

STCF对撞环物理设计进展

邹野

代表STCF对撞环加速器物理组

2025年超级陶粲装置研讨会

2025.07.03

设计目标和挑战

□ 核心设计目标:

- CoM energy: 2-7 GeV
- Luminosity: > 0.5×10^{35} cm⁻² s⁻¹ @ 4 GeV

□ 为了实现设计目标, 对撞环设计需要满足(@ 4GeV):

- Collision scheme: Large Piwinski angle + Crab-waist
- β_{y}^{*} : 0.6 mm to 1 mm
- Current: ~2 A
- Horizontal emittance: ~5 nm rad
- Touschek lifetime: > 200 s

□ 主要挑战:

- Very strong nonlinear effect: small dynamic aperture and momentum acceptance
- High current, low energy, small emittance: strong collective effect (Touschek effect, IBS, beam-beam, impedance, etc.)
- Interplay of multiple physical processes
- Very short Touschek lifetime: Large beam loss, large background and SC magnets quenching

Parameters	Units	2 GeV	1 GeV	1.5 GeV	3.5 GeV
Circumference, C	m		860.321		
Crossing angle, 2θ	mrad		6	0	
Hor. /Ver. beta function at IP, β_x^*/β_y^*	mm		60/	0.8	
Hor./Ver. betatron tune		30.543/34.58		30.555/34.57	
Beam current, I	А	2	1.1	1.7	2
Hor. Emittance (SR/DW+IBS)	nm	8.79/4.63	2.2/5.42	4.94/3.82	26.9/26.91
Ver. Emittance (SR/DW+IBS)	pm	87.9/46.3	330/813	494/382	134.5/134.55
Ratio, $\varepsilon_y/\varepsilon_x$	%	1	15	10	0.5
Momentum compaction factor, α_p	10 ⁻³	1.35	1.26	1.32	1.37
Energy spread (DW+IBS)	10-4	7.8	6.18	6.93	10.02
Energy loss per turn (SR+DW), U ₀	keV	543	106	267	1494
SR power per beam (SR+DW), P	MW	1.086	0.117	0.453	2.988
RF voltage	MV	2.5	0.75	1.2	6
Synchrotron tune, v_s		0.0194	0.0146	0.0154	0.0228
δ_{RF}	%	1.68	1.44	1.35	1.88
Bunch length (Nature/0.1Ω+IBS)	mm	7.21/8.70	6.62/9.79	7.89/8.56	8.26/8.89
Hor./Ver. beam-beam parameter, ξ_x/ξ_y		0.005/0.095	0.005/0.023	0.004/0.033	0.003/0.032
Luminosity	cm ⁻² s ⁻¹	9.4E+34	6.19E+33	2.09E+34	4.48E+34

Lattice布局和光学函数 (V4.3)

4

对撞区光学设计

- Modular design \rightarrow flexible for optics adjustment and local chromaticity correction
 - Final Focus Telescope (FFT), Chromaticity Correction (CCY、CCX), and Crab Sextupoles (CS)
 - FFT: small β function ($\beta_y^* = 0.8 \text{ mm}$, $\beta_x^* = 60 \text{ mm}$) and bunch size at IP ($\sigma_y = 190 \text{ nm}$, $\sigma_x = 17 \text{ }\mu\text{m}$)
 - CCY/CCX: sextupole pairs, large β , large dispersion, exact –I map \rightarrow reduce sextupole strength
 - CS: phase advance to IP ($\mu_x = 6\pi$, $\mu_y = 5.5\pi$); $\beta_y >> \beta_x \rightarrow$ reduce sextupole strength ($k_2 = 16.94 \text{ m}^{-3}$)
 - IR Bending angle 60°: weak bending magnet (B0) closest to IP, to avoid synchrotron radiation at IP

对撞区光学设计

- Modular design \rightarrow flexible for optics adjustment and local chromaticity correction
 - Final Focus Telescope (FFT), Chromaticity Correction (CCY、CCX), and Crab Sextupoles (CS)
 - FFT: small β function ($\beta_v^* = 0.8$ mm, $\beta_x^* = 60$ mm) and bunch size at IP ($\sigma_v = 190$ nm, $\sigma_x = 17$ µm) —
 - CCY/CCX: sextupole pairs, large β , large dispersion, exact –I map \rightarrow reduce sextupole strength _
 - CS: phase advance to IP ($\mu_x = 6\pi$, $\mu_y = 5.5\pi$); $\beta_y >> \beta_x \rightarrow$ reduce sextupole strength ($k_2 = 16.94 \text{ m}^{-3}$)
 - IR Bending angle 60°: weak bending magnet (B0) closest to IP, to avoid synchrotron radiation at IP _

