

1

STCF BTOF Simulation, Digitilization and Reconstruction

Speaker : Teng Ma

>Introduction

- Simulation
- Digitilization
- Reconstruction
- Optimization
- ≻Summary

Introduction

STCF Introduction

STCF Future Performance :

- Center of Mass Energy : $2 \sim 7 GeV$
- Peak Luminosity : $0.5 \sim 1 \times 10^{35} cm^{-2} s^{-1}$
- Cross Angle : $2 \times 30 mrad$

MUD

 μ/π suppression power >30 at p < 2 GeV/c

EMC

- Energy range: 25 MeV 3.5 GeV
- σ_E/E ~ 2.5% at E = 1 GeV
- $\sigma_{\text{pos}} \sim 5 \text{ mm}$, $\sigma_{\text{T}} \sim 300 \text{ ps}$ at E = 1 GeV

PID

 π/K (and K/p) efficiency >97% with mis-ID <2% up to 2 GeV/c

MDC

- σ_{pos} = 130 μm
- $dE/dx \sim 6\%$, $\sigma_p/p = 0.5\%$ at 1 GeV/c
- Efficiency > 99% at p_T > 0.3 GeV and >90% at p_T = 0.1 GeV/c

ITK

- ~0.25% X₀/layer
- σ_{pos} = 100 µm for single hit

4

Simulation

BTOF Geometry

- 12 sectors, each corresponds with 30° azimuthal angle and has two silicon quartzs (1350mm * 450mm * 20mm), covered by a shield.
- Absorb coating on inner side and 15 MCP-PMTs (1×16 pixels) on outer side of quartz.
- Each PMT is connected with a front PCB and a FEE above

Simulation Parameter

Digitization

BTOF Digitilization

Digitilization processes:

- Simulate the performance of photon electron in MCP-PMT.
- Add Time-Amplitude Wandering Effect, T_0 uncertainty and dead time (5ns).
- Output channelID, TOA, TOT as input of reconstruction algorithm.

Digitilization parameters:

- TOT = TOTDis->GetRandom() (3 Gauss)
- TTS = TTSDis->GetRandom() (2 Gauss)
- TOTtru = TOT + Gaus(0, 10ps)
- TOTMEAN = 780 ps TOT_CALIPAR = 0.35
- TOA = time + TTS + (TOTtru TOTMEAN)
 * TOTCALIPAR

Reconstruction

Reconstruction Principle

• $\overrightarrow{v_t} = (t_x, t_y, t_z)$ $\overrightarrow{v_p} = (\Delta X, \Delta Y, \Delta Z)$

•
$$cos\theta_{C} = \frac{1}{n\beta} = \frac{\overrightarrow{v_{t}} \cdot \overrightarrow{v_{p}}}{|\overrightarrow{v_{t}}| \cdot |\overrightarrow{v_{p}}|}$$

•
$$\Delta Z = Z_{hit} - Z_{ini}$$

•
$$\Delta X = X_{hit}(k) - X_{ini}$$

- For each k, we calculate ΔY and $LOP = \sqrt{\Delta_X^2 + \Delta_Y^2 + \Delta_Z^2}$
- The photon path with minimum $|TOF_{rec} TOF_{hypo}|$ is selected

•
$$t_x \Delta X + t_y \Delta Y + t_z \Delta Z > 0 \ (\theta_C \operatorname{not} \pi - \theta_C)$$

$$(\Delta X^{2} + \Delta Z^{2}) / (\Delta X^{2} + \Delta Y^{2} + \Delta Z^{2}) \ge 1/n_{p}^{2} \text{ (TIR1)}$$
$$(\Delta Y^{2} + \Delta Z^{2}) / (\Delta X^{2} + \Delta Y^{2} + \Delta Z^{2}) \ge 1/n_{p}^{2} \text{ (TIR2)}$$

- ΔrecTOF (TOF_{rec} TOF_{hypo}) distribution can be described with 3 Gauss model :
 - $\Delta recTOF$ = ratio1 * Gaus1(0, resTOF) + $\frac{ratio1}{2}$ * Gaus2(0.135, sigma1) + (1 1.5 * ratio1)
 * Gaus3(0.05, sigma2)
- Gaus1 is the main peak, Gaus2 represents the effect caused by TTS, Gaus3 represents the impact caused by multi-scattering.

Separation between π/K (missid = 2%)

ı3

Efficiency of π (missid = 2%)

Fheta

Efficiency of K (missid = 2%)

N_{pe} of π (missid = 2%)

N_{pe} of K (missid = 2%)

Imaging Method

2D rec Method

- $\overrightarrow{v_t} = (t_x, t_y, t_z)$ $\overrightarrow{v_p} = (k_x, k_y, k_z)$
- θ and ϕ are polar and azimuthal angles of particle track
- θ_c and ϕ_c are polar and azimuthal angles of photon track relative to particle direction
- Then we have :

$$\begin{cases} k_x = \cos\phi \left(\cos\theta \sin\theta_c \cos\phi_c + \sin\theta \cos\theta_c\right) - \sin\phi \sin\theta_c \sin\phi_c, \\ k_y = \sin\phi \left(\cos\theta \sin\theta_c \cos\phi_c + \sin\theta \cos\theta_c\right) + \cos\phi \sin\theta_c \sin\phi_c, \\ k_z = \cos\theta \cos\theta_c - \sin\theta \sin\theta_c \cos\phi_c. \end{cases}$$

• $LOP = \sqrt{\Delta_X^2 + \Delta_Y^2 + \Delta_Z^2}$, Δ_z we already know, then by (k_x, k_y, k_z) we can also determine

 Δ_X and Δ_Y , Then we can get time information by t = TOF + TOP

• By folding the photon path, we can finally get the reaching channel of the photon.

