STCF Core Software Status

Teng LI on behalf of the STCF core software development team
Shandong University
2025-7-4
202542 g 585 B = T

Main R&D Challenges for STCF Software

+ Main R&D challenges and innovations for STCF core software

e The amount of data requires much more advanced performance

= Relying on pure single-threaded CPU resource to process
hundreds of PB of data is hardly realistic

= Parallel computing, as well asheterogeneous resources, need to
be considered to overcome the challenges.

= The core software needs to provide ready-to-use development
and run time environment

e Adoption of common software developed for future colliders

0S Kernel and Libraries
(Non-HEP specific)

generic

= OSCAR is developed partially based on Key4hep, including
EDM based on podio, geometry based on DD4hep etc. Key4hep

Thomas Madlener,
e Better support of ML-based applications Epiphany Conference 2021

Overview of STCF Core Software

<+ The task of the STCF core software

e To fulfill official offline data processing tasks, i.e. detector simulation, digitization, calibration and

reconstruction

e Provide a common platform for users to perform data analysis

< Qverview of STCF core software

Tracker PID, ECAL, MUD

Detector Simulation

Reconstruction Reconstruction
. . Analysis Toolkit RDataFrame-based
Generator Fast Simulation o :
(PID, Fitting, etc.) Analysis Framework
””” Underlying ' | | patabase ' STCF Core Software
DataModel ' e
,,,,, Framework | . . Interface Event Display
" Geomety 1 [EventData || S R
[L. ML Interface
. ___Management __ . __ Management _ | | Validation System | ----------------—---
Parallel & Heterogenous
Computing Technology
CPU GPU FPGA Many-core CPU

The underlying framework
Event data management
Detector description and conditions data
management

Event display

Support of ML, parallel computing, and
heterogeneous computing
Software and physics validation

3
Software build, installation and distribution

Recent Progress of OSCAR

+ Several new releases since FTCF2025
e 2.6.0, 2.6.1, 2.6.2 (current release) and a few pre-releases
e Most functionalities in place and stable, supporting MC production and physics studies
e Supporting physics studies for the TDR as the first priority
<+ Major updates in 2025:
e Great optimization of disk consumption and running speed of simulation and reconstruction jobs
e Release of fast simulation software package
e Release of Global-PID based on weighted combined likelihood method
e Release of ACTS-based tracking
e Major updates of EventDisplay

e |ots of optimizations and fixes for various physics simulation studies

<+ Dedicated tutorial in 2025 Feb. Many analyzers get envolved

Underlying Framework: SNIiPER

< The underlying framework builds the skeleton of OSCAR

e Provide basic functionalities of event loop control, algorithm scheduling, thread management, user
interface, job configuration, logging etc. (Like Gaudi for BOSS)

«+ OSCAR adopts SNIPER as the underlying framework
e Lightweighted, efficient and highly extendable
e Developed since 2012, maintained by 10+ developers from IHEP, SDU, etc.

e Adopted by JUNO (neutrino), LHAASO (cosmic ray), nEXO (neutrinoless double beta decay) and HERD
(dark matter)

<+ Recent updates
e Better support for inter- and intra- event level parallism

o | o Task Global GlobalStore / Muster Threads - -\
Bkg1 SubTask nput fas Input St > Special I/0 Svc :
) e e /_Event 1 / Worker Task | |-+
N Input Sve j‘ Special /0 Sve J‘
\TBK_E/ SubTask Muitistream et A Special 10 etk L F :
utpu i pecial Ve
kel Task P e fles / Event3 / Worker Task | |-+
i files Special /0 Svc :
——— nager Output Sve [/ More e ; More e - -
: |
Signal SubTask demand Output Task | Je—e //—P — Multiple Tasks Scheduler
B Output Stream \ reae /) \ of MT-SNiPER /

Event Data Management

< Event data management is the most crucial part of the framework

e Provide tools to define the Event Data Model (EDM)

= The definition of physics event data (MC particles, hits, readouts, tracks, clusters,
reconstructed particles),

= Construct relationship between data objects (e.g. which particle makes these hits? Which
hists are used to fit a track, etc.)

e Provide automated memory management and data 1/0 functionalities
e Provide backward and forward compatibility, very important for the long running of STCF.
e Guarantee thread-safety, and provide high performance for MT applications