Final Focus Telescope

非对撞区光学设计

____ #

- 弧区采用标准 FODO 单元 → 90° phase advances, 40 pairs of sextupoles (20 SDs+20 SFs), exact -I map
 - 也在考虑具有更高灵活度的弧区结构 (optional): 可以在更大范围调节发射度和动量压缩因子
- 常温Damping wiggler:采用 triplet cell,可以灵活调节DW长度, beta X/Y
- 交叉段采用两组弯转磁铁, 水平分离约 2 m
- 注入段采用离轴与置换兼容的光学设计

交叉段

25 [<u>[</u>] 20

Injection point

Damping wiggler段

非线性优化策略

- Local chromaticity correction (up to 3^{rd} order) \rightarrow to increase momentum bandwidth
 - 1st-order chromaticity: S1CCY and S1CCX main sextupole pairs with -I map;
 - 2nd-order chromaticity: fine-tuning phase advance of S1CCY and S1CCX to IP;
 - 3^{rd} -order chromaticity: SY3 and SX3 at the 1^{st} and 2^{nd} image points of the IP.
- Optimize Montague function at IP and CS to enhance off-momentum beam dynamics
- Optimize the map between CRAB sextupoles, as linear as possible with δ varying

非线性优化

- MADX/SAD for the lattice design, **PAMKIT** for global nonlinear optimization
- Optimization procedure:
 - Variables: sextupole strengths (IR: 6 pairs, arcs: 40 pairs)
 - Constraints: first-order chromaticity and key resonance driving terms
 - Objectives: dynamic aperture and momentum acceptance
 - During optimization, crab sextupoles always on
 - On-momentum DA: Hor. > $30\sigma_x$, Ver. > 120 σ_y ; off-momentum DA: > $15\sigma_x @ 10 \sigma_\delta$
- Fringe fields effects:
 - add octupole coils near FF quadrupole magnets
 - On-momentum DA: Hor. > $25\sigma_x$, Ver. > $80 \sigma_y$; off-momentum DA: > $10\sigma_x @ 10 \sigma_\delta$

LMA 与 Touschek 寿命

- Local momentum acceptance (LMA) evaluated by Elegant
- Lower H function to increase LMA by linear optics design
- Integration of FF quadrupole fringe fields significantly degrades LMA
- With octupole compensation, the LMA recovers a lot
- Touschek lifetime: > 300s with crab sextupoles on and fringe fields compensation with ideal lattice and >220s with errors

Touschek Lifetime (s)	Ideal lattice	with errors
w/o edge effect	351	283
w/ edge effect	242	166
w/ edge effect and octupoles	309	226

Double-checked by Anton Bogomyagkov from BINP

误差分析与校正

- Analyze the errors of the ring and add BPMs and correctors for correction
- BPM and corrector layout:
 - Place BPMs and correctors next to quadrupoles; 405 BPM in each ring.
 - QF: CORx; QD: CORy; Sextupole: double-plane corrector and skew quadrupole;
- Misalignment Errors:
 - FFT doublet: more strictly than other quadrupoles
 - IR sextupoles: more strictly than sextupoles in the Arc
- Correction strategy
 - First turn trajectory correction
 - Orbit and dispersion correction the whole ring and IP (SVD+DFS)
 - Optics and coupling correction (LOCO)
 - β_y^* correction: K-modulation

	∆x (µm)	∆y (µm)	∆s (µm)	$\Delta \theta_x$ (mrad)	$\Delta \boldsymbol{\theta}_{y}$ (mrad)	$\Delta \theta_s$ (mrad)
Dipole	100	100	100	0.1	0.1	0.1
Quadrupole	50	50	100	0.1	0.1	0.1
FFT doublet	30	30	100	0.1	0.1	0.1
Arc/IR Sextupole	50/30	50/30	100	0.1	0.1	0.1