2DPDF Calculation

- To get 2D time-channel PDF to calculate likelihood conveniently, we divide wavelength(λ), particle track in the radiator and ϕ_c into many pieces
- In each λ interval, we have certain N_p , N_g and θ_c
- Then we divide particle track, in each interval we have the emission position and track momentum.
- After the binning above, we divide ϕ_c , then we can reconstruct the photon path and get time and channel information.
- Photon transmission efficiency $\epsilon = R_{lateral}^{Nx} * R_{bottom}^{Ny} * e^{-\frac{LOP}{\Lambda}} * \epsilon_{QE} * \epsilon_{Tgrease}$
- Total reflection should also be satisfied. ($\sin \theta_p \ge 1/N_p^{max}$)
- Then we can calculate $N_h = \sum_{i=0}^{Bin\lambda} \sum_{j=0}^{Bin\lambda} \sum_{k=0}^{Bin\lambda} \frac{2\pi z^2}{137} \sin^2\theta_c (\frac{1}{\lambda_{min}} \frac{1}{\lambda_{max}}) dL * \epsilon$

•
$$\mathcal{L}_h = e^{-\overline{N}_h} \prod_{i=1}^{N_{pe}} \overline{N}_h S_h (ch_i, t_i) + B$$

Comparision

Both appearance and N_{pe} between PDF and simulation are in good agreement !

Theta

Separation between π/K (missid = 2%)

heta

Efficiency of π (missid = 2%)

Theta

Efficiency of K (missid = 2%)

Optimization

Pixels change

1*16 Pixels

Momentum: 2000 Theta: 85 π/ K separation = 4.15σ πPID Efficiency = 0.981 K PID Efficiency = 0.981	Momentum: 2000 Theta: 85 π/ K separation = 4.3σ πPID Efficiency = 0.987 K PID Efficiency = 0.987	16 14 12 10 10 10 10 10 10 10 10 10 10
Momentum: 2000 Theta: 65 π/ K separation = 3.78σ πPID Efficiency = 0.956 K PID Efficiency = 0.956	Momentum: 2000 Theta: 65 π/ K separation = 3.97σ πPID Efficiency = 0.971 K PID Efficiency = 0.972	8 6 0 20 40 60 80 100 120 140 160 180 200 220 1*16 Pixels
Momentum: 2000 Theta: 55 π/ K separation = 3.7σ πPID Efficiency = 0.949 K PID Efficiency = 0.948	Momentum: 2000 Theta: 55 π/ K separation = 4.04σ πPID Efficiency = 0.976 K PID Efficiency = 0.976	15 14 13 12 11 10 9
Momentum: 2000 Theta: 37 π/ K separation = 3.89σ πPID Efficiency = 0.967 K PID Efficiency = 0.967	Momentum: 2000 Theta: 37 π/ K separation = 3.96σ πPID Efficiency = 0.97 K PID Efficiency = 0.971	⁸ 7 0 20 40 60 80 100 120 140 160 180 200 220 4*4 Pixels

4*4 Pixels

Geometry change

- In each sector, two silicon quartzs are connected with grease instead of absorbing coat on inner side.
- Performance when large polar angle is hoped to be improved.

Geometry change

New Geometry (Imaging)

Old Geometry (Imaging)

Momentum: 2000 Theta: 85 π/ K separation = 4.6σ πPID Efficiency = 0.993 K PID Efficiency = 0.993	Momentum: 2000 Theta: 85 π/ K separation = 4.3σ πPID Efficiency = 0.987 K PID Efficiency = 0.987
Momentum: 2000 Theta: 65 π/ K separation = 3.98σ πPID Efficiency = 0.972 K PID Efficiency = 0.972	Momentum: 2000 Theta: 65 π/ K separation = 3.97σ πPID Efficiency = 0.971 K PID Efficiency = 0.972
Momentum: 2000 Theta: 55 π/ K separation = 4.09σ πPID Efficiency = 0.979 K PID Efficiency = 0.978	Momentum: 2000 Theta: 55 π/ K separation = 4.04σ πPID Efficiency = 0.976 K PID Efficiency = 0.976
Momentum: 2000 Theta: 37 π/ K separation = 4σ πPID Efficiency = 0.972 K PID Efficiency = 0.973	Momentum: 2000 Theta: 37 π/ K separation = 3.96σ πPID Efficiency = 0.97 K PID Efficiency = 0.971

Summary

- BTOF simulation, digitalization and reconstruction have been completed.
- TOF and 2D algorithm have all reached the requirement of STCF CDR.
- New optimization of geometry change can improve PID performance.