Event Data Model]
N

- O A h Memory Management
Da_lta VO || wmcTrumn Raw/MC Data Hen e g oy
File ¥ X ec
\

[

 , N 7 \ Y
e Errte oty e

STCF Applications

Event Data Model and of OSCAR

MCParticle:
. Description : "Data class for storing Monte Carlo particles"
TraCkerHlt - Author : "SDU" YAML
/TrackerPoint | ; iICKersec Members :
g - int trackID // track ID
- int PDG //PDG code of the particle
) - int generatorStatus //status of the particle as defined by the generator
PlDHIt : PID — - int simulatorStatus //status of the particle from the simulation program - use BIT constants
. ' [) : - int type //particle type. only generatorStatus== 1 or 2 has the type
/PIDPoint ’ : ' = - float charge //particle charge
- float time //creation time of the particle in [ns] wrt. the event, e.g. for preassig
- double mass //mass of the particle in [MeV]
- Vector3d vertex //production vertex of the particle in [mm].
- Vector3d endpoint //endpoint of the particle in [mm]
- Vector3f momentum //particle 3-momentum at the production vertex in [GeV]
- Vector3f momentumAtEndpoint //particle 3-momentum at the endpoint in [GeV]
- Vector3f spin //spin (helicity) vector of the particle.

¥

ECALHit
/ECALPoint code generator
MUCHit '
/MUCPoint

MCParticle.h MCParticle.cpp
MutableMCParticle.h MutableMCParticle.cpp C++
MCParticleObj.h MCParticleCbj.cpp
MCParticleData.h MCParticleData.cpp
MCParticleCollection.h MCParticleCollection.cpp
MCParticleCollectionData.h MCParticleCollectionData.cpp

Based on YAML definition, generate EDM C++ code accordingly

EDM classes defined in OSCAR

7

—— - ———

Transient Event Store and Data I/0

« Transient Event Store (TES) is where EDM objects are stored in memory

e TES in OSCAR is developed based on podio::EventStore
e Being migrated to podio::Frame (code mostly ready)

e Support both serial and parallel applied software

eSimAs| fiesfinier ekt

GET PUT
f Collection Collection
/’ TES N . event
mcpars track candidates ! ’
par | par | ... BB -
1
' — -
mdchit track : - -
OoE BoaeE -
1 —
iqi cluster Data l/O .
: _=
) -
) . metadata

o
Event loop
— >

BeginEvtHdI

Rt < pssssa >
RG] <>

e rosiooupuse]
: ﬁ
Task

Implementation of TES and data 1/O
* PodioDataSvc
« PodiolnputSvc
* PodioOutputSvc

L)

Detector Description Management: Requirements

data processing workflow

» A powerful detector description management system is necessary across the full offline

Provide simple method for geometry description definition

Provide consistent detector description for all applications

Provide geometry conversion for different applications, and versioning management

Provide interface for conditions data and detector alignment

Provide simple and ready-to-use interfaces for applications

[SimulationS] gigitization] [Reconstruction] [Analysis]

Simulation
Plugin

N Jad

Reconstruction

Plugin
/ |

Detector Description
Management

Geometry
Definition

Conditions
Data DB

Geometry Management System

+ Geometry Management System (GMS) in OSCAR is based on DD4hep

« Single source of detector information for detector description, simulation reconstruction
and event display

e Complete geometry defined with XML files and C++ parser
e Various plugins for applications
e Interface for alighment and conditions data

< Full detector defined and stably used, now being further refined (e.g. implementing
supporting structures)

(Generic Detector STCF.xml
Compact Detector inti
Ejescription]—[constructors]‘ Description Model f
xml C+‘JJ Based on ROOT TGeo
| python \ cH+
rAIignr;1entI ECAL
S?;;,’,';‘;,"V Calibration VTD © v03.xml Other

v02.xml m—i— sub-detectors

Extensions (Lcop/GDML | [TGeo => G4 Reconstruction| | Analysis '
where Converter converters Extensions Extensions
 required S . f

-

SLIC Geant4 Reconstruction Analysis Materials.xml Elements.xml
[SiD Simulation] Program Program Program

