

STCF常温高频腔预研进展

1 Background & Introduction

2 TM020-mode Cavity

3 Symmetrically-powered Cavity

4 Summary & Outlook

Super Tau Charm Facility (STCF) ヨマごう

- $E_{\rm cm}$ = 2-7 GeV, $\mathcal{L} > 0.5 \times 10^{35} \ {\rm cm}^{-2} \ {\rm s}^{-1}$
- Potential for upgrade to increase luminosity and realize polarized beam
- Site: 1 km², Hefei's suburban "Future Big Science City"

STCF Collider Ring

		Va	lues	
Beam Energy [GeV]	1.0	1.5	2.0	3.5
Circumference [m]		86	0.321	
Revolution frequency [kHz]		34	48.47	
RF Frequency [MHz]		4	99.7	
Harmonic Number		1	434	
Number of Bunches		(688	
Beam Current [A]	1.1	1.7	2	2
Momentum Compaction Factor	12.63×10 ⁻⁴	13.24×10 ⁻⁴	13.49×10 ⁻⁴	13.73×10 ⁻⁴
Total Energy Loss per Turn [keV]	106	267	543	1494
Total Beam SR Power [kW]	117	453	1086	2988
RF Voltage [MV]	0.75	1.2	2.5	6
Synchronous phase [°]	172	167	167	166

D Considering damping ring has a low beam current, so the RF system can be developed for both damping and collider ring. □ Key parameters for RF system: (1) Frequency: 499.7 MHz ; (2) RF system has to provide a voltage of 6 MV and a beam power of 3 MW for each ring

STCF Ring RF System

□ One of the most serious issue is that large beam currents to excite fast-growing longitudinal coupled-bunch instabilities (CBI) caused by the accelerating mode of detuned RF cavities which is needed to compensate for the reactive component of beam-loading.

□ The other issue is to minimize the cavity higher-order mode (HOM) impedances which drive strong longitudinal and transverse CBI and bring the induced HOM power.

Background & Introduction

2 TM020-mode Cavity

3 Symmetrically-powered Cavity

4 Summary & Outlook

RF Systems for Different Colliders

שידב: הי

DNC is more advantageous in terms of easy maintenance, running

robust, low construction budget.

2.11

1.04

Luminosity $[10^{34} \text{cm}^{-2} \text{s}^{-1}]$

Integrate luminosity [ab⁻¹

Colliders	Cavity Type							
PEP-II	NC (20 NC positron ring		Closed-0 2008	off at				
BEPCII	SC (1 SC fo	r each r	ing)				Operatio	on
SuperKEKB	SC+NC (8 NC and 8 SC for electron ring, 32 NC for positron ring)						Operatio	on
BINP-SCTF	NC (3 NC for each ring)						Under D	Design
Ibeam[A]	A LEF 1.63	KEKB chieved HER 7 1.188	Super 2020 M LER 0.438	KEKB May 1st HER 0.517	Super 2022 Ju LER 1.321	KEKB une 8th HER 1.099	Super Des LER 3.6	KEKB sign HER 2.6
# of bunches	1.03	1585 3 0.7495	78 0.5593	83 0.6603	22 0.5873	49 0.488	25 7 1.440	00
$\beta_y^* \text{ [mm]}$ ξ_y	5.9 0.12	5.9 9 0.090	1.0 0.0236	1.0 0.0219	1.0 0.0407 0.0565*	1.0 0.0279 0.0434	0.27 9 0.0881 4*	0.30 0.0807

1.57

0.03

4.65

0.41

80

50

PEP-II Records

Last update: April 8, 2008

12.069×10³³ cm ⁻² sec ⁻¹ 1722 bunches 2900 mA LER 1875 mA I			August 16, 2006
Integration reco	ords of del	ivered lun	ninosity
Best shift (8 hrs, 0:00, 08:00, 16:00)	33	39.0 pb ⁻¹	Aug 16, 2006
D (0.110)			T 1 0 0 0000

Peak Luminosity

(8 hrs, 0:00, 08:00, 16:00) Best 3 shifts in a row	910.7 pb^{-1}	Jul 2-3, 2006
Best day	858.4 pb^{-1}	Aug 19, 2007
Best 7 days (0:00 to 24:00)	5.411 fb ⁻¹	Aug 14-Aug 20, 2007
Best week	5.137 fb ⁻¹	Aug 12-Aug 18, 2007
Peak HER current Peak LER current	2069 mA 3213 mA	Feb 29, 2008 Apr 7, 2008
Best 30 days	19.776 fb ⁻¹	Aug 5 – Sep 3, 2007
Best month	19.732 fb^{-1}	August 2007
Total delivered	557 fb ⁻¹ P-II turned off April	7, 2008

STCF Ring RF System

- ✓ Due to relative lower accelerating voltage required, NC is preferred
- ✓ NC RF systems are chosen as a candidate for our STCF collider rings.

