Radio-Frequency System of the High Energy Photon Source

Pei Zhang (IHEP, CAS)

2025 STCF Meeting, Jul 2-6, 2025, Hunan, China

Outline

- Introduction to HEPS
- RF system design
- Development highlights
- Installation & commissioning
- Summary

Introduction to HEPS

Landscape of the 4th-gen SR facilities

High-energy 4th-gen SR facilities

High Energy Photon Source (HEPS)

Project outline

- A diffraction-limited SR light source (4th-gen)
- The 1st high-energy SR light source in China
- Location: Huairou Science City, Beijing
- Construction time: 06.2019 12.2025
- Land: 650,667 m², Building: 125,000 m²
- **Budget**: 4.76B CNY (~\$652M)(incl. materials, civil constr. & commissioning, excl. labor costs)
- **Funding**: Central government + Local government + Chinese Academy of Sciences

HEPS in Huairou Science City (Beijing)

Main parameters: accelerator

Y. Jiao *et al.*, *J. Synchrotron Rad.* 25, 1611–1618 (2018).
 H. Xu *et al.*, *RDTM* 7, 279–287 (2023).
 C. Meng *et al.*, *RDTM* 4, 497–506 (2020).

Accelerator complex

- Linac (500 MeV)
- Booster (500 MeV to 6 GeV, 1 Hz)
- Storage ring (6 GeV, top-up)

Parameter	Value	Unit
Beam energy	6	GeV
Circumference	1360.4	m
Lattice type	Hybrid 7BA	
Hori. Natural emittance	< 60	pm∙rad
Brightness	> 1×10 ²²	*
Beam current	200	mA
Injection mode	Top-up	-

*: phs/s/mm²/mrad²/0.1%BW

Main parameters: accelerator

Main parameters: beamlines

- One of the brightest 4th-gen SR facilities in the world
- Brightness of 5×10²² phs/s/mm²/mrad²/0.1%BW at the photon energy of 21 keV, can provide X-ray with energy up to 300 keV
- 14 public beamlines in Phase 1, HEPS can accommodate up to 90 beamlines

Y. Jiao et al., J. Synchrotron Rad. 25, 1611–1618 (2018).

Milestones

- 2025.03 ~ 2025.05, joint commissioning of accelerator and BLs
- 2025.05 ~ 2025.08, installation of SRF cavities and IDs, re-alignment of BS and SR
- 2025.09 ~, beam current ramp up to 100mA, reaching KPPs

RF system design

RF-related beam parameters

Parameter (SR)	Value	Unit	Parameter (BS)	Value	Unit
Circumference	1360.4	m	Circumference	454.066	m
Beam energy	6	GeV	RF frequency	499.8	MHz
Beam current	200	mA	Harmonic number	757	-
Energy loss per turn (bare)	2.64	MeV	Electron beam energy	0.5 – 6	GeV
Total energy loss per turn	4.14	MeV	Electron beam current	13	mA
Total power loss to radiation	828	kW	Total SR loss @ 6GeV	4.02	MeV/turn
Momentum compaction	1.88×10 ⁻⁵	_	Total power loss to SR	52.3	kW
	F 00		Total RF voltage	2 – 8	MV
Natural bunch length	5.06		Repetition rate	1	Hz
Bunch length with HC	29.8	mm	Paramotor (SP)		luo Unit
Radiation damping time (x/y/z)	10.85/20.62/18.76	ms	PE froguenov (fund rf)	Va	
No./Length of straights	24/6.086	m	KF frequency (fund. fr)		
Total CBI threshold (x/y)	3.4E+6/1.87E+6	Ω/m		40	
Total I CBI threshold @1 GHz			RF frequency (HC)	45	9.8 MHZ
			Touschek lifetime (680 bunc	hes)	3.8 hour
(w/o HC, 200 mA)	1.27E+5	Ω	Total RF voltage (fund. rf)(w/	/ HC) 5	5.16 MV
(w/ HC, 200 mA)	3.63E+4	Ω	Total RF voltage (HC)	(.91 MV

RF work package definition

 Goal: The design, construction and commissioning of the radio-frequency system for the booster ring and the storage ring of the High Energy Photon Source (HEPS).

Objectives

- Complete the integration and commissioning of 6 sets of 499.8 MHz normal-conducting RF system with the following specifications fulfilled.
- Complete the development, integration and commissioning of 5 sets of 166.6 MHz SRF systems and 2 sets of 499.8 MHz SRF systems with the following specifications fulfilled.

