2025年超级陶粲装置研讨会 2025.7.2-6,湖南科技大学,湘潭

# Muon g-2 and Tau physics



## Zhi-Hui Guo (郭志辉)

Hebei Normal University (河北师范大学)

### **Current status on muon g-2**

[2505.21476, White Paper 25]

|        | Contribution                                                      | Section    | Equation                 | Value $\times 10^{11}$ | References           |
|--------|-------------------------------------------------------------------|------------|--------------------------|------------------------|----------------------|
|        | Experiment (E989, E821)                                           |            | Eq. (9.5)                | 116 592 071.5(14.5)    | Refs. [5–8, 10–13]   |
| Hadron | HVP LO (lattice)                                                  | Sec. 3.6.1 | Eq. (3.37)               | 7132(61)               | Refs. [14–30]        |
|        | HVP LO $(e^+e^-, \tau)$                                           | Sec. 2     | Table 5                  | Estimates not provide  | d at this point      |
|        | HVP NLO $(e^+e^-)$                                                | Sec. 2.9   | Eq. (2.47)               | -99.6(1.3)             | Refs. [31, 32]       |
|        | HVP NNLO $(e^+e^-)$                                               | Sec. 2.9   | Eq. (2.48)               | 12.4(1)                | Ref. [33]            |
|        | HLbL (phenomenology)                                              | Sec. 5.10  | Eq. (5.69)               | 103.3(8.8)             | Refs. [34–57]        |
|        | HLbL NLO (phenomenology)                                          | Sec. 5.10  | Eq. (5.70)               | 2.6(6)                 | Ref. [58]            |
|        | HLbL (lattice)                                                    | Sec. 6.2.8 | Eq. (6.34)               | 122.5(9.0)             | Refs. [59–63]        |
|        | HLbL (phenomenology + lattice)                                    | Sec. 9     | Eq. (9.2)                | 112.6(9.6)             | Refs. [34–57, 59–63] |
|        | QED                                                               | Sec. 7.5   | Eq. (7.27)               | 116 584 718.8(2)       | Refs. [64–70]        |
|        | EW                                                                | Sec. 8     | Eq. (8.12)               | 154.4(4)               | Refs. [51, 71–73]    |
|        | HVP LO (lattice) + HVP N(N)LO $(e^+e^-)$                          | Sec. 9     | Eq. ( <mark>9.1</mark> ) | 7045(61)               | Refs. [14–33]        |
|        | HLbL (phenomenology + lattice + NLO)                              | Sec. 9     | Eq. (9.3)                | 115.5(9.9)             | Refs. [34–63]        |
|        | Total SM Value                                                    | Sec. 9     | Eq. (9.4)                | 116 592 033(62)        | Refs. [14–73]        |
|        | Difference: $\Delta a_{\mu} \equiv a_{\mu}^{\exp} - a_{\mu}^{SM}$ | Sec. 9     | Eq. (9.6)                | 38(63)                 |                      |

## Error budget of $a_{\mu}^{\text{SM}}$ : 61(HVP-Lat), 10(HLbL), 0.4(EW), 0.2(QED)



### Current status on muon g-2

[2505.21476, White Paper 25]



 $\pi\pi$  contribution from each Exp to HVP integral

# Two common methods to combine various data for $e^+e^- \rightarrow$ hadrons





[Keshavarzi, et al., (KNTW average), PRD'20]



#### Alternative way to address HVP from $\pi\pi$

$$a_{\mu}^{\text{HVP,LO}} = \frac{1}{4\pi^3} \int_{4M_2^2}^{t_{max}} dt K(t) \sigma_{e^+e^- \to \text{hadrons}}^0(t)$$

Known kernel function (enhanced contribution from energy below 1GeV)

$$\sigma_{e^+e^- \to \pi^+\pi^-}^0 = \frac{\pi\alpha^2}{3t} \beta_{\pi^+\pi^-} \left| F_{\pi\pi}^{(0)}(t) \right|^2$$

$$\frac{d\Gamma(\tau_{2\pi})}{dt} = \frac{G_F^2 \left| V_{ud} \right|^2 m_\tau^3 S_{\rm EW}}{384\pi^3} \left( 1 - \frac{t}{m_\tau^2} \right)^2 \left( 1 + \frac{2t}{m_\tau^2} \right) \beta_{\pi^-\pi^0} \left| F_{\pi\pi}^{(-)}(t) \right|^2$$