. P

Detector and Event Display

<+ A common geometry and event display system is being developed
e Based on Web3D technology and the open-source JSRoot framework
e 3D engine and graphic libbrary based on Three.dS

e Geometry information from detector description from DD4hep (XML), and event data from podio

e Major updates in 2025, now supporting the latest event data format (display of tracker and ECAL
hits, tracks and showers are supported)

Parallelized Data Processing

<+ Parallelized detector simulation and reconstruction applications are implemented

e Basic performance tests show promising scalability

Condition Lock

____________ >

slot
condition

rely

notify

Data Data Data [sE1EY Data Data Data
Slot Slot Slot Slot Slot Slot Slot

condition

Detector
Construction

PhysicsList

MTACction
Initialization

1
MTPrimary
Generator
Action

Global Task

SimFactory

|<—{ MasterRunMgrSvc ‘

| STCFRunAction | i

1
I
| STCF TrackingAction | :
1

| SensitiveDetector |
e

1

| G4AMTRunManager |‘ ***** :

S 18 i ol il 5 i 1 it i . DTt Y i i, St

| DetSimMTAIg |
+ H
| SlaveRunMgrSvc }' ----- :
+

| G4aworkerRunManager

T Worker Task

12

cpu utilization (x100%)

500

Resident Memory per Core (Mb)

cpu utilization versus number of threads

Number of Cores

----- single-thread .
4
e multi-thread i
L
//.,
,t
,'
]
'/
I'.
’/
/’.
’/
I,,.
ot
'/
«
o
,l
{4
ot
’l
4
,l
&
)
’/
~
4
'l
%d
'l
i
'l
4 8 12 16
thread

i Resident Memory per Core (Mb)
1 4 7 10 13 16 19

12

Fast Simulation Framework

<+ The fast simulation framework is now integrated with OSCAR (more features being developed)
<+ Flexible for different detecting response and friendly for physics sensitivity study

<+ Much faster and less disk storage consuming compared to full simulation (~2ms per event, ~2kb storage
for a 4prong J/\p decay event)

Realization: €, o, PID. recch | S
trutrk : o J TrackCollection
track helix, errMatrix.. recgam ShowerCollection
3
C\Io fdo N 2(103 o
- — - ; (&S] r .
% 2.5 (a) + Full simulation % 14¢ (a) + Full simulation E 10 (a) + Full simulation
= 12 -
o 2F — STCFast = — STCFast S gf — STCFast
o - - 10 > -
@ 15F ‘g sl - 6F
c f 2 :
C i eF B
T L 41
0.5F 23_ 2:
:..M.l A 1 e R s sl — e st :"""""""""'
066367 368 369 37 371 372 00801 otz o014 016 018 0 20 40 60 80 100

M(y(3686))(GeV/c?) M(x)(GeVic?) Lo,

Machine Learning Support

<+ Various applications in OSCAR (being) developed using ML techniques. Integrating trained

model, with the data processing chain properly is vital

<+ ONNX Runtime is provided for ML model inference

e Convert ML models to common middleware representation
and embedded into OSCAR offline data processing

e Deep-learning framework agnostic

e Support inference on both GPU and CPU

e Now being used in DTOF CNN-based PID algorithm
e Being applied to GNN-based noise filtering

bool OrtInferenceAlg::initialize() {

\ m env = std::make shared<Ort::Env>(0ORT_LOGGING [LEVEL WARNIMNG, "ENV");
m_seesion options = std::make shared<Ort::SessionOptions>();
m_seesion_options->SetIntraOpNumThreads({m intra op nthreads);
m_seesion_options->SetInterOpNumThreads({m_inter_op_nthreads);

m_session = std::make shared<Ort::Session>(*m _env, m _model file.c str(), *m seesion_options);
. — — P— — — — S e ——

e ——

iceAllocator, 8, OrtMemTypeDefault});

Ort::Value::CreateTensor(info,
inputs.data(),
inputs.size(),
dims.data(),
dims.size());

std: :vector<Ort::Value> input_tensors;
input tensors.push back(std: :move(input tensor));

auto output_tensors = m_session->Run{Ort::RunOptions{ nullptr },
m_input node names.data(),
input_tensors._data(),
input_tensors.size(),
m_output node names.data(),
m_output_node_names._size());

for (int i = @; i < output tensors.size(); ++i) {
LogInfo << "[" =
<< " " << m_output_node_names[i]
<< st 180 elements): "