Parameter	BS	SR (main)	SR (HC)
RF frequency	499.8 MHz	166.6 MHz	499.8 MHz
Number of cavities	6	5	2
RF technology	NCRF	SRF	SRF
RF voltage per cavity (Vc)	≥ 1.35 MV	≥ 1.1 MV	≥ 1.7 MV
Cavity Q0 (at Vc)	≥ 29000	≥ 5×10 ⁸	≥ 1×10 ⁹
Cavity field amplitude stability (pk-pk)	±1%	±0.1%	±0.1%
Cavity field phase stability (pk-pk)	±1°	±0.1°	±0.1°
RF power per transmitter	≥ 90 kW	≥ 200 kW	≥ 200 kW

RF work package scope

Main deliverables of RF WP

Cavities

- 5 sets of 166.6 MHz SRF cavity modules
- 2 sets of 499.8 MHz SRF cavity modules
- 6 sets of 499.8 MHz NCRF cavities

• High-power RF

7 SRF modules6 NCRF cavities2.4MW CW SSAs13 LLRF controls

- 5 sets of 166.6 MHz 260 kW solid-state power amplifiers
- 2 sets of 499.8 MHz 260 kW solid-state power amplifiers
- 6 sets of 499.8 MHz 100 kW solid-state power amplifiers

RF controls

- 5 sets of 166.6 MHz RF control systems
- 8 sets of 499.8 MHz RF control systems

Main features of the RF system

- Double-frequency RF system: 166.6 MHz + 499.8 MHz
- Active harmonic RF compatible with on-axis swap-out & on-axis accum. injections
- SRF for storage ring, normal-conducting RF for booster ring
- Heavy damping of higher order modes for storage-ring SRF cavities
- Solid-state amplifiers for all RF transmitters, digital low-level RF control

P. Zhang et al., "Radio-frequency system of HEPS", Radiation Detection Technology and Methods 7, 159-170 (2023).

Main RF parameters

Parameter	BS	SR (main)	SR (HC)	Unit
RF frequency	499.8	166.6	499.8	MHz
Total RF voltage	2 – 8	5.4	0.91	MV
Cavity technology	Normal-conducting	Superconducting	Superconducting	-
Cavity type	5-cell	β=1 quarter-wave	1-cell elliptical	-
Technology readiness	Mature product	In-house new dev.	In-house dev.	-
No. of cavities	6	5	2	-
RF voltage per cavity	1.35 (op.) 1.9 (design)	1.2 (op.) 1.5 (design)	0.91 (op.) 1.75 (design)	MV
RF power per cavity (max)	70 (61 cav. + 9 beam)	190	105	kW
No. of transmitters	6	5	2	-
RF power per transmitter	100 (c.w.)	260 (c.w.)	260 (c.w.)	kW
Transmitter technology	SSA	SSA	SSA	-
LLRF control stability (p-p)	±1%, ±1°	$\pm 0.1\%, \pm 0.1^{\circ}$	$\pm 0.1\%, \pm 0.1^{\circ}$	-
LLRF technology	Digi	tal LLRF (in-house dev.))	-

RF cavities

500MHz PETRA-type 5-cell copper cavity (Booster)

Procured from RI (Modifications)

166MHz Quarter-wave β=1 SRF cavity (Storage ring)

In-house development (New)

500MHz KEKB-type 1-cell elliptical SRF cavity (Storage ring)

In-house development (Mechanically-improved)

[1] P. Zhang *et al.*, "Development and vertical tests of a 166.6 MHz proof-of-principle superconducting quarter-wave beta = 1 cavity", *Rev. Sci. Instrum.* 90, 084705 (2019).

[2] L. Guo *et al.*, "Development of a 166.6 MHz β = 1 higher-order-mode-damped superconducting cavity", *Rev. Sci. Instrum.* 95, 074702 (2024).

[3] H. Zheng et al., "Development and tests of the 499.8 MHz srf cryomodules for HEPS", JINST 19, P10031 (2024).

[4] T. Huang et al., "Design modification and high-power tests of the 500 MHz normal-conducting 5-cell cavities for HEPS", JINST 19, P06031 (2024).