 $\tau \to \pi^{-} \pi^{0} \nu_{\tau} : \quad \left\langle \pi^{-} \pi^{0} \middle| \overline{d} \gamma_{\mu} u \middle| 0 \right\rangle \sim F_{\pi\pi}^{(-)}(t) \qquad [I=1, I_{3}=-1]$  $e^{+}e^{-} \to \pi^{+} \pi^{-} : \quad \left\langle \pi^{+} \pi^{-} \middle| \overline{u} \gamma_{\mu} u - \overline{d} \gamma_{\mu} d \middle| 0 \right\rangle \sim F_{\pi\pi}^{(0)}(t) \qquad [I=1, I_{3}=0]$ 



- > Isospin breaking (IB) effects become CRUCIAL at the sub-percent level.
- Full control of all the IB terms is yet to be reached.
   Results on the estimation of a<sub>μ</sub> based on the tau data in WP25 are based on:
   [Davier, et al., (DHLMZ), EPJC'24] [Lopez Castro, et al., (LMR) PRD'25]

#### Isospin breaking corrections to $a_{\mu}$



- > Final-state radiation (FSR) corrections to  $\pi^+\pi^-$
- >  $\beta_{\pi\pi}=2q_{CM}(t)/\sqrt{t}$ : kinematical factor caused by the  $\pi^{+-}$   $\pi^{0}$  mass difference [important near thresh.]

**Raito of form factors:**  $F_{\pi\pi}^{(0)}(t)/F_{\pi\pi}^{(0)}(t)$  [carrying the largest uncertainty]

$$F^{(0)}_{\pi\pi}(t) [e^+e^- \rightarrow \pi^+\pi^-]: M_{
ho 0}, \Gamma_{
ho 0}, 
ho^0-\omega ext{ mixing}$$

$$F_{\pi\pi}^{(-)}(t) [\tau \rightarrow \nu_{\tau}\pi^{0}\pi^{-}]: \mathbf{M}_{\rho}, \Gamma_{\rho}$$

Not only depend on  $\Delta M_{\rho} = M_{\rho} - M_{\rho 0}$ ,  $\Delta \Gamma_{\rho} = \Gamma_{\rho} - \Gamma_{\rho 0}$ ,  $\rho^{0} - \omega$  mixing, but also on the FF parameterization. [2505.21476, WP25]  $\Delta a_{\mu}^{\text{HVP, LO}}[\pi\pi, \tau]$  (in units of 10<sup>-10</sup>)

► G<sub>EM</sub>(*t*): long-distance radiative corrections to  $\tau^- \rightarrow v_{\tau} \pi^0 \pi^-$ 

## ► $G_{EM}(t)$ : long-distance EM corrections to $\tau \rightarrow v_{\tau} \pi^0 \pi^-$

$$\frac{d\Gamma(\tau_{2\pi[\gamma]})}{dt} = \frac{G_F^2 \left|V_{ud}\right|^2 m_\tau^3 S_{\rm EW}}{384\pi^3} \left(1 - \frac{4m_\pi^2}{t}\right) \left(1 - \frac{t}{m_\tau^2}\right)^2 \left(1 + \frac{2t}{m_\tau^2}\right) \left|F_{\pi\pi}^{(-)}(t)\right|^2 G_{\rm EM}(t)$$

$$\frac{d\Gamma_{\tau \to \pi\pi\nu} \ /dt}{G_{\rm EM}(t)} = \frac{G_F^2 \left|V_{ud}\right|^2 m_\tau^3 S_{\rm EW}}{G_{\rm EM}(t)} + \frac{1}{m_\tau^2} \int \left|F_{\pi\pi}^{(-)}(t)\right|^2 G_{\rm EM}(t)$$



