¹ PRL124(2020)231801, ημ*ν _μ	0.242±0.041±0.034	
	BESIII 2.93 f	b⁻¹ PRL124(2020)231801,Κ^{0⁺}ν _μ	0.217±0.026±0.004	H++
	BESIII 2.93 f	b⁻¹ PRD89(2014)051104, μ ⁺ ν _μ	0.2165±0.0055±0.0020	
	BESIII 2.93 f	b ⁻¹ PRL123(2019)211802,τν	0.238±0.024±0.012	-
MeV	BESIII 7.90 f	b ⁻¹ JHEP01(2025)089,τν	0.216±0.012±0.006	ю
	BESIII 20.3 f	b⁻¹ arXiv:2410.07626, μ ⁺ ν _μ	0.2242±0.0023±0.0014	
out)	-1	-0.5	0	
Highe	est precision of	V_{cd} to date: ~1.2%	V _{cd}	

 $|V_{cs}|$ from $D_s^+ \to \mu^+ \nu_\mu$ and $D_s^+ \to \tau^+ \nu_\tau$

$|V_{cs}|$ and $f_{D_s^+}$ from $D_s^+ \to \mu^+ \nu_\mu$ and $D_s^+ \to \tau^+ \nu_\tau$

CKMFitter HFLAV21	PTEP2022(2022)083C01 PRD107(2023)052008	0.97349±0.00016 0.9701±0.0081		ETM(2+1+1) FMILC(2+1+1) FLAG21(2+1+1)	PRD91(2015)054507 PRD98(2018)074512 EPJC82(2022)869	247.2±4.1 249.9±0.4 249.9±0.5	
CLEO CLEO CLEO BaBar Belle BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 7.33 fb ⁻¹	PRD79(2009)052002, $\tau_e v$ PRD80(2009)112004, $\tau_\rho v$ PRD79(2009)052001, $\tau_\pi v$ PRD82(2010)091103, $\tau_{e,\mu} v$ JHEP09(2013)139, $\tau_{e,\mu} v$ PRD104(2021)052009, $\tau_\pi v$ PRD104(2021)032001, $\tau_\rho v$ PRL127(2021)171801, $\tau_e v$ PRD108(2023)092014, $\tau_\pi v$ JHEP09(2023)124, $\tau_\mu v$	0.981±0.044±0.021 1.001±0.052±0.019 1.079±0.068±0.016 0.953±0.033±0.047 1.017±0.019±0.028 0.972±0.023±0.016 0.980±0.023±0.019 0.978±0.009±0.012 0.993±0.016±0.013 0.987±0.016±0.014	+-1 1 1 Heff Hef	HFLAV21 CLEO CLEO CLEO BaBar Belle BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 7.33 fb ⁻¹ BESIII 7.33 fb ⁻¹	$\begin{array}{c} \textbf{PRD107(2023)052008} \\ \textbf{PRD79(2009)052002}, \ \tau_e \nu \\ \textbf{PRD80(2009)112004}, \ \tau_\rho \nu \\ \textbf{PRD79(2009)052001}, \ \tau_\pi \nu \\ \textbf{PRD82(2010)091103}, \ \tau_{e,\mu} \nu \\ \textbf{JHEP09(2013)139}, \ \tau_{e,\mu,\pi} \nu \\ \textbf{PRD104(2021)052009}, \ \tau_\pi \nu \\ \textbf{PRD104(2021)032001}, \ \tau_\rho \nu \\ \textbf{PRD104(2021)171801}, \ \tau_e \nu \\ \textbf{PRD108(2023)092014}, \ \tau_\pi \nu \\ \textbf{JHEP09(2023)124}, \ \tau_\mu \nu \end{array}$	252.2 ± 2.5 $251.8\pm11.2\pm5.3$ $257.0\pm13.3\pm5.0$ $277.1\pm17.5\pm4.0$ $244.6\pm8.6\pm12.0 \mapsto$ $261.1\pm4.8\pm7.2$ $249.7\pm6.0\pm4.2$ $251.6\pm5.9\pm4.9$ $251.1\pm2.4\pm3.0$ $255.0\pm4.0\pm3.1$ $253.4\pm4.0\pm3.7$	
CLEO BaBar Belle BESIII 0.482 fb ⁻¹ BESIII 3.19 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 7.33 fb ⁻¹	PRD79(2009)052001, μν PRD82(2010)091103, μν JHEP09(2013)139, μν PRD94(2016)072004, μν PRL122(2019)071802, μν PRD104(2021)052009, μν PRD108(2023)112001, μν	1.000±0.040±0.016 1.032±0.033±0.029 0.969±0.026±0.019 0.956±0.069±0.020 0.985±0.014±0.014 0.973±0.012±0.015 0.968±0.010±0.009	┝ ╾ ┨ ╟┫ ┫	BESIII 0.482 fb CLEO BaBar Belle BESIII 3.19 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 7.33 fb ⁻¹	 ⁻¹ PRD94(2016)072004, μν PRD79(2009)052001, μν PRD82(2010)091103, μν JHEP09(2013)139, μν PRL122(2019)071802, μν PRD104(2021)052009, μν PRD108(2023)112001, μν 	$245.5 \pm 17.8 \pm 5.1 \mapsto 256.7 \pm 10.2 \pm 4.0$ $264.9 \pm 8.4 \pm 7.6$ $248.8 \pm 6.6 \pm 4.8$ $253.0 \pm 3.7 \pm 3.6$ $249.8 \pm 3.0 \pm 3.9$ $248.4 \pm 2.5 \pm 2.2$	
BESIII Combined BESIII Combined	$ \frac{1}{1} \tau v + \mu v - \frac{1}{1} - \frac{1}{ V_{cs} } = 0 $	0.9831±0.0068±0.0080 0.9774±0.0056±0.0072	0.9% 1 9%	BESIII Combine BESIII Combine 0	$f_{D_s^+}(\text{MeV})$	$(252.37 \pm 1.74 \pm 2.07) \\ (250.90 \pm 1.44 \pm 1.86) \\ (200) \\ (2$	$\sigma = 0.9\%$

New physics searches

The most precise *CP* test in Λ and $\overline{\Lambda}$ decay

CP test in $J/\psi \rightarrow \Lambda \ \overline{\Sigma}$

Nature Communications, 15,8812,(2024)

CP tests at BESIII

- SM predicts very small violations of CP symmetry.
- Sizeable CP violations prerequisite for Baryogenesis
- BESIII: 10 billion J/ψ events
- CPV at BESIII: ~ 10⁻³
- More data strongly needed!
- $10^{13}J/\psi$ per year @STCF ??

Future prospects

- BEPCII/BESIII upgraded in 2024
- Optimization E_{cm} at 4.7 GeV with luminosity 3 times higher than the current BEPCII \rightarrow more effective data taking
- Extend the maximum E_{cm} up to 5.6 GeV \rightarrow more physics opportunity

Continue to run for >5 years??

More exciting results are expected in the near future!