High-power RF

- Transmitter type: SSA
- Power transmission
 - 9-3/16" coaxial rigid lines for 166MHz
 - WR1800 rectangular waveguide for 500MHz
- High-power circulator for each RF station

Y. Luo et al., IPAC2023, WEPM014.

RF control

• In-house development: LLRF and Interlock hardware, OPI, RF local database

Home	9		HEPS Boo	ster RF Syste	n 2023/1	1/11 16:24:15.069 🏓
LLRF	1	00 kW 100 kW	100 kW 10	0 kW 100 kW	100 kW Bean	n Current 0.8490 m
SSA	Beam ->				Tota	l Voltage 6.1 M
CAV	BS	1CAV1 BS2CAV1	BS2CAV2 BS	CAV3 BS2CAV4	BS2CAV5 Booste	er Energy 6000 MeV
CIRC						RF_Vacuum
LOAD	BS1RF1	BS2RF1	BS2RF2	BS2RF3	BS2RF4	BS2RF5
INTLK	INTL On/Off Ramp Local		INTL On/Off Ramp Lo	al INTL On/Off Ramp Local	INTL On/Off Ramp Local	INTL On/Off Ramp Lor
rchiver						
Trend	Vc 1.22 MV		Vc 1.23 MV	Vc 1.22 MV	Vc 1.22 MV	Vc 1.18 MV
SIRF1	Phase 80.04 °		Phase 49.97 °	Phase -86.02 °	Phase -110.75 °	Phase 9.99°
S2RF1	P_fwd 54.77 kW		P_fwd 56.11 kV	P_fwd 48.41 kW	P_fwd 49.93 kW	P_fwd 44.40 kW
S2RF2	P_refl 6.97 kW		P_refl 9.51 kW	P_refl 3.05 kW	P_refl 2.56 kW	P_refl 2.05 kW
S2RF3	Vac_up 1.80E-6 Pa		Vac_up 4.80E-7 P	a Vac_up 2.20E-7 Pa	Vac_up 1.80E-7 Pa	Vac_up 2.80E-7 P
352RF4	Vac_in 1.20E-6 Pa		Vac_in 3.30E-7 P	a Vac_in 1.00E-9 Pa	Vac_in 2.20E-7 Pa	Vac_in 1.90E-7 P
BS2DE5	Vac_out 1.20E-6 Pa		Vac_out 2.70E-7 P	a Vac_out 2.10E-7 Pa	Vac_out 2.20E-7 Pa	Vac_out 2.10E-7 P
552RF5	Vac_down 1.20E-6 Pa		Vac_down 2.20E-7 P	a Vac_down 1.80E-7 Pa	Vac_down 2.80E-7 Pa	Vac_down 2.00E-6 P
			i.J	IJJ		

Q. Wang et al., IPAC2023, THPA088.

TDR, PMP and international review

- Technical Design Report released in 2019, revised in 2021 and 2023
- Project Management Plan released in 2018, revised in 2020 and 2023
- International review meeting on RF in 2016 and 2023 (first post-pandemic review at HEPS)
- HEPS International Advisory Committee Meeting in 2016, 2017, 2018, 2019, 2025

Development highlights

500MHz NCRF cavities: modified for HEPS

- Contract of 6 cavities signed with RI GmbH in 2020, batch delivery in 2022, SAT in 2022
- Several design modifications implemented to accommodate HEPS requirement
 - Sync. light collimation, diagnostics for power couplers (DESY approach), additional & relocated pickups, etc.
- Procedures for cavity reception and high-power tests developed by IHEP RF team
- Several non-conformities identified and resolved with RI
- High-power tests of all 6 cavities completed up to 120kW except for CAV06 (limited to 100kW)
- Automatic conditioning system in-house developed to improve efficiency considerably

[1] T. Huang et al., JINST 19, P06031 (2024). [2] Z. Deng et al., JINST 16, P07027 (2021).

500MHz SRF cavities: optimized design

- Cavity geometry mechanically improved by adding a pair of stiffeners
- Synergy with BEPCII-U, same cavity & same module, different taper aperture (63mm vs. 150mm)
- Four cavities produced, BCP treated, all met VT specs., demonstrated excellent performance: Vc > 4MV with mild or no field-emission (FE)
- Three modules (incl. 1 BII-U module) assembled, excellent performance achieved in VT preserved in HT, no FE onset, demonstrated cavity treatment and module assembly procedures

Parameter	Value	Unit
Frequency	499.8	MHz
Operating temp.	4.4	K
Design Vc	2.0	MV
Operating Vc	0.91	MV/m
Ep/Eacc	2.08	-
Bp/Eacc	4.63	mT/(MV/m)
R/Q (=V²/ωU)	95	Ω
External Q	8e4	-

[1] H. Zheng *et al.*, *IEEE TAS* 31, 3500109 (2021) [2] H. Zheng *et al.*, *JINST* 19, P10031 (2024).