- $\succ$  G<sub>EM</sub> is infrared finite: cancellation between photon loop and bremsstrahlung of the real photon.
- **Experimental measurement of**  $\tau \rightarrow \pi \pi \gamma v_{\tau}$  is absent: theoretical estimation needed.
  - . [Cirigliano et al, JHEP'02]: Minimal Resonance Chiral Theory interactions
  - . [Flores-Baez et al., PRD'06]: VMD with anomalous vector interactions

 $a^{\tau}_{\mu}[2\pi] = (517.3 \pm 1.9 \pm 2.2 \pm 1.9) \times 10^{-10}$  [Davier et al., EPJC'24]

. [Miranda, Roig., PRD'20]: extended RChT with many free parameters

 $a^{\tau}_{\mu}[2\pi] = (519.6 \pm 2.8 [\exp]^{+1.9}_{-2.1} [\text{IB}]) \times 10^{-10}$  [O(p<sup>4</sup>)]



Adding other contributions to HVP-LO ( $\pi\pi\pi$ , KK,  $\pi\gamma$  ...) from WP20

 $a_{\mu}^{\text{HVP, LO}}[(\pi\pi, \tau) + \text{WP20}] = 704.5(6.2) \times 10^{-10}$ 

**Caveat in WP25:** "The above offset from WP20 is not updated in this work, we instead focus on the major tensions in the  $2\pi$  channel. ... ... As described in Secs. 2.2.6 and 2.6.2, tensions between the Belle-II  $3\pi$  data and previous measurements are now visible, other tensions are present in the K+ K- channel and in the comparison of the BESIII inclusive R-ratio measurement with pQCD. ... ... "

#### > To futher take HLbL, HVP-N(N)LO, EW, QED from WP25, one would obtain

 $a_{\mu}^{SM} [(\pi \pi, \tau) + WP25] = 116\ 591\ 946\ (63) \times 10^{-11}$ 

$$a_{\mu}^{Exp} = 116\ 592\ 071.5\ (14.5)\ \times\ 10^{-11}$$

 $\Delta a_{\mu} [(\pi \pi, \tau)] = a_{\mu}^{Exp} - a_{\mu}^{SM} = 126 (65) \times 10^{-11} (1.9\sigma)$ 

to compare with:  $\Delta a_{\mu} [(\pi \pi, \text{lattice})] = a_{\mu}^{\text{Exp}} - a_{\mu}^{\text{SM}} = 38 (63) \times 10^{-11}$  (reference value in WP25)

## Other interesting topics on tau lepton

分支比概览

 $\succ \operatorname{Br}(\tau \to \mathrm{e} v_{\tau} \overline{v_e}) : 17.8\%$ 

 $Br(\tau \rightarrow \mu v_{\tau} \overline{v_{\mu}}) : 17.4\%$ 

- → Br( $\tau \rightarrow v$ +Cabbibo allowed hadrons) ~ 62%
- →  $Br(\tau \rightarrow \nu + Cabbibo \text{ suppressed hadrons}): ~3\%$
- 口 Br(τ→νππ)~25%, 单举衰变中分支比最大
- L tau的衰变末态只有轻味强子,不涉及重味 粒子 (m<sub>τ</sub> < m<sub>D</sub>)
- 在重子数守恒的假设下,tau不能衰变至含 有重子的末态(m<sub>τ</sub> < 2m<sub>N</sub>)

名词澄清:

- 单举(exclusive): 只包含某一个具体物理过程
- 遍举(inclusive): 包含所有可能的单举过程或 者包含某一类单举过程

例如,Cabbibo允许的遍举过程是指末态不含 奇数个K介子的所有单举过程





tau的强衰变可以给我们提供什么信息?

• 遍举衰变: (某类)所有的强子末态

 $\tau^- \rightarrow \nu_{\tau} \, (\bar{u}d, \bar{u}s)$ 



可以用来研究标准模型的基本参数: a<sub>s</sub>, V<sub>us</sub>, ...

• 单举衰变: 衰变至特定的强子末态

 $\tau \rightarrow v_{\tau}(P, PP, PPP, ...)$ 



可以用来强作用形状因子,强子共振态,手征对称性,...