误差分析与校正

详见杨鹏辉报告	

	Global	@IP
Hor./Ver. orbit, MAX (µm)	371/328	0.52/0.10
Hor./Ver. orbit, RMS (µm)	48.3/47.6	0.17/0.034
Hor./Ver. dispersion deviation, MAX (mm)	7.0/1.8	0.81/0.04
Hor./Ver. dispersion deviation, RMS (mm)	0.48/0.17	0.35/0.014
Hor./Ver. β-beat, MAX (%)	3.0/3.8	0.12/0.86
Hor./Ver. β-beat, RMS (%)	0.13/0.17	0.04/0.29
Hor./Ver. tune shift, MAX (×10 ⁻⁴)	0.21/2.5	
Couling factor MAX/RMS (×10 ⁻⁵)	7.9/2.8	

Damping wiggler 与发射度控制

Damping wiggler (DW)

- Reducing damping time and emittance control , damping time < 30 ms, $\varepsilon_x \sim$ 5 nm rad
- Room temperature DW has been adopted as baseline \rightarrow mature technology
- the total DW length is proportional to B_w^{-2} , higher B_w is favorable , 1.6 T -> 1.9 T , 76.8 m -> 54.5 m
- The period length λ_w affects the field shape, large λ_w is more efficient for damping , 0.8m -> 0.6m
- An even-pole (2N) with a pole sequence of {+1/4, -3/4, +1, -1, ..., +1, -1, +3/4, -1/4}.

Parameter	Value
Beam energy (GeV)	1.0 – 3.5
Wiggler length (m)	4.8
Peak field (T)	1.6
Period length (m)	0.8
Magnetic gap (mm)	50
Number of wigglers per ring	16
Total wiggler length per ring (m)	76.8

束-束相互作用

• 束束相互作用

- Crab waist方案可以有效提高峰值亮度,但是无法抑制Synchrobetatron共振和相干X-Z不稳定性: $v_z / \xi_x \gtrsim 3$
- 相干 X-Z 不稳定性对亮度性能有显著影响 -> 考虑增加 v_z 以及减小 β_x^* 来抑制X-Z不稳定性
- 工作点选取: $0.5 + nv_z < [v_x] < 0.5 + (n+1)v_z$ with n = 1 or 2
- 纵向阻抗将共振范围变宽 (ν_z spread) 同时会降低共振强度 (Landau damping)
- 强强模拟给出带Lattice后亮度会有所降低,仍然可以达到1×10³⁵ cm⁻² s⁻¹

详见李桑丫报告

束-腔相互作用

- STCF选择TM020高频腔,高品质因子(Q),低R/Q值
- 研究TM020腔基模和高次模产生的耦合束团不稳定性及其抑制措施
- 对于基模产生的耦合束团不稳定性,可以通过低电平PI反馈来进行充分抑制
- 高次模产生的耦合束团不稳定性增长率超过了阻尼率,需要通过纵向反馈来达到抑制效果(1ms)
- 瞬态束流负载效应导致束团质心位置变化约±13 ps: 对亮度影响不大

阻抗驱动的集体效应

- 纵向微波不稳定性
- 采用简单的宽带谐振子(BBR)模型估算@2GeV
- 有效阻抗选取 0.2 Ω 和 0.1 Ω
- 准确计算依赖于具体阻抗建模
- 需严格控制阻抗预算
- Keil-Schnell-Boussard criterion:

• 横向耦合模式不稳定性TMCI

$$I_{th} = \frac{4\pi v_s (E_0 / e)}{T_0 \sum_i \beta_{y,i} k_{y,i}} \longrightarrow \sum_i \beta_{y,i} k_{y,i} < 78 \text{ kV/pC/m}$$

- 限制单束团流强阈值
- 准直器起主导作用
- 后面根据准直器的阻抗模型进行计算
- 电阻壁不稳定性
 - - 假设全环 25 mm半径铝制真空室 -> 不稳定增长率
 1.6 ms⁻¹
 - 采用横向逐束团反馈进行抑制