Static HL: 20~23W, Q0@1.75MV: 2.5e9 Dynamic HL: 11~13W, no FE onset

166MHz SRF cavities: original innovation

- First of its kind in the world: low-frequency, β=1, high input power, heavy HOM damping, quarter-wave structure, compact geometry -> require innovative design & development
- In-house, two-step approach, 9 years of continuous development & innovation
- A total of 8 bare cavities and 5 jacketed cavities produced and tested, met specifications

Proof-of-Principle (PoP) cavity, 2016-2019, demonstrate prod. technics and surface treatment

Optimization proposed

- Replace pin PU w/ loop PU
- Elongate FPC niobium tube
- Improve FPC cooling
- Strengthen HPR ports

World's first SRF quarter-wave cavity to accelerate ultra-relativistic beam !

HOM-damped cavity, 2019-2023, prototyping of complete module prior to series production

166MHz SRF cavities: performance

 Established BCP recipes for bare cavities, no chemistry required for jacketed cavities, excellent cryogenic performance demonstrated, optimized procedures ensuring no field-emission onset & considerably reduced multipacting, 6 out of 7 series cavities outperform qualification criteria

Operating temp.	4.4	K
Design Vc	1.5	MV
Operating Vc	1.2	MV
R/Q (=V²/ωU)	139	Ω
Q0 at Vc_d (VT)	1e9	-
Q0 at Vc_op (HT)	5e8	-
Ep at Vc_op	32	MV/m
Bp at Vc_op	50	mT
Input power	190	kW

166MHz SRF modules: HOM absorber

- Heavy higher-order-mode damping realized by enlarged beam pipe and ferrite absorber at room temperature
- Power capacity of 10kW, 505mm inner diameter

Nickel-Zinc ferrite materials

Parameter	High charge	High brightness
Bunch rms length (σ_z) [mm]	5.06	5.06
Loss factor for HOM (k _{HOM}) [V/pC]	2.54	2.54
Beam current [mA]	200	200
Bunch number	63	680
Bunch charge [nC]	14.41	1.33
Average HOM power [kW]	7.32	0.68

166MHz SRF modules: HOM damping

- HOM impedance of 166MHz SRF cavities fulfills CBI thresholds (equally distributed)
- The most dangerous mode (1st monopole HOM, 464MHz) marginally fulfills the most stringent requirement
 - Series absorbers obtained stable performance
 - Relocate ferrite tiles may further reduce impedance at a price of lower power capacity

f(MHz)

166MHz SRF modules: development

Cavity string and cryomodule development

- Extremely limited longitudinal space to fit 2 CMs in one 6m straight section -> compact design
- Heavy damping of HOM -> large-dimension ferrite absorber, high-power handling capability
- Developed an optimized cleaning & assembly procedures to minimize contamination due to large aperture (505mm), VT & HT demonstrated
- 11.2023, first 166MHz module successfully assembled, excellent performance demonstrated in horizontal test, outperform HEPS specifications, series modules launched
- 08.2024 ~ 06.2025, four 166MHz modules assembled & tested, all CMs exceed specifications

[1] L. Guo et al., Rev. Sci. Instrum. 95, 074702 (2024). [2] X. Zhang et al., NIM-A 1059, 168972 (2024). [3] R. Han et al., NIM-A 1070, 170000 (2025).

166MHz SRF modules: performance

Parameter	Spec.	Test	Unit
Vc_op	≥ 1.2	1.5~1.6	MV
Q ₀ @ Vc_op	≥ 5e8	1.5~2.1e9	-
Radiation @ Vc_op	< 500	0.08~84	µSv/h
Static HL @ 4K	< 40	33~36	W
Dyn. HL @ 4K	< 21	5~7	W

- Comfortable margin for all CMs
 - RF voltage: > 25%
 - Quality factor: a factor of 3~4
 - FE radiation: no FE ~ a factor of 6

Solid-state amplifiers (SSAs)