利用tau的谱函数确定 $a_s(m_\tau)$ 

$$R_{\tau} \equiv \frac{\Gamma(\tau^{-} \to \nu_{\tau} \text{ mesons})}{\Gamma(\tau^{-} \to e^{-}\overline{\nu}_{e}\nu_{\tau})} \propto \sqrt[\mathbf{V}]{\mathbf{V}} + \sqrt[\mathbf{A}]{\mathbf{V}} + \sqrt[\mathbf{A}]{\mathbf{A}}$$
两点关联函数
$$V_{ij}^{\mu} = \bar{\psi}_{j}\gamma^{\mu}\psi_{i} \qquad A_{ij}^{\mu} = \bar{\psi}_{j}\gamma^{\mu}\gamma_{5}\psi_{i}$$

$$\Pi_{ij,J}^{\mu\nu}(q) \equiv i \int d^{4}x \ e^{iqx} \left\langle 0 \left| T[J_{ij}^{\mu}(x)J_{ij}^{\nu}(0)^{\dagger}] \right| 0 \right\rangle$$

$$= \left( -g^{\mu\nu}q^{2} + q^{\mu}q^{\nu} \right) \Pi_{ij,J}^{(1)}(q^{2}) + q^{\mu}q^{\nu} \Pi_{ij,J}^{(0)}(q^{2})$$
于是有:

$$R_{\tau} = 12\pi \int_{0}^{M_{\tau}^{-}} \frac{ds}{M_{\tau}^{2}} \left( 1 - \frac{s}{M_{\tau}^{2}} \right)^{2} \left[ \left( 1 + 2\frac{s}{M_{\tau}^{2}} \right) \operatorname{Im}\Pi^{(1)}(s) + \operatorname{Im}\Pi^{(0)}(s) \right]$$
  
谱函数(两点关联函数的虚部)

说明**:** 

- ▶ 谱函数ImΠ(s)实验可测: tau的遍举衰变过程
- ▶ 谱函数ImII(s) 在 s~(0,m<sub>τ</sub><sup>2</sup>) 区间内的理论计算完全涉及非微扰QCD, 很难有可靠的计算
- ▶ 理论出路?

利用函数∏(s)的解析性质

- 柯西定理
- Π(s)在除去正实轴以外的其他地方解析
- f(s)为任一解析函数

$$\frac{1}{\pi} \int_0^{s_0} ds \, f(s) \operatorname{Im}\Pi(s) = -\frac{1}{2\pi i} \oint_{|s|=s_0} ds \, f(s) \, \Pi(s)$$



$$\begin{split} R_{\tau} &= 12\pi \int_{0}^{M_{\tau}^{2}} \frac{ds}{M_{\tau}^{2}} \left(1 - \frac{s}{M_{\tau}^{2}}\right)^{2} \left[ \left(1 + 2\frac{s}{M_{\tau}^{2}}\right) \operatorname{Im}\Pi^{(1)}(s) + \operatorname{Im}\Pi^{(0)}(s) \right] \\ &\Rightarrow \\ &= 6\pi i \oint_{|s|=M^{2}} \frac{ds}{M_{\tau}^{2}} \left(1 - \frac{s}{M_{\tau}^{2}}\right)^{2} \left[ \left(1 + 2\frac{s}{M_{\tau}^{2}}\right) \Pi^{(0+1)}(s) - \frac{2s}{M_{\tau}^{2}} \Pi^{(0)}(s) \right] \end{split}$$

 ✓ 在|s|=m<sup>2</sup>, 的圆周上,利用算符乘积展开(operator product expansion, OPE), 可对П(s)进行可靠的理论计算。

算符乘积展开(OPE)  
$$\Pi^{(J)}(s) = \sum_{D=0,2,4,\dots} \frac{1}{(-s)^{D/2}} \sum_{\dim \mathcal{O}=D} C_D^{(J)}(s,\mu) \langle \mathcal{O}_D(\mu) \rangle$$

