

STCF tracking with ACTS

Hao Li(ZZU), Hang Zhou(USTC), Hongkun Mo (USTC), Xiaocong Ai(ZZU), Xingtao Huang(SDU), Lailin Xu (USTC), Jin Zhang(SYSU)

超级陶粲装置 (STCF)

- 新一代探寻物质世界的正负电子对撞机
- 运行在2-7GeV能量区域,峰值亮度 大于0.5×10³⁵cm⁻²s⁻¹
- 具备进一步提升亮度和实现极化束流的潜力

> QCD和强子光谱(新强子,例如胶球、杂化强子等)
> 味物理和CP破坏
> 奇异衰变和新的物理特性

STCF径迹重建所面临的挑战

- 在STCF上的大多数物理过程的带电粒子的 P_T < 500 MeV/c
 - □ 物质效应越多→重建分辨率越差
 - □ $P_T < 130$ MeV/c的打圈径迹 → 会产生更多的假/重复径迹
- 长寿命粒子(A,Ks等)可以在ITK之外衰变,增加了重建难度

通用径迹重建软件(ACTS)

- 通用径迹重建软件(ACTS)由欧洲核子中心(CERN)主导开发,是基于LHC寻迹经验开发的现代开源寻迹工具
- 适用于当前和未来的 HEP 实验(ATLAS、ALICE、sPHENIX、 FASER、MUC、CEPC、STCF 等)
- 特点:
 - ✓ C++17 (C++20)
 - ✓ 适配多线程并行的现代CPU架构
 - ✓ 独立于探测器与磁场
 - ✓ 严格的线程安全
 - ✓ 外部库的依赖也很小 (Eigen)

Github: <u>https://github.com/acts-project/acts</u>

Readthedocs: https://acts.readthedocs.io/en/latest/

郑州大学参与核心径迹重建和探测器校准算法开发

ACTS内部几何结构

- ACTS中将用于全模拟的G4详细几何转化成简化的tracking几何,以提升 寻迹速度
- 通过扩展的ACTS plugin转换几何
 - □ 三层ITKW → 由ACTS::CylinderSurface 组成的三层ACTS layer
 - □ 三层ITKM → 由ACTS::PlaneSurface 组成的三层ACTS layer
 - □ 48层MDC丝层 →由ACTS::LineSurface 组成的ACTS layer

ACTS材料映射

- ACTS中有专门的材料映射工具,能够将详细的材料描述投影 到ACTS tracking几何表面上
- 通过Geant4的Geantino粒子记录的束流管以及径迹系统的物质量与ACTS的材料映射工具给出的物质量的对比,在不同角度下除了在径迹探测器系统边缘,在其它区间,二者在1%的误差范围内一致

STCF上的寻迹方案

- 全局寻迹算法Hough+GenFit 拟合算法已被优化,实现的GNN模块可有效去除噪声
- ACTS seeding+ ACTS CKF算法作为STCF寻迹的第二方案 □ ACTS已经集成在OSCAR中,该方案已可在框架中实现
- Hough(作为seeding算法)+ACTS CKF用于提升长寿命粒子的寻迹效率 □ 读取STCF探测器几何与击中数据,目前在框架外完成

8

Seeding+CKF无本底重建性能(standalone ACTS, ITKW)

- 对于μ, 在|cosθ| < 0.9, 500< P_T <600 MeV范围内, 重建效率为100%
- 对于 π , 在 $|\cos\theta| < 0.9$, 50 < $P_T < 100$ MeV范围内, 重建效率> 93%

Seeding+CKF有本底重建性能(standalone ACTS, ITKW)

- 对于μ, 在|cosθ| < 0.9, 500 < P_T < 600 MeV范围内, 重建效率100%
- 对于π,在|cosθ| < 0.9, 50 < P_T < 100 MeV 范围内,重建效率>96%

STCF上的长寿命粒子

- STCF上的长寿命粒子,例如AA,会在内径迹探测器内部或 者外部发生衰变,因此可能会在ITK上留下较少的击中甚至 没有击中
- 重建长寿命粒子是复杂而又艰巨的工作,并且由于长寿命 粒子的衰变特性,ACTS seeding算法的性能受到了很大的 限制
- 因此考虑使用全局寻迹算法例如霍夫变换作为seedind算法

2200

2000

1600

1400

1200

1000

800

600

400

200

0.25 0.3 Truth P_T [GeV]

长寿命粒子重建效率(standalone ACTS, ITKW)

对于将Hough Transform用作seeding算法:

- 对于 $P_T > 400$ MeV 的p质子, seeding效率> 90%
- 对于 $P_T > 100$ MeV 的 π 介子, seeding效率> 80%