- Three types of SSAs: 500MHz-100kW, 500MHz-260kW, 166MHz-260kW
- Total power: 2.42MW (cw), 13 sets
- 166MHz-50kW prototype developed in 2017 during HEPS-TF phase
- 166MHz-260kW and 500MHz-150kW prototype developed in 2019-2021, passed SAT in Oct. 2021, used for high-power testing of various RF components
 - Optimized thermal design of amplifier modules, N-way direct power comb., improved monitoring, etc.
- Series SSAs delivered and passed SAT in Jul. 2023 (BS) and Sep. 2024 (SR)
- Synergy with BEPCII upgrade (shared spares)

166MHz 260kW prototype (PAPS)

500MHz 150kW prototype (PAPS)

SSA operation status

BSSSA	Freq-Power	Total op.	No. of modules	s damaged
DUUUA		time (hour)	Amp. transistor	PS module
BS1SSA1	500MHz-100kW	6993	6 out of 224	5 out of 20
BS2SSA2		2896	0 out of 224	0 out of 20
BS2SSA3		9071	0 out of 224	7 out of 20
BS2SSA4		8955	0 out of 224	8 out of 20
BS2SSA5		9062	0 out of 224	8 out of 20

Booster-RF SSA

• A few amplifier modules replaced due to malfunction during SAT

9 out of 4336 transistors damaged (~0.2%)

		Total op.	No. of modules damaged		
5K 55A	Freq-Power	time (hour)	Amp. transistor	PS module	
R35SSA2	500MHz-260kW	2830	3 out of 576	2 out of 24	
R38SSA2	500MHz-150kW	7640	0 out of 384	0 out of 16	
R40SSA2	500MHz-260kW	2920	0 out of 576	5 out of 24	
PAPS-prototype	166MHz-260kW	2286	0 out of 336	0 out of 24	
HEPS	166MHz-260kW*4	~300	0 out of 336×4	1 out of 24×4	

SR-RF SSA (part)

RF control

- **RF** control system for booster and storage ring, in-house development
- Constituents: Digital LLRF controller (3rd gen), RF interlock (2nd gen), RF fast data acquisition, beam trip diagnostics (prototype), RF EPICS database (450TB capacity), RF control interfaces
- HL functions: amp. & phase & freq. loops, field-flatness loop, reflected power protection, quench protection, amp. & phase modulation, phase jump, automatic start-up, etc.
- Synergy with BEPCII and BEPCII-U (lower dev. cost & maintenance overhead, shared spares)

1st-gen LLRF (Altera) 2018

1st-gen RF Interlock (CPLD, 32ch) 2015

2nd-gen LLRF (Altera) 2021

2nd-gen RF Interlock (XILINX, 54ch) 2021

3rd-gen LLRF (XILINX SoC) 2023

3rd-gen RF Interlock (XILINX, 54ch) 2022

DB

Low-level RF controller

- In-house development of LLRF controller since 2016, currently on 3rd generation
- Excellent performance demonstrated in BEPCII operation and HEPS commissioning
- Continuous optimization of both hardware and functions, series production completed
- Performance (rms, 18mA): 0.012% in amplitude and 0.012° in phase

FMC board V1.0 RF front-end board V8.2

Control interface: in-house dev. (local + CC)

SR RF (CC)

	HEPS Booster R	FSystem		2825-10-24 10-52-27	P.
		in in in in i	100-	Booster Energy 520 Merr Beam Carrent: 5.2052 Total Voltage: 6.0	mA. MV
$ \frac{1}{2} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$					

Booster RF (CC)