束流注入-离轴注入

- > 兼容离轴与置换注入的光学设计,前期采用离轴注入,后期切换到置换注入
- > 离轴注入: 技术成熟, 注入器相对简单; 需大动力学孔径, 造成对撞区束流损失, 增大本底
 - 切割磁铁+凸轨磁铁
 - 注入效率: ~95% (ideal) → ~70% (考虑septum漏场和注入位置误差)
 - 束流主要损失在对撞点上游超导四极铁处
 - 需通过束流准直系统准直丢失粒子

参数名称	数值
注入点环内/环外β _x [m]	33.34/11.53
注入束角度 [mrad]	-2.45
注入点凸轨高度 [mm]	3.86
注入点凸轨角度 [mrad]	-2.50
凸轨回落后注入束位置 [mm]	4.36
凸轨持续时间 [圈]	1
凸轨磁铁长度 [mm]	350
凸轨磁铁最大偏转角度 [mrad]	<3.5
凸轨磁铁磁场强度 [Gs]	< 1167
薄切割板高度 [mm]	5.54
薄切割板厚度 [mm]	1.0
薄切割磁铁机械长度/有效长度 [mm]	0.65/0.6
薄切割磁铁磁场强度 [Gs]	5500
薄切割磁铁偏转角度 [mrad]	28
厚切割板厚度 [mm]	2.0
厚切割磁铁机械长度/有效长度 [mm]	1.7/1.3
厚切割磁铁磁场强度 [Gs]	9900
厚切割磁铁偏转角度 [mrad]	110

束流注入-置换注入

- > 置换注入: 对动力学孔径需求低, 束流本底噪声减少; 注入器复杂且造价高
 - 切割磁铁+条带型超快冲击磁铁,与离轴注入采用相同的切割磁铁设计
 - 垂直发射度对注入效率影响较大,小于15 nmrad

-3

S (m)

-2

-1

参数名称	数值
冲击磁铁长度 [mm]	300
冲击磁铁偏转角度 [mrad]	0.5
冲击磁铁极板间距 [mm]	12
模块数量	5
上升/平顶/下降时间 [ns]	2/2/2
好场区 [mm]	±5
注入束进入冲击磁铁的位置 [mm]	2.45
电压幅值 [kV]	> 17.5
束团注入频率 [Hz]	30
薄切割板高度 [mm]	5.54
薄切割板厚度 [mm]	1.0
薄切割磁铁机械长度/有效长度 [mm]	0.65/0.6
薄切割磁铁磁场强度 [Gs]	5500
薄切割磁铁偏转角度 [mrad]	28
厚切割板厚度 [mm]	2.0
厚切割磁铁机械长度/有效长度 [mm]	1.7/1.3
厚切割磁铁磁场强度 [Gs]	9900
厚切割磁铁偏转角度 [mrad]	110

束流准直系统

- 束流损失问题具有非常大的挑战(high luminosity, short Touschek lifetime)
- 束流损失机制研究: Touschek scattering effect, beam injection, beam-beam effect, beam-gas effect, beam sudden loss

Touschek scattering effect: calculate off-momentum optical function and beam size \rightarrow Collimators are favorable to set at large beam size, optimize collimator number, gaps, materials.

- Each ring is equipped with 11 horizontal collimators and 2 vertical collimators.
- The minimum half gap is 7 mm.

Collimator	Half gap [mm]	Half gap [*σ]	Position [m]	$\beta_{x/y}$ [m]
HC1	8	24.10	112.62	8.03
HC2	12	36.29	203.18	7.98
HC3	9	25.14	259.15	27.68
HC4	21	23.31	307.34	161.11
HC5	10	23.55	342.05	15.99
HC6	12	28.65	350.23	15.34
HC7	11	26.09	394.21	18.91
HC8	10	23.23	410.23	18.36
HC9	8	25.48	536.91	7.52
HC10	8	25.47	631.15	7.57
HC11	13	24.27	739.09	61.99
VC1	7	49.38	282.87	1.53
VC2	7	34.54	285.06	1.61

Touschek 散射准直模拟结果

Without collimators :

uuuu

- Approximately 58.2% of particle losses occur in IR (370 ~ 380 m);
- About 11.2% of losses occur in the CCX section upstream of the IR (300 ~ 320 m);
- Around 13.4% of particle losses happen near the crab sextupole magnet before the IR (270 ~ 290 m).