<<
const auto& output_tensor = output_tensors[i];
const float* v output = output tensor.GetTensorData<float>(); ‘

for (int j = @; J < 18; ++3) {
Euplnte ¢ B ea o S r ot iR an R e st g
<< v_output[j]
<< std::endl;

14

Software Optimization

<+ Towards massive data production for the TDR, OSCAR is greatly optimized, in terms of the
execution speed and output data volume

e [ots of optimization of simulation, digitization and reconstruction algorithms (further optimization is
still being performed)

e Optimization of event data model (removal of redundant information, using more efficient data
types, etc.)

e Performance is comparable to BESIII now

Time Consumption per Event Disk Space

= [TK Digi.

1800 1628ms
481kb

1400 500
1200 400
1000
833ms 300
800
600 200 150kb
400 300ms 100 77kb
26kb
] : — -
0

Det. Sim. Digi. and Rec. Det. Sim. Rec.
W260M26.1 Bm260M261

= MDC Digi.

ECAL Digi.
= DTOF Digi.
= RICH Digi.
= MUD Digi.
= Track Rec.
= Track Ext.
= DEDX Rec.
= ECAL Rec.
= DTOF Rec.

® RICH Rec.

= MUD Rec.

J/y decay event 15

Events(scale)

Data Analysis

+ GlobalFit package designed for STCF based on the tree fitting algorithm of Belle I,
showing better performance than VertexFit imported from BESIII

Invariant mass of A

| —+ GlobalFit
— Mean: 1.11538
Std: 0.00215

B — VertexFit

21— Mean: 1.11539

Std: 0.00217

N

98 Mean and RMS

values

L I~ AT (o))

— GlobalFit
Mean: 1.11555

Std: 0.00105
VertexFit

Mean: 1.11554

Std: 0.00107

I

Parameters from
Gaussian fitting

|

Invariant mass of 3

Events(scale)

—— GlobalFit
Mean: 1.18981 o Mean: 1.19116
Std: 0.01585 t Std: 0.00785
% — VertexFit
Mean: 1.18957 I\ Mean: 1.18942

Std: 0.01554 \j \ Std: 0.01012
|

n and RMS

% 11 = S P (mP)]

I

Parameters from
Gaussian fitting

DR ol & L s T
A 1.105 1.11

e bt 1.14 1.16 1.18 1.2 1.22 1.24 1.26
1.125

Unit: s

2000

1800

1600

1400

1200

1000

800

600

400

200

running time comparison

31mils

28m18s
RDFAnalysis
Speedup
4mdbs
2ml6s
| —
OSCAR RDFAnalysis

M 1000w events B 20w events

<+ RDataFrame-based analysis framework keeps being enriched and tested

e Physical analysis results are consistent using J/¥ —> AA

e Running speed significantly improved using parallel computing technique

Other Development Activities

<+ New features and updates of OSCAR being developed:

e Analysis Event Data Model is being developed
Skimmed data on full reconstruction EDM (like BESIII DST)
Greatly simplify analysis, and reduce disk storage burden
Initial design was done

e Software deployment based on Spack

As a multi-platform package manager that builds and installs multiple versions and
configurations of software, allowing flexible management of various external libraries

e AlmaLinux9 support
Now OSCAR runs in CentOS7 simularity containers, updating to el9 is being performed

e Fast calorimeter simulation based on GAN
Can greatly reduce computation resource comsuption for MC production

17

Summary

» We introduced the basic design and functionalities of STCF core software

» Based on the core components, STCF full simulation and reconstruction chain has

been established

» A dedicated OSCAR tutorial is performed during 2025 Feburary

¢ Including how to simulate and reconstruct data, how to perform data analysis, and how
to develop new algorithms in OSCAR

e A lot of physics analyzers are now involved, using OSCAR to perform physics studies
e OSCAR has been improved greatly since then (thanks a lot to all the feedbacks)
e TDR preparation has begun based on OSCAR

» We have been continuously improving the core software

e To improve the software and physics performance

18