RF vacuum

RF station

High-power circulator

SRF cavity

High-power load

NCRF cavity

y Mariter	8250	951CAV1		RSSCAVE US	2CAV1 #53C	N2 852CAV3 85	CRM4 R52CRV5	2024/12/23	09:54:07.724
2634	Contra P	• Bi sessor • DEP senser	Beam	firection	8	1	Beam	direction	
State and		F.A.S.		-	1	P 11 📲	ALL AND	PSW (Statements)	
(0,07-1) w	122 1 (1) - 10 (m)	64,711	GI,TR2 54	101 CA.1H	64,705				
16 14	COLUMN STATE	1	u cam 4	-		***	COLTEN COLTEN	6 C	
All and the				·		8 4 .			
		1000			90.00	100	14 71	TER	A MARTE
100 20		- Contractor	Links I.	II THERE		. Castle	THE T. HA	INCOM.	S ANC
				•					RST @
weiner met für fahren for	Threabold		50,04 Ca.5	up Cajufres	CajAthee	Callen Callenge	(a, affew Ca, 4	IPE-PSAN	-
Pf_cav 13.7 kw	Vacuum Loss (SF) 2.7E-5 Pa	1,749	huntles Tanal	Temp					
Pr cav 1.6 kW	Vacuum High (RF) 3.0E-5 Pa		1758(563)						urr u
Vec in 9.18-8 Pa	water In Temp Low 20.0 "C	Temperature							
Vac out 5.18-8 Pe	water is Temp High 45.0 °C	-	-	Concession of the local division of the loca	-	-	Station of the local division of	-	-
Pt1 1.615-4 kw	Water Out Temp High 50.0 °C	61.002	Callor	Colors,	Callin	64,122	10000		1010
Pt2 6.988-5 km	Water in Pres. Low 3.0 bar	31.2.4	36.0.0	35.8.6	34.6 .	39.0 %	31.0 %	20.4.6	33.4.5
Pt3 1.005.4 km	Water is Pres_High 9.0 bar	HICCORD IN	Co TOS	Statute of	Co. 715	Co. T21	Co 102	Co 707	THI T MIC
Pt4 1.316-4 kW	- Mater Out Pres. High 3.0 bar	11.5.10	17.017	33.3.10	14.4.17	24.1.10	27.7.10	22.2.2	22.4.17
P15 1 165-4 KW	Water Out New Low 105.0 Limit		1		3414 6				
No Di la comu	At Water Flow Switch 2.0 Limin	Cn 703	Ca TOP	Ca Tid	Ca T19	Ca T24	Co To3	p Tothaindowi	Thi2 T In
AC LL O'OT WA	Coupler Lit Fire Law 10.0 m 3/b	10.5.2	33.4.10	34.7.10	14.1.10	34.3.17	22.4.10	22.2.10	22.1.10
VC.PE3 1.29 MV	Carringh 85.0 °C			2417 6					
Tater in Temp 26.7 °C	El Territ Sellin 70.0 °C	Co 101	Ca 710	Ca TIS	Ca T20	Ca T25	CO TO4	Co Toy	Tut T out
iter Out Temp 29.8 "C	CP 101-104 High 65.0 °C	10.9.10	23.3.10	14.8.10	10.5.10	84.9.10	22.0.10	28.0.10	11.6.1
later is Pres. 4.82 bar	Cp. T05-T07 High 55.0 °C								
der Out Pres 0.74 bar	(p)100-102-mg) 40.0 °C	Co 195	Ce T11	Ce 110	Ce T21	Ca.T.max	Co TOS		
stor Out Flow 124.5 L/min	10 T High 55.0 °C	30.1 'C	35.2 'C	36.2 'C	32.5 'C	37.0 °C	32.6 °C		
upler Mc Firm 24.8 m^3.0	Turnel T righ 35.0 °C		1						

Interlock (overview)

SSA

	Total Outpu	ıt Power	Total Reflect	Power	e.	Total Run	ning Time		
67.40 kW		5.30	5.30 kW		7533:33:40				
			19 C		Str.				
	Ро		Po		Ро		Po		
c1	9.7 kW	0.0 kW	9.9 kW c2	0.4 kW	8.6 kW c3	0.5 kW	8.0 kW c4	0.4 kV	
	Po		Po		Po		Po		
	10.1 kW	0.4 kW	11.4 kW	0.0 kW	10.5 kW	0.9 kW	10.5 kW	1.2 kW	

Interlock (individual station)

Installation & commissioning

Commissioning in stages

Commissioning plan

- Initial beam commissioning with normal-conducting cavities
- Install SRF cavities after accumulating ~100 A h beam dose in SR

Purpose

- Vacuum scrubbing of the SR: large outgassing by sync. light irradiation on vacuum chambers
- Lower the potential contamination risk for the SRF cavities (vacuum incidents, gas absorption) > HEPS Mgmt. decided to add one 500MHz SRF cavity to provide higher RF voltage for SR CX
- Reserve longer development time for the new 166MHz SRF cavities
- Pragmatic approach adopted: RF setup of "NCC+SCC" used for vacuum scrubbing, install all SCCs after ~41 A·h accumulated beam dose