- ▶ D=0, QCD微扰部分(以α<sub>s</sub>为参数进行展开)
- ▶ D>0, QCD非微扰部分(以各种凝聚量为展开)
- ▶ 可能的Quark-hadron duality violation (DV) 效应



$$\begin{split} R_{\tau} &= N_C \, S_{\rm EW} \left( 1 + \delta_{\rm P} + \delta_{\rm NP} \right) \\ S_{\rm EW} &= 1.0201 \, (3) \qquad ; \qquad \delta_{\rm NP} = -0.0064 \pm 0.0013 \\ \text{Marciano-Sirlin, Braaten-Li, Erler} \qquad & \text{Fitted from data} \quad (\text{Davier et al}) \end{split}$$

 $\delta_{\rm P} = a_{\tau} + 5.20 \ a_{\tau}^2 + 26 \ a_{\tau}^3 + 127 \ a_{\tau}^4 + \dots \approx 20\% \qquad ; \qquad a_{\tau} \equiv \alpha_s(m_{\tau}) / \pi$ Baikov-Chetyrkin-Kühn

• tau遍举衰变中的微扰修正非常重要,其对 $\alpha_s$ 依赖敏感,因此可以有效地确定 $\alpha_s$ 数值。

$$R_{\tau} = 12\pi \int_{0}^{M_{\tau}^{2}} \frac{ds}{M_{\tau}^{2}} \left(1 - \frac{s}{M_{\tau}^{2}}\right)^{2} \left[ \left(1 + 2\frac{s}{M_{\tau}^{2}}\right) \operatorname{Im}\Pi^{(1)}(s) + \operatorname{Im}\Pi^{(0)}(s) \right] = N_{C} S_{\mathrm{EW}} \left(1 + \delta_{\mathrm{P}} + \delta_{\mathrm{NP}}\right)$$



tau的单举强衰变过程



$$\mathcal{M} \left( \tau \to \nu_{\tau} \mathbf{H} \right) = \frac{G_F}{\sqrt{2}} V_{\text{\tiny CKM}} \overline{u}_{\nu_{\tau}} \gamma^{\mu} \left( 1 - \gamma_5 \right) u_{\tau} \left\langle \mathbf{H} \right| \left( V_{\mu} - A_{\mu} \right) e^{i \operatorname{\mathbf{L}_{QCD}}} |\Omega_{\text{\tiny H}} \right\rangle$$

$$\begin{cases} \mathsf{form factors} \\ \mathsf{form factors} \\ \mathsf{F}_i(Q^2, s, \ldots) \end{cases}$$

$$d\Gamma\left(\tau \to \nu_{\tau} H\right) = \frac{G_F^2}{4 M_{\tau}} |V_{\rm CKM}|^2 L_{\mu\nu} H^{\mu\nu} dPS \quad \begin{cases} L_{\mu\nu} H^{\mu\nu} = \sum_X L_X W_X \\ W_X \equiv \text{structure functions} \end{cases}$$

$$\langle P_1 P_2 | \bar{D} \gamma^{\mu} u | 0 \rangle = \left[ (p_2 - p_1)^{\mu} - \frac{\Delta_{P_2 P_1}}{s} q^{\mu} \right] F_+^{P_1 P_2}(s) + \frac{\Delta_{Du}}{s} q^{\mu} \widehat{F}_0^{P_1 P_2}(s)$$

$$\Delta_{P_2P_1} = m_{P_2}^2 - m_{P_1}^2, \qquad \Delta_{Du} = B_0(m_D - m_u), \qquad q_\mu = (p_1 + p_2)_\mu, \qquad s = q^2.$$

$$\frac{d\Gamma_{\tau \to P_1 P_2 \nu_{\tau}}}{d\sqrt{s}} = \frac{G_F^2 M_{\tau}^3}{48\pi^3 s} S_{\rm EW} \left| V_{uD} \right|^2 \left( 1 - \frac{s}{M_{\tau}^2} \right) \left\{ \left( 1 + \frac{2s}{M_{\tau}^2} \right) q_{P_1 P_2}^3(s) \left| F_+^{P_1 P_2}(s) \right|^2 + \frac{3\Delta_{Du}^2}{4s} q_{P_1 P_2}(s) \left| \hat{F}_0^{P_1 P_2}(s) \right|^2 \right\}$$