With collimators :

- Beam loss within ±20 m of the IP is approximately 1.3%;
- The remaining particles not intercepted by the collimators are uniformly distributed in the arc sections and DW regions;
- The collimation efficiency reaches 97.3%.

Beam loss distribution: (left) without collimators; (right) with collimators.

- STCF 核心目标: CoM energy range 2~7 GeV, 0.5×10³⁵ cm⁻² s⁻¹@ 4 GeV, Touschek lifetime > 200 s
- Lattice设计和非线性动力学优化
 - Lattice设计(V4.3):线性光学和非线性优化
 - 考虑准则误差和高阶场误差,并进行校正
 - Luminosity: ~1×10³⁵ cm⁻² s⁻¹ @ 4 GeV
 - Touschek lifetime: >300 s with ideal lattice and >230 s with errors @ 4 GeV
- 束流集体效应
 - Crab waist方案可以有效提高对撞亮度 (1×10³⁵ cm⁻² s⁻¹), 需要避免出现X-Z不稳定性 (v_z =0.0194 > 3 ξ_x (0.005)), smaller β_x^* is favorable (40 mm)
 - 模拟中发现空间电荷效应,影响不是很严重
 - 需严格控制阻抗预算
- 下一步工作:
 - 第5版lattice设计:减小 β_x^* ,缩短DW长度,缩短周长
 - 继续深入研究束流动力学,进一步提高动力学孔径,动量接受度,从而提高Touschek寿命
 - 建立阻抗预算,深入研究束流集体效应
 - 继续研究束流注入引出、束流准直系统

Home » Exper	iments » STCF »	Accelerator	» Collider Ring Group Meeting	ig (CRAP)			
Collider	Ring Gro	up Me	eting (CRAP)		输入您的搜索词	Q	
	对撞环物理设计	十组会					
	2025年	7月					
		7月02日	STCF Collider Ring P	Physics Weekly Meetir	ng		
	2025年6	5月					
		6月25日	STCF Collider Ring F	Physics Weekly Meetir	ng		
		6月18日	STCF Collider Ring F	Physics Weekly Meetir	ng		
		6月11日	STCF Collider Ring F	Physics Weekly Meetir	ng		
	以前的65个事	驿件。 显示	STCF C 翩 星期三 : 说	Collider Ring Physi 2025年6月18日 14:00 → 16:6 週 腾讯会议链接: https://meeting #腾讯会议: 452-9293-2730	ics Weekly Meeting 50 Asia/Shanghai g.tencent.com/dm/Jq04JyP06CW2		♂ •
			14:00 → 14:05	唐靖宇-本周情况通报			© 5m 🕝 🗸
			14:05 → 14:10	邹野-CRAP 系统主要信息			⊙5m 🖉 🗸
			14:10 → 14:40	注入引出进展 报告人: 泽 于			(© 30m 🖉 🗸
				2025.6.18.pptx			
			14:40 → 15:05	<mark>对撞区crab-waist对束流效果</mark> 报告人: 虞焓 金			3 25m 🖉 👻
				jinyuhan_20250618			
			15:05 → 15:25	束束相互作用进展 报告人: 德民 周			⊙20m 🗷 🕶
				20250618_BB(1).pdf			
			15:25 → 15:45	各子任务进展报告			320m 🖉 🗸
			15:45 → 15:55				310m 🖉 🗸
				3101-对理环初理攻			

会	议	纪	要
STCF 对撞环物理	设计周例会		2025 年 6 月 18 日
会议形式:线下(科技实验楼东楼)
时间: 2025年6月	18日 14:00-1	7:00	
腾讯会议: 807-54	64-4247		
参会人员:			
 - 线下参加: 唐 航洲、周昊、 	「靖宇、邹野、文 梁文姝、高嘉 [、]	刊涛、张林浩、 俊、金虞焓	李桑丫、莫铱豪、李
- 线上参加:吴 蔡承颖、常铭 箐	、英志、原有进、 3轩、于泽、鲍极	周德民、彭海 建聪、李伟伟、	¥平、樊宽军、王磊、 何天龙、杨鹏辉、罗
- 请假:无			
- 主持人: 邹里	Ŧ		

- 记录和纪要整理: 莫铱豪/张林浩

Acknowledgments