	KEKB SC	BEPCII SC	ARES NC(KEKB&	KEK-RIKEN	PEP-II NC	BESSY-II NC
			SuperKEKB)	TM020-mode NC		
Beam power [kW]	3000	3000	3000	3000	3000	3000
Voltage [kV]	6000	6000	6000	6000	6000	6000
Number of cavities	10	20	10	12	15	30
Voltage per cavity [kV]	600	300	600	500	400	200
Shunt impedance per cavity –circuit Ω	46.5E9	46.5E9	8.625E5	2.5E6	3.5E6	3.4E6
Unloaded quality factor	1E9	1E9	1.15E5	6.5E4	3E4	2.96E4
Power poss per cavity [kW]	0.00387	0.00097	209	49.7	23	6
Beam power per cavity [kW]	300	150	300	250	200	100
Input power per cavity [kW]	300	150	509	299.7	223	106
Detuning frequency per cavity [kHz]	75	150	12	75	283	557

TM020-mode NC from KEK and RIKEN ヨモラ

RF Parameters		
Working mode	TM020	
Working frequency	509 MHz	
Unloaded quality factor Q_0	60000	Ŵ
Shunt impedance R_s	6.8 MΩ	-
Voltage per cavity	825 kV	RF p
Power per cavity	100 kW (no beam) 210 kW (400 mA)	

Cavity body

End plate

Technique Route Selected for STCF

	KEKB SC	BEPCII SC	ARES NC(KEKB&	KEK-RIKEN	PEP-II NC	BESSY-II NC
			SuperKEKB)	TM020-mode NC		
Beam power [kW]	3000	3000	3000	3000	3000	3000
Voltage [kV]	6000	6000	6000	6000	6000	6000
Number of cavities	10	20	10	12	15	30
Voltage per cavity [kV]	600	300	600	500	400	200
Shunt impedance per cavity –circuit Ω	46.5E9	46.5E9	8.625E5	2.5E6	3.5E6	3.4E6
Unloaded quality factor	1E9	1E9	1.15E5	6.5E4	3E4	2.96E4
Power poss per cavity [kW]	0.00387	0.00097	209	49.7	23	6
Beam power per cavity [kW]	300	150	300	250	200	100
Input power per cavity [kW]	300	150	509	299.7	223	106
Detuning frequency per cavity [kHz]	75	150	12	75	283	557

Considering the power losses due to other factors, such as vacuum impedances, so ≥ 12 cavities are required for each ring.

Technique Challenges

 Each NC has to provide a beam power of >200 kW and an accelerating voltage of >0.5 MV; Such a NC has not been realized beforehand in CHINA.

• All of harmful modes have to be strongly suppressed for each NC;

Cavity Geometry

Optimized TM020-mode cavity

Tuner Range

HOM damping-Transverse modes

All of dipole modes are strongly damper below CBI thresholds, so CBI due to harmful modes can't occur.

HOM damping-Longitudinal modes

Mode	Frequency (GHz)	R/Q (Ω) -Circuit definition	R (Ω) - Circuit definition
TM010	0.211648	85.6	836.5056
TM021	0.762821	15.2	117.9846
TM051	1.46392	1.8	112.987
TM033	1.89493	1.4	108.1376
TM063	2.5092	1.9	80.3744

方法用外用

• Temperature distribution

- Simulations setup: a power loss of 50kW on the surface
- Cooling temperature is set to 24°C
- Max temperature is located at inner surface, Max Tem: 42.3°C

• Equivalent Stress

- Stress location: cavity equator
- Max stress location:

stainless steel waveguide port, 82.07 MPa

pumping port, 60.85 MPa

Simulations setup:

- Standard atmospheric pressure: 0.1013MPa
- Standard Earth gravitational acceleration;
- End face support

• Deformation

- Primary deformation location: cavity equator outer surface
- Max deformation: waveguide port, 0.156 mm

This deformation can be compensated by adjusting the input waveguide

Simulations setup:

- Standard atmospheric pressure: 0.1013MPa
- Standard Earth gravitational acceleration;
- End face support

Thermal Analysis For Tuner

Max temperature 26.7°C

Max stress is 7.9MPa at upper supporting structure, Stress is much smaller than 70 MPa

HOMs Induced Power Loss

HOMs induced power loss for 5 longitudinal modes are calculated to be totally 4.3 kW

Mechanical Design for HOMs Dampers ヨマご

□ Simulation modes: CW

■ Absorption power capacity for each damper >5 kW, each damper has 6 sections, each section has a power capacity >833 W