H. Li et al., NUCL SCI TECH 36, 171 (2025)

- 保留经过霍夫寻迹后的重复径迹, 为之后的CKF提够足够的种子
- 霍夫变换对于粒子的衰变长度具 有更强的鲁棒性
- 在ITK留下足够的击中的情况下, ACTS的seeding效率更好

- Hough Transform+CKF:
 - 对于 $P_T > 400$ MeV 的p质子, seeding效率> 90%
 - 对于 $P_T > 150$ MeV 的 π 介子, seeding效率> 80%
- 将霍夫变换作为seeding算法能够提升 对于长寿命的粒子的重建效率

ITKW与ITKM对于长寿命粒子重建效率的比较

- 相比ITKM, ITKW对于长寿命粒子能够提供较好的重建效率
- ITKM的前两层半径比ITKW更小,对长寿命粒子具有较差的鲁棒性

OSACR ACTS的测试

- 在OSCAR进行ACTS重建测试,选用ITKM作为内径迹探测器
- OSCAR中使用Acts::KDTreeTrackingGeometryBuilder将Geant4物质一一转换成ACTS几何结构
- 存在一些问题:
 - □ 在高动量处,利用ACTS的重建效率出现下降的不正常趋势
 - □ ACTS的重建效率偏低,与在Hough+Genfit的结果相比有一定差距

- 实现了ACTS在STCF径迹探测器上的应用,ACTS已经集成到OSCAR中
 在Standalone ACTS中展现了优异的重建性能,尤其在有本底的情况下
 OSCAR ACTS中, seeding+CKF重建链已经实现
- Hough+CKF能够提升ACTS对于STCF上长寿命粒子的重建效率

- 解决OSCAR ACTS中可能存在的问题,提升重建效率
 - □ 检查ACTS seeding效率,优化seeding参数
 - □ 检查CKF参数
- 利用ACTS卡尔曼拟合代替Genfit拟合,优化高动量粒子的径迹拟合速度
- 引入机器学习的方法降低径迹重复率与假径迹率
- 进一步优化STCF长寿命粒子的寻迹性能
- 优化在漂移室中,ACTS CKF固有的左右模糊问题

Back Up

本底噪声

Touschek effect

- Scattering between inner beam particles
- Generation rate ∝ N_{bunch}, beam size⁻¹, energy⁻³
- Main Background

Beam-gas effect

· Effect with residual gas in the beam pipe

e±

- · Coulomb scattering, bremsstrahlung
- Generation ∝ pressure ●

Yupeng Pei

Luminosity-related background

- Radiative Bhabha: $e^+e^- \rightarrow e^+e^-\gamma$
- Two-photon process: $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-e^+e^-$

5

Other background

- Injection
- Synchrotron radiation

Background hits count per event

ITK1	ITK2	ІТКЗ	MDC1	MDC2	MDC3	MDC4	MDC5	MDC6	MDC7	MDC8
37.3	13.6	8.2	60.3	42.4	24.8	25.1	60.0	67.8	30.8	30.0

26060002 6060601 0 0.5 1 1.5 2 2.5

霍夫变换流程

长寿命粒子假径迹率和重复率随横动量的分布

23

重建性能指标相关定义

• seeding efficiency: $\frac{N_{seed}(selected,matched)}{N_{truth}(selected)}$

• Track finding efficiency:
$$\frac{N_{reco}(selected, matched)}{N_{truth}(selected)}$$

• Fake rate: $\frac{N_{reco}(selected,unmatched)}{N_{truth}(selected)}$

• Duplication rate: $\frac{N_{reco}(selected, matched, duplicated)}{N_{truth}(selected, matched)}$