$$A_{FB}(s) = \frac{\int_0^1 d\cos\alpha \frac{d^2\Gamma_{\tau \to P_1 P_2 \nu_{\tau}}}{d\sqrt{sd}\cos\alpha} - \int_{-1}^0 d\cos\alpha \frac{d^2\Gamma_{\tau \to P_1 P_2 \nu_{\tau}}}{d\sqrt{sd}\cos\alpha}}{\int_0^1 d\cos\alpha \frac{d^2\Gamma_{\tau \to P_1 P_2 \nu_{\tau}}}{d\sqrt{sd}\cos\alpha} + \int_{-1}^0 d\cos\alpha \frac{d^2\Gamma_{\tau \to P_1 P_2 \nu_{\tau}}}{d\sqrt{sd}\cos\alpha}} \propto \Re \left[ F_+^{P_1 P_2}(s) \,\widehat{F}_0^{P_1 P_2}(s) \right]$$

 $\alpha$ : angle between the momenta of  $P_1$  and  $\tau$  in the  $P_1P_2$  rest frame

 $\tau \rightarrow \pi^{-}\pi^{0}v_{\tau}$ 

 $\tau \rightarrow PP' + v_{\tau}$ 

 $\Delta_{PP'} \rightarrow 0$ ,所以标量形状因子 $F_s$ 项可以忽略,只有矢量形状因子 $F_+$ 贡献!

 $\tau \rightarrow K \pi v_{\tau}$ 

 $\Delta_{PP'} \neq 0$ ,标量形状因子 $F_0$ 项以及矢量形状因子 $F_+$ 项都有贡献!

 $\tau \rightarrow \pi^{-}\pi^{0}v_{\tau}$ 



ρ(770), ρ(1450), ρ(1700)

- Crucial inputs to address muon g-2
- Most precise spectra is from Belle;

but most precise BR is from ALEPH: 25.47(13)%

> Coherent precise measurements of both spectra and BR from STCF would be invaluable!

### $\tau \rightarrow \pi \eta^{(\prime)} v_{\tau}$ (Cabibbo allowed): second-class currents

若πη 的J=0,则其P=+1 (V-A型的流不允许); 若J=1,则P=-1 (矢量流) 但是对于SM来讲,1-矢量流对应的G宇称为正,而πη的G宇称为负,表明这是一个破 坏G宇称的过程 (second-class current),因此可能是寻找新物理的一个有效途径。

$$\langle \pi^{-}P | \bar{d}\gamma^{\mu} u | 0 \rangle = \left[ (p_{P} - p_{\pi})^{\mu} - \frac{\Delta_{P\pi}}{s} q^{\mu} \right] F_{+}^{\pi^{-}P}(s) + \frac{\Delta_{du}^{\text{Phy}}}{s} q^{\mu} F_{0}^{\pi^{-}P}(s)$$



| Channel                                                                         | Total                           | Vector                 | Scalar                        | Exp Limits                               |
|---------------------------------------------------------------------------------|---------------------------------|------------------------|-------------------------------|------------------------------------------|
| $\begin{array}{c} \tau^- \to \pi^- \eta \nu_\tau \\ (\times 10^5) \end{array}$  | $1.63^{+0.14}_{-0.14}$          | $1.43^{+0.18}_{-0.21}$ | $0.20\substack{+0.07\\-0.04}$ | < 9.9 (BaBar) [69]<br>< 7.3 (Belle) [70] |
| $\begin{array}{c} \tau^- \to \pi^- \eta' \nu_\tau \\ (\times 10^7) \end{array}$ | $1.17\substack{+0.36 \\ -0.07}$ | $0.14_{-0.08}^{+0.09}$ | $1.03_{-0.16}^{+0.44}$        | < 40 (BaBar) [71]                        |

 $\tau \rightarrow (KP)^{-} v_{\tau}$  (Cabibbo suppressed)