RF cavities: tunnel installation

- Jul. 2023, 3 NCRF cavities and 5 SSAs installed in BS
- Oct. 2023, 2 more NCRF cavities installed in BS (5 NCRF cavities in BS)
- Jun. 2024, 2 NCRF + 1 500MHz SRF cavities and SSAs installed in SR
- Nov. 2024, exchange 1 500MHz SRF cavity in SR tunnel
- May. 2025, 2 NCRF cavities removed from SR, back to BS
- May. ~ Jul. 2025, 5 166MHz SRF + 2 500MHz SRF cavities installed in SR

Booster tunnel

Transportation of 500MHz SRF modules

- Multiple road tests with dummy loads conducted before cav. transp.
- Short-distance (~5km, HEPS) and cross-city transportation (~80km, BEPCII-U) of the complete modules under cavity vacuum, shock of sensitive components and vacuum level monitored, vacuum integrity well preserved

H. Zheng et al., JINST 19, P10031 (2024).

Transportation of 166MHz SRF modules

- Maximum recorded shock: < 0.5g in all directions for all 166MHz modules during the entire transportation & installation process
- All cavities transported under vacuum, cavity vacuum integrity well preserved

Unloading at tunnel entrance

Freight transport

Move to final position

SR commissioning: stage 1 (11.2024~05.2025)

- Total RF voltage: 3.85MV
- Total beam power: 159kW, max. beam current: 60mA
- Stable op. for NCC (<90kW), limit for SCC (<180kW, 1.75MV)

SR cavity parameter	NCC	SCC	
No. of cavities	2	1	
Vc per cavity (MV)	1.1	1.65	
Cavity wall loss	41 kW	~0 kW	
Coupling	β=2	Qe=8e4	
Beam current	60 mA		
U0 (w/o IDs)	2.64 MeV		
Synchronous phase (Φ_{S})	46.7°		
Forward power per cavity	88 kW	143 kW	
Reflected power per cavity	3 kW	75 kW	
Cavity detuning (χ=-10°)	-32.6°	-20.9°	
Beam power per cavity	44 kW	68 kW	

High reflection

Vacuum admin. Limitation during CX
SCC_vac < 1e-7 Pa, SCC_FPC < 4e-7 Pa
NCC_vac < 1e-6 Pa

66 6MHz SR

Solid-state ampli

499.8MHz SRF 499.8MHz NCRF R40

Booster

(0.5 - 6 GeV)

R38

(6 GeV)

R35

RF interlocks during beam CX stage 1

- Large number of arcing events recorded for SRF cavity, most of them accompanying no vacuum deterioration, very likely due to beam loss or synchrotron light
- One arc detector dismounted from the FPC to help distinguish false arc events
 - In recent commissioning period, a total of 16 arc events triggered with 9 false arc

Cavity

vacuum,

29, 22%

FPC arc.

58, 45%

SR commissioning: stage 2 (09.2025~)

OOkw

166 6MHz SRI

499.8MHz SRI

Solid-state amplifie

- Move two normal-conducting cavities from SR to BS, move one 150kW SSA from SR to BS
- Install five 166MHz cavities in • SR to support 100mA beam current

Parameter	CX stage 1	CX stage 2	Nom. Op.
Booster	4*500NCC	5*500NCC	6*500NCC
SR	2*500NCC 1*500SCC	5*166SCC 2*500SCC	5*166SCC 2*500SCC
Beam current	60mA	100mA	200mA
RF voltage	500SCC: 1.65MV 500NCC: 1.10MV Total: 3.85MV	166SCC: 1.2MV Total: 6MV	166SCC: 1.2MV Total: 5.2MV
RF power	500SCC: 143kW 500NCC: 88kW Total: 319kW	166SCC: 105kW Total: 525kW	166SCC: 194kW Total: 970kW
S1 260KW R40	150kW R38	S2 260KW R40	260kW R38 R37 R37 260kW 260kW R37 260kW R37 260kW

Lessons learnt

- Prototyping as much as possible at early stage of the project
 - New development: 166MHz SRF cavity and module, 166MHz-300kW circulator
 - Existing in-house expertise: 166MHz HOM absorber, LLRF
- Quality control is vital
 - QC plan should be reviewed and updated from time to time, especially for R&D items
 - Non-conformities should be analyzed and documented in time

Vendor management

- Challenging during mask period, limited vendor visits, especially for oversea vendors
- Communication plan should be revised accordingly and executed
- Working collaboratively with vendors for key components, e.g., 300kW circulator