→Reco-truth matching:
$$\frac{N_{hits}(Majority)}{N_{hits}(Total)} > 0.5$$

→ Simple track selection: $N_{hits} > = 5$
→ Theta cut: 20° < theta < 160°

无本底下的重复率

有本底下的重复率

cos 0		-				μ	ι, ψ (368	6)→ W	π⁺r / ba	īJ/ψ ckqı	(→ rour	µ⁺µ nds	-)		ion rate	o cosθ	-	-		г	τ, ψ (36	686)→ W/	π⁺π⁻J/u / backg	ψ(→ μ [`] ground	⁻ μ ⁻) s		tion rate
8	1	0.374	0.232	0.646	0.887	0.931	0.897	0.966	0.966	0.958	0.926	0.943	0.977	0.933		0 8 0	S	I	0.362	0.543	0.867	0.975	0.994	0.993	1.000	1.000		0.8 8
Ð		0.885	0.284	0.132	0.106	0.178	0.726	0.936	0.974	0.970	0.972	0.976	1.000	1.000			e		0.289	0.291	0.398	0.713	0.985	0.993	0.993	1.000		<u> </u>
с С		0.958	0.862	0.790	0.350	0.091	0.078	0.114	0.529	0.955	0.960	0.963	0.941	0.962			Ω.		0.447	0.370	0.332	0.353	0.747	0.976	0.992	0.952		0.73
		0.943	0.900	0.901	0.889	0.603	0.092	0.065	0.084	0.249	0.835	0.941	0.885	0.926		-0.7 -0.6	0.5	_ 0.539	0.416	0.375	0.334	0.426	0.830	0.981	0.984		0.70	
0	5	0.954	0.925	0.922	0.864	0.811	0.628	0.108	0.056	0.084	0.203	0.686	0.926	0.944				0.522	0.433	0.377	0.354	0.307	0.454	0.960	0.947			
0.	<u> </u>	0.975	0.949	0.825	0.849	0.797	0.685	0.411	0.105	0.057	0.099	0.166	0.833	0.812	_			0.599	0.464	0.399	0.354	0.282	0.292	0.640	0.976		0.6	
		0.939	0.976	0.841	0.793	0.740	0.732	0.566	0.245	0.060	0.066	0.086	0.266	0.875					0.662	0.511	0.424	0.339	0.266	0.217	0.430	0.929		
		0.937	0.951	0.836	0.741	0.750	0.730	0.695	0.515	0.089	0.060	0.078	0.085	0.467		-0.5		0.660	0.554	0.447	0.345	0.261	0.211	0.244	0.902		0.5	
		0.958	0.949	0.844	0.780	0.786	0.750	0.815	0.724	0.122	0.063	0.071	0.099	0.221		0.0	0.4 0 0.3 0.2 -0.5	0.090	0.520	0.449	0.352	0.271	0.198	0.220	0.791			
	0	0.966	0.944	0.796	0.730	0.771	0.837	0.696	0.692	0.240	0.075	0.075	0.097	0.220		-0.4		0	0.000	0.502	0.453	0.304	0.259	0.172	0.175	0.702		04
	~	0.943	0.949	0.825	0.784	0.709	0.744	0.623	0.500	0.214	0.077	0.067	0.101	0.119				- 0.700	0.595	0.434	0.352	0.247	0.221	0.241	0.001		0.4	
		0.968	0.963	0.746	0.752	0.781	0.769	0.723	0.562	0.144	0.065	0.070	0.075	0.190				0.723	0.520	0.443	0.330	0.209	0.211	0.173	0.022		0.0	
		0.961	0.957	0.816	0.778	0.759	0.828	0.784	0.571	0.114	0.068	0.065	0.114	0.409	_	0.3		-0.5	0.663	0.497	0.412	0.343	0.257	0.248	0.401	0.959		0.3
	_		0.906	0.030	0.789	0.787	0.021	0.574	0.283	0.069	0.069	0.089	0.227	0.839					0.576	0.436	0.379	0.331	0.286	0.273	0.730	1.000		
– 0.	5	0.955	0.933	0.812	0.848	0.830	0.718	0.442	0.095	0.072	0.090	0.162	0.804	0.833		0.2			0.559	0.440	0.387	0.345	0.304	0.445	0.970	0.977		0.2
•••		0.905	0.917	0.002	0.030	0.622	0.523	0.112	0.004	0.070	0.195	0.000	0.007	1.000		0.2		0.520	0.404	0.365	0.324	0.416	0.878	0.989	0.922			
		0.933	0.931	0.900	0.001	0.033	0.090	0.050	0.000	0.240	0.939	0.900	0.912	0.912		0.1			0.414	0.374	0.322	0.386	0.723	0.979	0.992	1.000		0 1
		0.880	0.314	0.116	0.235	0.003	0.734	0.960	0.000	0.970	0.977	0.940	1 000	0.912		0.1			0.299	0.305	0.372	0.760	0.984	0.997	1.000	1.000		0.1
		0.331	0.221	0.644	0.926	0.932	0.960	0.961	0.964	0.989	0.938	1.000	0.976	1.000				-		0,48 <mark>,7</mark>	0,869	0.984	0,996	0 <mark>,99</mark> 4	,1,000 ,	1,000		
-	-1'	0.0	6	0	.8	101002	1	1	.2	1	.4	1	.6	1.	.8	0		$\overline{0}$	05 0	.1 0.	15 0	.2 0.	25 0	.3 0.	35 0.	4 0.4	45	0
	Reco p _⊤ [GeV/c]														Reco p _⊤ [GeV/c]													

无本底下的假径迹率

27