#### **Prediction to Forward-Backward asymmetries**

[Hao, Duan, ZHG, 2507.00383]



- $\tau \rightarrow \pi^0 \text{ K}^- v_{\tau}$ : related to  $\pi^- \text{ K}_{\text{S}}$  with isospin-breaking corrections
- $\tau \rightarrow \pi K v_{\tau}$ : crucial for precise measurement of the  $R_{\tau,S}$

## Predictions to axion-meson production in tau decays



branching ratios



CPV study in  $\tau \rightarrow \pi^- K_S v_{\tau}$ 

Intensive discussions on tau -> Ks pi nu

$$A_{\varrho} = \frac{\Gamma\left(\tau^{+} \to \pi^{+} K_{S}^{0} \overline{\nu}_{\tau}\right) - \Gamma\left(\tau^{-} \to \pi^{-} K_{S}^{0} \nu_{\tau}\right)}{\Gamma\left(\tau^{+} \to \pi^{+} K_{S}^{0} \overline{\nu}_{\tau}\right) + \Gamma\left(\tau^{-} \to \pi^{-} K_{S}^{0} \nu_{\tau}\right)}$$



$$(-0.36 \pm 0.23_{stat} \pm 0.11_{syst})\%$$

**SM prediction** 

## BaBar

[Bigi et al., PLB'05] [Grossman et al., JHEP'12] [Lees et al., PRD'12]
[Cirigliano et al., PRL'18] [Rendo et al., PRD'19] [Chen et al., PRD'19 JHEP'20]

• An important subject at STCF: around 3×10-4 sensitivity could be reached

New proposal to search CPV in other  $\tau \rightarrow PP' v_{\tau}$  channels

[Lopez Aguilar, et al., JHEP'25]

$$A_{CP}^{\text{rate}}|_{KK} = \frac{\Gamma(\tau^+ \to K^+ K_S \bar{\nu}_{\tau}) - \Gamma(\tau^- \to K^- K_S \nu_{\tau})}{\Gamma(\tau^+ \to K^+ K_S \bar{\nu}_{\tau}) + \Gamma(\tau^- \to K^- K_S \nu_{\tau})}$$
$$-3.83 \times 10^{-3} \le A_{CP}^{rate}|_{KK} \le -3.37 \times 10^{-3}$$



• Tensor current plays the decisive role in CPV of  $\tau^{+/-} \rightarrow K^{+/-}K_S v_{\tau}$ 

## Charged lepton flavor violation in tau decays

90% C.L. upper limits for LFV τ decays



- Not only statistic but also systematic uncertainties are important in  $\tau \rightarrow l \gamma$
- Clean backgroud makes τ → *l l' l"* one of the best channels to search for LFV signals.
- τ → l + hadrons provides a different laboratory to probe different LFV origins, comparing with the pure leptonic processes.

# 结语 Tau与g-2 包含丰富有趣的物理:

▶ 不仅有诗和远方 --诱人的新物理现象--:

轻子味道破坏,轻子数破坏,新的CP破坏,.....

- ▶ 也充满了烟火气息 --亟需提升精度/澄清的SM允许的过程--:
- $e^+e^- \rightarrow \pi^+\pi^-$ ,  $\tau^- \rightarrow \nu_{\tau}\pi^0\pi^-$
- $\tau \rightarrow v_{\tau} \pi^{-}(K^{-})K_{S}$ 中的CP破坏
- $\tau \rightarrow v_{\tau} P \gamma$ ,  $\tau \rightarrow v_{\tau} \pi^0 \pi^- \gamma$  (尚未有实验测量,可有效降低很多理论误差)
- tau谱函数的精确测量  $\rightarrow \alpha_{s}(m_{\tau})$ 确定
- 第二类流主导过程的发现:  $\tau \rightarrow v_{\tau}\pi \eta/\eta'$
- τ衰变中的前后不对称性的测量
- ・ 跃迁形状因子: A→Vγ, A→Vγ, Aγ\*γ\*/γ\*γ(\*)→PP'/ Pγ(\*)γ(\*)
   (为提升HLbL的精度作好准备)