Summary

- Booster RF system commissioned w/ beam in Nov. 2023
- Storage-ring RF system (2NCCs + 1SCC, 500MHz) completed the 1st stage beam commissioning up to 40mA (Aug. 2024 ~ May. 2025)
- Storage-ring RF in nom. setup: all 7 SRF cavities (166MHz + 500MHz) installed with associated solid-state amplifiers and LLRF controls
- World's first 166MHz SRF cavities to accelerate beam
- Beam commissioning of storage ring planned for early Sep., aiming for 100mA in 2025

Superconducting RF geared up for 100mA

Reference

- [1] P. Zhang, et al., "Radio-frequency system of the high energy photon source", RDTM 7, 159–170 (2023).
- [2] R. Han, et al., "Thermal performance analysis and cryogenic experimental measurements of the 166.6 MHz cavity cryomodule for the High Energy Photon Source", NIM-A 1070, 170000 (2025).
- [3] H. Zheng, et al., "Development and tests of the 499.8 MHz srf cryomodules for HEPS", JINST 19, P10031 (2024).
- [4] L. Guo, et al., "Development of a 166.6 MHz β = 1 higher-order-mode-damped superconducting cavity", Rev. Sci. Instrum. 95, 074702 (2024).
- [5] T. Huang et al., "Design modification and high-power tests of the 500 MHz normal-conducting 5-cell cavities for HEPS", JINST 19, P06031 (2024).
- [6] H. Zheng, et al., "Design Evolution of the Higher Order-Mode Damping in 166.6-MHz Quarter-Wave β=1 Superconducting Cavities for HEPS", *IEEE Trans. Appl. Supercond.* 34, 3500309 (2024)
- [7] X. Zhang, et al., "Compact design of the 166.6 MHz superconducting cavity and its beamline elements for HEPS", NIM-A 1059, 168972 (2024).
- [8] Y. Luo, et al., "Development of a 500-MHz waveguide directional coupler with high directivity for HEPS", RDTM 6, 323-329 (2022).
- [9] L. Guo *et al.*, "Multipacting suppression of the HOM-damped 166.6-MHz β=1 quarter-wave superconducting cavities at HEPS", *JINST* 16, P11003 (2021).
- [10] Z. Deng, et al., "Development of an automatic control and analysis system for the conditioning of high-power couplers at IHEP", JINST 16, P07027 (2021).
- [11] Y. Luo, et al., "Design and performance tests of a modular 166.6-MHz 50-kW compact solid-state power amplifier for the HEPS-TF project", JINST 16, P04011 (2021).
- [12] T. Huang, et al., "High-power tests and solution to overheating at cavity-coupler interface of the 166.6-MHz beta=1 superconducting quarter-wave resonator for HEPS", AIP Advances 11, 045024 (2021).
- [13] D. Li, et al., "Active microphonics noise suppression based on DOB control in 166.6-MHz superconducting cavities for HEPS", RDTM 5, 153–160 (2021).
- [14] H. Zheng, et al., "Design optimization of a mechanically-improved 499.8 MHz single-cell superconducting cavity for HEPS", IEEE Trans. Appl. Supercond. 31, 3500109 (2021).
- [15] T. Huang, et al., "Development of a low-loss magnetic-coupling pickup for 166.6 MHz quarter-wave beta=1 superconducting cavities", NUCL SCI TECH 31, 87 (2020).
- [16] X. Zhang, et al., "Design and Mechanical Performance of a Dressed 166.6 MHz β=1 Proof-of-Principle Superconducting Cavity in Horizontal Tests", IEEE Trans. Appl. Supercond. 30, 3500208 (2020).
- [17] T. Huang, et al., "Development of fundamental power couplers for 166.6 MHz superconducting quarter-wave beta=1 proof-of-principle cavities", Rev. Sci. Instrum. 91, 063301 (2020).
- [18] D. Li, et al., "Development of a high-performance RF front end for HEPS 166.6 MHz low-level RF system", RDTM 4, 84–91 (2020).
- [19] X. Zhang, et al., "The mechanical design, fabrication and tests of a 166.6 MHz quarter-wave beta=1 proof-of-principle superconducting cavity for HEPS", NIM-A 947, 162770 (2019).
- [20] P. Zhang, et al., "Development and vertical tests of a 166.6 MHz proof-of-principle superconducting quarter-wave beta = 1 cavity", Rev. Sci. Instrum. 90, 084705 (2019).

Thank you!