The thickness for ferrites is set to 2 mm, 3 rows of ferrites are arranged as a section within the ring width of 62 mm. A COMSOL model is established as shown in the figure. The thermal simulation was performed with a water flow rate of 4.5 L/min and an input power of 850 W (about 840 W of ferrite absorption power) at the rectangular waveguide port_o

Thermal Analysis For HOMs Dampers ≡

₹ 20.4

Max temperature for a ferrite section is 68.6°C, temperature rise is 48.6°C.
 Max cooling pressure drop is 0.025atm for each section , total pressure drop is 0.15 atm for a single ferrite damper

Temperature at outer surface

Cooling pressure

Input Power Coupler

- Design Target
 - 499.7 MHz TM020-mode cavity

Mode	Frequency	Q0
TM020	499.70 MHz	65110

Waveguide-type input coupler, online tuning.

Working frequency	499.7 MHz
Туре	Waveguide type
Power capacity	CW 300 kW
Design coupling factor	1.0
Coupling factor	1~8
Coupling type	Magnetic Coupling
Vacuum leakage rate	<1e-10 mbar·l/s
Ultimate vacuum	<5e-7 Pa

Two Types of Input Coupler

- Coupler types
 - Coaxial type:
 - Complicated
 - Fixed coupling factor, have large reflections for different beam currents
 - Waveguide type:
 - Simple geometry
 - Variable online tuning for different beam currents
 - High construction budget
 - After comparisons, we choose waveguide type input coupler

RF Design

- Coupling port
 - Increasing the fillets to minimize the magnetic fields
 - Tuning range: Tuner insertion depth 3~63mm→0.9975~8
 - Frequency shift: -0.1564MHz
 - 50 kW→560 kV

Coupling port

Coupling factor as a function of insertion depth of Tuner

MP For Coupling Port

□ MP for coupling port : No oscillating, the number of particles decreases with time □ For an input power: $10 \sim 300 \text{ kW}$, No MP occur

RF Design for Ceramic Window

- 99.5% Ceramic Window: aluminium oxide
 - Low loss tangent, low temperature, low BDR
 - No difficulty in welding, there are some existing experience
- S11: 499.7MHz@-66.921dB
- WR1800 waveguide

Optimized S11

Ceramic window geometry

Electric fields

Magnetic fields

Ceramic Window

Meet the requirements

□ MP simulations for ceramic window

- It is fragile component, which is highly susceptible to secondary electron multiplication bombardment to cause overheating, and eventually lead to rupture.
- Input power: 10-300 kW

– No MP

- Input power: CW 300kW
- Cooling has a flow velocity 7.5 L/min@25°C , pressure
 ≥0.4 MPa
- Max Temp 49.15°C, Max stress is 43.724 MPa for copper

Connecting Waveguides

°C

42 -

700

WR1800-HFWR1500 converter

- Stepped waveguide material: Aluminum alloy
- Bandwidths: S11: 499.7MHz@-71.638dB, -30dB@38.61MHz
- Input power = 300kW, Emax<0.1 MV/m, much lower than breakdown
- Max temperature: 43.9°C

D Bending waveguide

90° bending waveguide for connection between port

For an input power of CW 300kW, temperature, deformation and stress

Mechanical Design for Whole Module

时间计划安排

Background & Introduction

2 TM020-mode Cavity

3 Symmetrically-powered Cavity

4 Summary & Outlook

Symmetrically-powered Cavity

Symmetrical power couplers are employed
 Greatly reduce the demand for the transmitted power for each coupler;

✓ Improve the dipole field and leakage rate

参数	单位	数值	参数	单位	数值
束管半径	mm	60	截止频率	GHz	1.914
工作频率	MHz	499.7	腔压	kV	511
无载品质因 子	-	60607	平均加速梯 度	MV/m	1.91
几何因子R/Q	ohm	83.36	峰值电场	MV/m	5.81
分路阻抗	Mohm	5.05	Ep/Eacc	-	3.04
Volume Loss	%	1.5	峰值磁场	A/m	5573.72
外部品质因 子	-	60000	Hp/Eacc	mA/V	2.92

HOM damping-Longitudinal modes

□ 纵向尾场300m情况下, 尾势衰减趋于均匀, 单腔阻抗谱满足阈值曲线要求

Summary & Outlook

- ✓ We have optimized a NC 499.7 MHz TM020-mode cavity with strong HOM damping to meet the requirement of 2 A for our STCF collider rings.
- ✓ RF design and mechanical design on this TM020-mode cavity have been completed ; Preliminary LLRF developments have been performed.
- The prototype fabrication is ongoing, it is expected to be completed by the end of 2025 and high-power conditioning is planned by June 2026.